
openWNS - open Wireless Network Simulator
Daniel Bültmann, Maciej Mühleisen, Karsten Klagges

Department of Communication Networks
Faculty 6, RWTH Aachen University, Germany
Email: {dbn,mue,kks}@comnets.rwth-aachen.de

Marc Schinnenburg
PSI Transcom GmbH, Telecommunications

Düsseldorf, Germany
Email: MSchinnenburg@psi.de

Abstract—This paper presents the open Wireless Network
Simulator (openWNS). This simulation tool was developed in
the last 5 years at the department of Communication Networks
(ComNets) at RWTH Aachen University and has been released
as open source software recently.

openWNS is a dynamic event driven system level simulation
platform that allows for investigation of dynamic protocol be-
haviour in multi-cellular scenarios with detailed interference
modeling. The simulation platform follows a modular design
down to protocol building blocks, which makes it possible
to rapidly modify the implemented protocol stacks. openWNS
currently includes models from physical to application layer.
The protocol modules for IEEE 802.16m and IEEE 802.11n-
draft are probably the most interesting for the wireless research
community.

I. INTRODUCTION

Performance evaluation by means of simulation is an in-
tegral part of any standardization, system development or
research activity. It allows for conducting repeatable exper-
iments in a controllable low-cost environment. Typically such
activities involve multiple parties, which pursue different in-
terests. This usually leads to a situation where results of own
evaluations need to be defended and evaluation results of other
parties need to be reviewed. In such situations a common
simulation platform has a significant potential for reduction
of cost and effort, quality increase and process speed-up.
This was one of the reasons for the decision to release
the simulation platform used and developed at ComNets to
the open source community. For additional information on
openWNS see [1].

Whereas most other open source simulation tools are re-
leased under the GNU General Public License (GPL) for open-
WNS the Lesser GPL (LGPL) license was chosen. Compared
to the GPL the LGPL additionally allows for closed source
simulation modules if you only use (link against) openWNS,
but still all modifications to the openWNS libraries themselves
must be made open source. This relaxation was accepted to
alleviate the adoption of openWNS within the industry.

The presented simulation tool is highly modular and allows
users to select an extension point, which fits best to their needs.
However, most of the protocol models that were released are
based on an implementation of the Functional Unit Networks
(FUNs) [2] [3]. Modularization is consequently applied even
to protocol building blocks, such that new protocols can be
easily built by selecting appropriate blocks from the Layer De-
velopment Kit (LDK) - a toolbox of protocol building blocks
such as Automatic Repeat Request (ARQ), Segmentation And
Reassembly (SAR), buffers, schedulers, etc.

openWNS has builtin support for simulation and compila-
tion clusters. Simulation campaigns can be easily managed by
users and results of parallel simulation runs can be browsed
with a graphical front-end. The backend is built by a relational
database and a grid engine such as SUN’s SGE.

The rest of the paper is structured as follows. At first,
an overview of other simulation tools is given. Then the
simulation platform and the available simulation framework of
openWNS are described. Afterwards the released simulation
modules are presented and a conclusion is given.

II. RELATED WORK

In this section, a current view on system level simulation
with special respect to open source approaches is given.
System level simulators for the performance evaluation of
communication systems are available for almost two decades.
The most prominent among them are probably ns- 2 [4] and
its successor ns-3 [5] (open source), OMNeT++ [6] (open
source only for academic use) and OPNET [7] (commercial).
Additionally, a number of other (open-source) simulators are
available: GloMoSim/QualNet (QualNet is the commercial
successor of the open source simulator GloMoSim), NCTUns,
GTNet, SSFNet and JiST.

In the following a summary of ns-2/ns-3, OMNeT++ and
OPNET is provided to give a rough overview about the
existing tools.

A. ns-2 and ns-3

The original development of ns-2 started as early as 1989
as REAL simulator. The first release of ns-2 was available in
1996. The main drawbacks of ns-2 turned out to be the lack of
wireless transmission modelling and detailed channel models.
In 2006, after 10 years of research and development the team
around ns-2 decided to start with a complete rewrite of the
simulator. ns-3 in comparison to ns-2 aims at providing better
support in the following items:

• Modularity of components
• Scalability of wireless simulations
• Integration/reuse of outside code
• Emulation
• Tracing and statistics
• Validation
At the time of writing this paper the current stable release

is ns-3.3 as of 18th December 2008, that contains support for
IEEE 802.11.

B. OMNeT++

OMNeT++ has been developed by Andras Varga and is a
discrete event driven simulation environment with a number of
additional models (e.g., for TCP/IP, peer-to-peer networks and
LAN protocols) being available. Modeling of the physical and
link layer is mainly provided by the Mobility Framework of
OMNeT++ [8]. Currently, OMNeT++ support for IEEE 802.11
and sensor networks. Support to model long-term or short-term
fading, are available through the MiXiM framework [9].

European Wireless 2009

205

Simulation Platform

Simulation Models

Node-Component Simulation Model

Configuration Evaluation

Node BS2
Node BS1

WiFi-MAC

WiFi-PHY

TCP/IP

Traffic Generator

C
o
m

p
o
n
e
n
ts

Transceiver

Antenna

Node STA2
Node STA1

WiFi-MAC

WiFi-PHY

TCP/IP

Traffic Generator

C
o
m

p
o
n
e
n
ts

Transceiver

Antenna

Mobility, Propagation & Channel Models

Mutual Interference Calculation

IP.Throughput

Moments Moments

SINR

PDF PDF ...

Per Station Type

Per Station

Per Selected MCS

Event SchedulerModule LoaderEmbedded Python
Interpreter

Random
Distributions Statistics

Support

Simulation Platform

Python

import hexagonal

scen = hexagonal()

scen.addUTs(

 UniformSpaced(100)

)

Fig. 1. openWNS Structure

C. OPNET
Whereas ns-2, ns-3 and OMNeT++ are freely available,

OPNET is a commercial tool. While higher ISO/OSI layers
(above layer 2) are the focus of these tools, the lower layers
and especially the physical layer and the transmission char-
acteristics are modelled very simple. The support for wireless
communication systems in terms of detailed interference mod-
elling, new channel models (e.g. for MIMO), node mobility,
different receiver models (e.g. for different multiple access
schemes) is very limited. The IEEE 802.11 model supports the
amendments a,b,e and g. There is also a community supported
IEEE 802.11n model available.

OPNET has founded a ”WiMAX Model Development Con-
sortium” which had several internal releases from September
2005 to July 2008. These releases are only available to the
consortium members. OPNET states that this model supports
IEEE 802.16-2004 and IEEE 802.16e-2005 [10].

III. SIMULATION PLATFORM

This section introduces the simulation platform of open-
WNS, which includes the core components of an event-driven
stochastic simulation tool and is the basis for the simulation
framework and simulation modules (cmp. Figure 1). It is
written in C++ and is heavily based on the Boost libraries
[11] which provide already many features of the upcoming
C++ standard [12], today. openWNS is separated in multiple
modules (shared libraries) which can by loaded dynamically
by the simulation platform if needed.

A. Event Scheduler
The simulation platform provides both real-time and non-

real-time schedulers. The real-time scheduler can be used

to build demonstrators and implement interaction with the
simulation host (see Section V-D for first steps to do this). The
non-real-time event scheduler uses a two layer data structure
as shown in Figure 2. For each distinct simulation time a map
entry is created. Each map entry contains a list of all events
that are queued at this time. With this structure the following
complexities are achieved:

• Schedule an event at current simulation time: O(1) within
the current bucket the new event simply needs to be
appended to the end of the list.

• Schedule a delayed event: O(log(N)) where N is the
number different simulation time instances for which at
least one event already exists.

• Cancel an event: O(1) after an event has been scheduled
the scheduler returns a handle to the event which must
be used to cancel the event. The handle makes searching
for the event prior to deleting obsolete.

• Retrieve next queued event: O(1) just retrieve the head
of the queue at the current simulation time.

It is important to state here that the programmers interface
does not put any restrictions on the event types. The event
scheduler only requires the call operator to be implemented
by queued events, i.e. all events must be functors. To further
facilitate the usage it is recommended to apply the function
argument binding mechanisms provided by the Boost bind,
function and lambda libraries [13].

B. Random Distributions

The random number generator is based on the Mersenne
Twister algorithm [14]. The implementation that is used is the
one provided by the Boost random library (i.e. mt19937). The

206

Simulation Time

O
(l

o
g

(N
))

 L
o
o
ku

p t1

t2

t3

t4

Event 3 Event 2 Event 7 Event 10

Event 13 Event 6 Event 1 Event 8

Event 9 Event 4

Event 11 Event 12 Event 5

Fig. 2. Event Scheduler Data Structures

algorithm provides a period of of 219937 − 1 and passed a
number of stringent statistical tests.

The available random number distributions include Uni-
form, Normal, Exponential, Poisson, Ricean, Pareto, Erlang,
and Binomial. Furthermore, the random number distributions
provided by the boost random library are available.

For debugging purposes it is possible to use multiple base
generators. In this way one could use a fixed seed for the
mobility components but use random seeds within the link to
system level interface packet error rate experiments.

C. Configuration

The Python language is used for configuration of simulation
scenarios (cmp. Figure 1). The most important advantage to
choose a programming language instead of a data represen-
tation language such as XML is its scalability. To be useful
for a wide range of users the configuration mechanism must
be capable to scale with the scenario size and also scale
with increasing complexity of simulation models. With an
object oriented programming language the first scale-up can
be achieved by functional decomposition of the scenario setup
task, while the second can be achieved through sub-classing or
structural composition of class hierarchies. Python was chosen
for its syntactical clarity and its wide support within the open
source community. Each simulation module (cmp. Section
V) is accompanied by reasonable default configurations. New
users can quickly setup their first simulations and then start
changing parameters incrementally. PyTree is the graphical
configuration viewer that is included in openWNS.

D. Evaluation

The evaluation subsystem of openWNS provides means to
sort measurements according to a measurement context and
compress the data by statistically processing the measurements
during the runtime of the simulator. This is illustrated on the
right hand side of Figure 1.

At compile time the developer defines measurement sources
within the model and also defines context information that
accompanies each measurement (i.e. the node position, the
base station to which it is associated, the used modulation
and coding scheme, etc.).

At configuration time the user of the model can decide on
the kind of evaluation that suits his investigation best. For
instance, the user could configure an evaluation for a signal
to interference plus noise ratio (SINR) measurement source.
The Probability Density Function (PDF) for each station
and for each modulation coding scheme can be gathered to
determine the number of false scheduling decisions. Unused
measurement sources have neglible overhead.

The major advantage of this approach over post-mortem
measurement evaluation is the support for longer simulation
runs. When running large simulation campaigns storage ca-
pacity is soon a problem. For example, consider a simulation
campaign which collects the mean SINR for 100 user terminals
within a cell. Assuming that a double precision float value (8
bytes) is used for the value and that every frame (2ms) a new
measurement is generated, the data rate for this scenario would
be 800 bytes per frame. With 100 drops (terminal positions
are fixed but choosen randomly) and 100 seconds simulation
time for each drop the necessary storage capacity would be
4GB - only for the SINR values.

The online statistical evaluation saves space. Furthermore,
the clear distinction between the measurement source and the
sorting stages makes it easy for users to quickly implement
their desired evaluation. No changes to the original models
have to be made.

IV. SIMULATION FRAMEWORK

The development of a simulator often requires the im-
plementation of recurring software patterns. The openWNS
provides a framework that makes developing of protocols easy.
The goal of the simulation framework is to make development
of simulation models and often used parts of protocol stacks
easy to implement and to configure. This is achieved through
well-defined clear interfaces, a rich set of predefined protocol
building blocks and a high degree of code reuse, which is
achieved by a component-based development approach.

A. Simulation Model

There is an indispensable need to simulate both, simple
queueing systems as well as complex simulation scenarios
with an entirely equipped protocol stack. The openWNS
provides a software architecture that supports both. Each
simulation is defined through the simulation model which
specifies two basic methods: start() and shutdown().
These methods define the entry point of the simulation model
and a point of notification about the end of the simulation. At
startup a simulation model will typically setup the investiga-
tion scenario and schedule events. Thereafter, the simulation
model is driven by the event scheduler’s main event loop. The
shutdown method is used to properly shutdown the model and
to gather final statistics.

B. Node-Component Model

As stated above the simulation is based on a simulation
model which can be a simple queueing system or a more
complex scenario with several stations. The Node-Component
model allows for the flexible specification of protocol stacks.
Therefore, each station is represented by a Node class. Each
Node contains a set of components which represent the
protocol layers, equivalent to protocol layers of the ISO/OSI
reference model. Figure 1 shows the structure of the Node-
Component Simulation Model. Usually each simulator module
defines a specific component type, that can be instantiated
inside a node, see also Section V.

C. Layer Development Kit

Protocol layer development is often the fundamental step
of developing an openWNS module. Protocol layers in open-
WNS correspond to ISO/OSI layers and are subdivided into
Functional Units (FUs). There is a simple mechanism to
connect FUs. These connected FUs form a Functional Unit

207

Compound Handler Flow Control

Buffer

ARQ

SAR

Multiplexer

Command Type
Specifier

ARQ

SAR

Buffer

Fig. 3. Functional Unit Networks

Network (FUN) and represent the central packet processor of
the openWNS layer, see Figure 3.

Messages between and inside layers are transmitted through
compounds of commands, which is similar to the blackboard
software pattern [15]. Each FU defines a unique command
type. Each compound contains a single instance of the specific
command, that is defined by the command type specifier and
which can only be accessed by the FU.

The compound handler is the central element of the FU.
It defines the actions that are performed for incoming and
outgoing compounds. Often, the developer has only to define
the function of the compound handler. Other elements of the
FU can easily be aggregated by predefined components of the
LDK toolbox.

Another important aspect of the LDK is flow control. FUs
provide flow control for both, incoming and outgoing packets.
Each FU provides an interface that gives information, whether
a compound would be accepted. Hence upper FUs ask lower
FUs before they send outgoing compounds. For incoming
compounds, flow control in terms of blocking is not necessary.

New protocols can be easily built by selecting appropriate
blocks from the LDK, that contains a predefined toolbox of
protocol building blocks such as ARQ, SAR, buffers, sched-
ulers, multiplexers, de-multiplexers, etc. A detailed description
of the FU concept can be found in [3].

V. SIMULATION MODULES

This section presents the simulation modules included in
openWNS. Starting with the channel and interference mod-
elling, the WiMAX and WiFi data link layer modules are
presented. openWNS allows for simulations that include multi-
standard nodes that may operate concurrently below the IP
network layer. The transport layer modules for TCP and UDP
are introduced. At the end of this section the available traffic
models are presented which can be operated either on top of
the data link, network or transport layer.

A. RISE - Radio Interference Simulation Engine
RISE manages node mobility (brownian movement,

roadmap, polygon paths, etc.) and interference calculation.
The channel model is used to calculate total received signal
strength for every transmission by using the formula

PR = PT − LPL − LSh − LFF +GT +GR (1)

PR is the received power, PT the total emitted power
by the transmitter, LPL, LSh, LFF the losses due to path-
loss, shadowing, and fast fading, and GT (φ, θ), GR(φ, θ)

are the antenna gains at the transmitter and receiver. The
radio propagation model can be independently chosen for each
transceiver type pair. This can be used for example to have
different models for different moving speeds or to define Line
of Sight (LOS) and Non Line of Sight (NLOS) connections.

It is possible to include directive antenna models which
depend on φ and θ. Two antenna types are distinguished.
The static antenna is described by its gain in all directions.
The beamforming antenna allows to dynamically adjust its
directivity. The algorithm used to calculate the gain is the
optimal beamformer algorithm described in [16].

Several models to calculate the path loss between transmitter
and receiver are available. Those are:

• Constant (distance independent)
• Free space
• Single slope
• Multi slope

Distance ranges can be defined and a model applied for
each range. The single slope model is described by the
equation LPL = (λ

4πd)
γ . d is the distance between transmitter

and receiver, λ the electromagnetic wavelength and γ the
propagation coefficient. In a logarithmic notation γ becomes
the slope. Free space propagation is a special case of the single
slope model with γ = 2.

The multi slope model is created by defining multiple
distance ranges using single slope propagations with different
propagation factors. Constant, distance independent path loss
is usually applied for very short or very long distances. The
pathloss models for the IMT-Advanced evaluation have already
been partly included [17].

Different shadowing models to describe the scenario are
available. These models describe the influence of solid obsta-
cles on radio wave propagation. Three different models are
available:

• Map based
• Scenery object based
• Spatially correlated

The map based model assumes fixed base station positions.
The shadowing is pre-calculated for each base station by a
map of the signal degradation due to shadowing at several
sampling points on the scenario. The signal strength between
sampling points is interpolated.

The scenery object based model includes geometric obstruc-
tions with a fixed penetration loss. The total shadowing is
defined by the total penetration loss of all penetrated walls
assuming LOS propagation. This is typically used to create
indoor scenarios with walls or outdoor scenarios with whole
buildings. In contrast to the map based model this model does
not require fixed base stations to be one communication end
point. It can therefore be used for mobile-to-mobile station
communication.

Spatially correlated shadowing is modeled stochastically. A
description of the model can be found in [18]. It is based
on a sequence of correlated, log-normally distributed random
values.

Additionally to shadowing and path-loss, a fast fading
model can be enabled. Currently, rician fading [19] as well as
time correlated and frequency selective models are available.
Time correlation is modelled according to the Jakes model
[20]. The frequency selective fading process is modelled
according to [21].

208

B. WiFi

openWNS includes a model for the simulation of IEEE
802.11 Wireless Local Area Networks. The physical layer
model allows to simulate frame transmissions on wireless
channels with 20/40 MHz bandwidth. It is based on the
RISE (see Section V-A) module and thus supports pathloss,
shadowing, fast fading and interference calculation.

The physical layer model supports both virtual and physical
carrier sensing. The link-to-system level interface is based
on a SINR to packet error rate mapping, which takes into
account the modulation and coding scheme and the packet
length. A simple stochastic model of MIMO gains [22] has
been included.

The medium access control layer implements the IEEE
802.11 Distributed Coordination Function (DCF). Addition-
ally, the RTS/CTS transmission mode, transmission opportuni-
ties according to IEEE 802.11e are implemented. Furthermore,
the block acknowledgements and frame aggregation methods
of IEEE 802.11n are available, as well as SINR and ARQ-
based rate adaptation with MIMO support.

An additional path selection module allows for simulation
of mesh networks according to IEEE 802.11s and has already
successfully been used for performance evaluation [23].

C. WiMAX

The openWNS additionally supports the IEEE 802.16 pro-
tocol, also known as WiMAX. Since the WiMAX protocol
realizes a frame based medium access scheme, the openWNS
has been enhanced to support periodically timed frames. The
WiMAX medium access control module (WiMAC) supports
the Orthogonal Frequency Division Multiplex (OFDM) physi-
cal layer Time Division Duplex (TDD) profile of the IEEE
802.16e standard. Also, WiMAC supports the Orthogonal
Frequency Division Multiple Access (OFDMA) profile for
flat channels. The implementation provides special packets
for Frame Control Header (FCH), downlink (DL) and uplink
(UL) maps, ranging messages, association and connection
establishment packets and bandwidth requests.

In the recent years, WiMAC has also be enhanced to support
relay enhanced multihop communication in cellular scenarios.
The IEEE 802.16j task group has put significant effort in
developing medium access techniques for the relay enhanced
cellular system. WiMAC implements the transparent relay
mode, which makes multihop operations possible, even for
unmodified subscriber stations.

D. TCP/IP Module

The Internet Protocol (IP) module included in openWNS
implements a subset of IP version 4. Within each simulation
node an unlimited number of data link layers may be included.
Each is handled similar to a device node in a real computer
system. This allows for simulation of hybrid multi-technology
nodes. Virtual services for ARP, Domain Name System (DNS)
and Dynamic Host Configuration Protocol (DHCP) have been
implemented, whereby virtual denotes that there are no Proto-
col Data Units (PDUs) actually transmitted, but the service is
realized transparently within the simulation tool. It is possible
to include delay models for each of these services.

By now, only static routing tables with Time To Live (TTL)
support have been implemented, but the flexible architecture
allows for extension of routing protocols. Furthermore, the
module implements IP Tables and provides internal tunnel
devices (similar to Linux’s tunnel device) to support IP in IP

encapsulation. There is no Internet Control Message Protocol
(ICMP) implemented.

The support of DNS and DHCP has been added to make
the scenario configuration as easy as possible. Higher layers
address their traffic streams by using domain names. Tedious
IP address mangling is not needed. The DHCP sub-module
takes care of address allocation and also automatically updates
lookup tables within the DNS service.

UDP and TCP models with accurate UDP and TCP head-
ers are available. The congestion avoidance and slow start
algorithms have been implemented as strategies and can be
exchanged by configuration. Currently Tahoe and Reno are
available.

One very beneficial feature of the TCP/IP modules is their
capability to write Wireshark [24] compatible trace files. In
this way the powerful network analysis tool can be used to
visulaize protocol behaviour. There is also a TUN device
available that actually connects the simulator to the operating
system, allowing for live captures during the simulation run.

E. Traffic Models
The openWNS load generator is named Constanze. Basi-

cally, it consists of traffic generators and bindings. Traffic
generators create packets while the binding ties the generator
to a specific lower layer. Within openWNS it is possible to
connect the traffic generator either to the data link layer,
network layer or transport layer depending on the scenario.
The traffic models you can choose from are:

• Simplistic Point Process (PP) models including Constant
Bitrate, Poisson distributed traffic or the more generic
version that allow for arbitrary random distributions for
both packet inter-arrival time and packet size.

• Markov-Modulated Poisson Process (MMPP) models.
The IMT-Advance VoIP model [17] or variable bit-rate
models like MPEG2.

• Autoregressive Moving Average (ARMA) models. These
are typically used to model variable bit rate video or ATM
traffic but have also been applied to model online game
traffic.

Constanze’s traffic generator bindings take care of adapting
the traffic source and sink to the desired protocol layer. Traffic
sinks record throughput and delay statistics and are called
listener bindings. Generators can be bound to the

• Data Link Layer (DLL). In this case the binding is aware
of the MAC address of source and sink and it injects the
generated packets accordingly into the protocol stack.

• Network Layer (IP). openWNS uses IP as its network
layer. The IP binding is similar to the DLL binding but
uses IP-Addresses instead of MAC addresses.

• Transport Layer (TCP, UDP). The UDP binding addition-
ally is aware of the destination port. The TCP binding
is responsible to open and close a connection before
transmitting any packets.

This structure of the traffic generator module makes its
usage very simple. The traffic source characteristics are con-
figured completely separate from the deployment within the
simulation scenario. Sources can be plugged on any layer
and traffic routing can be decided individually per generator
instance.

VI. CLUSTER COMPUTING SUPPORT

One of the most advanced features of the openWNS simu-
lation platform is its support for cluster computing. During the

209

development phase, compilation cycles can be significantly ac-
celerated by employing a compile cluster. openWNS supports
icecc out of the box.

Even more important is the support during the simulation
phase, parallelizing whole simulation campaigns, which con-
sists of multiple simulation runs, each simulation run with
different parameter sets is performed on a single processor.
Many simulation tools do not offer support for this and leave
the implementation of collecting results, extraction of mea-
surements and parameter plots to the user. openWNS offers
the Wrowser (an acronym for Wireless network simulator
Result Browser) which solves this problem and lets users focus
on the research rather than on the scripts that collect their
measurements.

The approach taken by Wrowser is illustrated in Figure 4.
Wrowser supports Sun Grid Engine and Postgresql databases
as cluster and database backends. The starting point for
running a simulation campaign (i.e. parameter sweeps) and
analyzing the results is a scenario configuration file. This file
is augmented by the user with definitions of the parameters that
should be altered between different parallel simulation runs on
the cluster, e.g. one could define to increase the offered traffic
from 0 to 30 Mbit/s in steps of 1 Mbit/s and for all of these
load settings set the packet sizes to 80 byte and 1480 byte.

Postgres Database
Server

SUN Grid Engine

2. Queue Campaign Simulations

3a. Query Simulation Parameters

3b. Write Results

4. Analyze
Results

3. Parallel Simulation
Runs

Users Workstation

1. Create Campaign

Fig. 4. Wrowser

Once this is done settings are written to the database and
simulation directories are prepared. Users queue simulation
runs and wait for the them to finish. Once a job executes
simulation parameters are retrieved from the database and
results are written back for further study.

As soon as the first results have been written to the database
the graphical frontend of Wrowser can be used to access the
results. Wrowser is aware of all the simulation parameters and
parameter plots can be generated within a few steps. Figure 4
shows a plot of the carried traffic over the offered traffic for
different packet sizes within a WiFi system.

VII. CONCLUSION

A new open source wireless network simulator was pre-
sented. Simulation modules for the physical, data link, network
and transport layer have been released and are available to the
public. The physical layer provides detailed channel models
with support for directional and beamforming antennas, as
well as frequency selective and time correlated channels.
Furthermore, models for IEEE 802.16m and IEEE 802.11 with
draft-n and mesh support have been released. An extensible
TCP/IP suite and the traffic generator close the list of available
modules.

The whole simulation platform is highly modular and offers
users different extension points. The graphical support to view
simulator configurations and results from multiple parallel
simulation runs significantly simplifies the data evaluation
process.

ACKNOWLEDGMENT

The development and release of openWNS would not have
been possible without the support, hard work and endless
efforts of a large number of diploma thesis workers and
PhD students. We are particularly grateful to our colleagues
Ralf Pabst, Arif Otyakmaz, Klaus Sambale, Sebastian Max,
Rainer Schoenen, Ralf Jennen and Matthias Malkowski for
their dedication and contribution to openWNS. Finally, we
would like to thank Prof. Walke who made the work on this
simulator possible.

REFERENCES

[1] openWNS - open Wireless Network Simulator. Web Page. Department
of Communication Networks, RWTH Aachen University. [Online].
Available: http://www.openwns.org

[2] M. Schinnenburg, F. Debus, A. Otyakmaz, L. Berlemann,
and R. Pabst, “A framework for reconfigurable functions
of a multi-mode protocol layer,” in Proceedings of SDR
Forum 2005, Los Angeles, U.S., Nov 2005, p. 6.
[Online]. Available: http://www.comnets.rwth-aachen.de/typo3conf/ext/
cn download/pi1/passdownload.php?downloaddata=824|1

[3] M. Schinnenburg, R. Pabst, K. Klagges, and B. Walke, “A Software
Architecture for Modular Implementation of Adaptive Protocol Stacks,”
in MMBnet Workshop, Hamburg, Germany, Sep 2007, pp. 94–103.
[Online]. Available: http://www.informatik.uni-hamburg.de/bib/medoc/
B-281-07.pdf

[4] ns-2 web presence. Web Page. [Online]. Available: http://www.isi.edu/
nsnam/ns/

[5] ns-3 web presence. Web Page. [Online]. Available: http://www.nsnam.
org/

[6] OMNeT++ web presence. Web Page. [Online]. Available: http:
//www.omnetpp.org/

[7] OPNET web presence. Web Page. [Online]. Available: http://www.
opnet.com/

[8] M. Lbbers and D. Willkomm. A mobility framework for omnet++. User
Manual (online). [Online]. Available: http://mobility-fw.sourceforge.net/
manual/index.html

[9] Mixim framework. Website. [Online]. Available: http://mixim.
sourceforge.net/

[10] WiMAX (IEEE 802.16) Specialized Model. OPNET Technologies, Inc.
[Online]. Available: http://www.opnet.com/solutions/brochures/wimax
model.pdf

[11] Boost C++ Libraries. web page. [Online]. Available: http://www.boost.
org/

[12] TR19768 Technical Report on C++ Library Extensions, ISO/IEC Std.
[13] B. Karlsson, Beyond the C++ Standard Library - An Introduction to

Boost. Addison Wesley, 2005.
[14] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998.

[15] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-oriented Software Architecture Volume 1. John Wiley & Sons,
1996.

[16] L. Godara, “Application of antenna arrays to mobile communications. II.
Beam-forming and direction-of-arrival considerations,” in Proceedings
of the IEEE, vol. 85, no. 8, 1997, pp. 1195–1245.

[17] ITU-R, “ITU-R M.2135 : Guidelines for evaluation of radio interface
technologies for IMT-Advanced,” ITU, Tech. Rep., 2008.

[18] Z. Wang, E. Tameh, and A. Nix, “Joint Shadowing Process in Urban
Peer-to-Peer Radio Channels,” Vehicular Technology, IEEE Transactions
on, vol. 57, no. 1, pp. 52–64, Jan 2008.

[19] B. Walke, Mobile Radio Networks. John Wiley & Sons, November
2001.

[20] W. C. Jakes, Microwave Mobile Communications, W. C. Jakes, Ed.
Wiley & Sons, 1975.

[21] B. Sklar, “Rayleigh fading channels in mobile digital communication
systems. I. Characterization,” IEEE Communications Magazine, vol. 35,
no. 9, pp. 136–146, Sept. 1997.

[22] D. Gore, J. Heath, R.W., and A. Paulraj, “On performance of the zero
forcing receiver in presence of transmit correlation,” Information Theory,
2002. Proceedings. 2002 IEEE International Symposium on, pp. 159–,
2002.

[23] S. Max, E. Weiss, G. R. Hiertz, and B. Walke, “Capacity bounds
of deployment concepts for wireless mesh networks,” Performance
Evaluation, vol. 66, no. 3-5, pp. 272 – 286, 2009, modeling
and Analysis of Wireless Networks: Selected Papers from MSWiM
2007. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V13-4TT30PH-1/2/3f79cd7cc92acbd90e83cd0fdb273c53

[24] Wireshark. Web Page. [Online]. Available: http://www.wireshark.org/

210

http://www.openwns.org
http://www.comnets.rwth-aachen.de/typo3conf/ext/cn_download/pi1/passdownload.php?downloaddata=824|1
http://www.comnets.rwth-aachen.de/typo3conf/ext/cn_download/pi1/passdownload.php?downloaddata=824|1
http://www.informatik.uni-hamburg.de/bib/medoc/B-281-07.pdf
http://www.informatik.uni-hamburg.de/bib/medoc/B-281-07.pdf
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.nsnam.org/
http://www.nsnam.org/
http://www.omnetpp.org/
http://www.omnetpp.org/
http://www.opnet.com/
http://www.opnet.com/
http://mobility-fw.sourceforge.net/manual/index.html
http://mobility-fw.sourceforge.net/manual/index.html
http://mixim.sourceforge.net/
http://mixim.sourceforge.net/
http://www.opnet.com/solutions/brochures/wimax_model.pdf
http://www.opnet.com/solutions/brochures/wimax_model.pdf
http://www.boost.org/
http://www.boost.org/
http://www.sciencedirect.com/science/article/B6V13-4TT30PH-1/2/3f79cd7cc92acbd90e83cd0fdb273c53
http://www.sciencedirect.com/science/article/B6V13-4TT30PH-1/2/3f79cd7cc92acbd90e83cd0fdb273c53
http://www.wireshark.org/

	Introduction
	Related Work
	ns-2 and ns-3
	OMNeT++
	OPNET

	Simulation Platform
	Event Scheduler
	Random Distributions
	Configuration
	Evaluation

	Simulation Framework
	Simulation Model
	Node-Component Model
	Layer Development Kit

	Simulation Modules
	RISE - Radio Interference Simulation Engine
	WiFi
	WiMAX
	TCP/IP Module
	Traffic Models

	Cluster Computing Support
	Conclusion
	References

