
Middleware for Communication and Deployment of Time
Independent Mobile Web Services

Fahad Aijaz, Seyed Mohammad Adeli, Bernhard Walke
RWTH Aachen University, Faculty 6

Communication Networks
Kopernikusstr. 16, 52074 Aachen

{fah, ade}@comnets.rwth-aachen.de

Abstract

With the increasing storage capacity, processing
power and battery capabilities, mobile devices are now
able to providing services instead of just being service
consumers. This paper introduces a middleware for
time independent Mobile Web Services (Mob-WS) that
avoids the overheads of long durational synchronous
communication. Details of communication architecture
and interaction among the middleware components is
presented and discussed. The Bluetooth binding for
SOAP has been developed and briefly presented.

1 Introduction

Mobile phones in today’s era are equipped with more
processing power, storage capacity and battery perfor-
mance. This continuous growth in mobile technology
has enabled hosting services on mobile devices that are
termed as Mob-WS.

In this paper, a concept and architecture of a mid-
dleware for communication and deployment of asyn-
chronous Mob-WS is introduced to perform long-lived
operations. The proposed middleware supports variety
of transport protocols. Here, we present details about
the Bluetooth implementation. The work is based on
the existing Mob-WS framework first presented in [2].

2 SOAP Binding for Bluetooth

Bluetooth is a wireless communication protocol
mainly used for short range wireless connectivity be-
tween Bluetooth-capable devices. Since Bluetooth
technology is a universal standard, it guarantees a high
level of compatibility. In this work, SOAP messages

over Bluetooth are used for service invocation, as well
as monitoring and controlling of an existing service in-
stance.

2.1 Bluetooth Discovery

Since wireless devices are mobile they need a mech-
nism that allows them to find accessible devices and
gain access to their capabilities. Sun Wireless Toolkii
2.5 includes the optional package JSR 82 which con-
tains the J2ME Bluetooth API. The DiscoveryAgent
class and DiscoveryListener interface, which the
Observer implements, provide the necessary service
for discovery. The Observer of the client node cre-
ates an instance of BTDiscovery to look for any Blue-
tooth devices such as phones, PDAs or computers. It
is essential to perform common Bluetooth operations
like device discovery, in seperate threads in order to
avoid potential deadlocks, since they may take sev-
eral seconds to complete. After retrieving the UUID
of the specified protocol (in our middleware L2CAP)
from BTProtocol, it begins with the discovery of Blue-
tooth devices. The DiscoveryAgent is used to search
for all accessible devices in the environment. The
class RemoteDevice represents a device within the
range of reach and provides methods to retrieve in-
formation about the device including it’s Bluetooth
address, name and available services. The method
deviceDiscovered() is called everytime a new device
is found, and inquiryComplete() when the discovery
is completed. At the end, all discovered devices are
sent back as a result to the Observer. It is also pos-
sible for the Observer to select a device from a list
of pre-known devices, which the local device contacts
frequently. In this case the device discovery would no
longer be used.



2.2 Bluetooth Transport

Once a remote device is discovered on the client
node, the Observer sends a SOAP request using
BluetoothTransport class. This class represents a
communication interface on client-side and provides
method to facilitate SOAP calls over Bluetooth using
the J2ME Generic Connection Framework. In order to
establish a connection via Bluetooth the client makes
use of the btspp protocol, which consists of a host
name, retrieved at the device discovery, and a channel.
The Bluetooth Serial Port Profile (btspp://) is a wire-
less interface specification for Bluetooth-based commu-
nication which emulates a serial cable and provides a
simply implemented wireless replacement. Using the
StreamConnection, it creates a new connection to a
specific device. In order to start the transmission it
opens an OutputStream and writes the SOAP message
which is just a simple text.

2.2.1 SOAP Transmission

The BluetoothServerThread is the class responsible
for Bluetooth connections on server-side in our proto-
type. It makes the server discoverable to other Blue-
tooth devices and waits for an incoming SOAP request
from a client. The LocalDevice class represents the
server and provides method to configure the local de-
vice. After the connection is established successfully, it
is being forwarded to the RequestHandler to process
the request.

Applications can use a single instance of Bluetooth-
Transport for all SOAP calls to one, or multiple target
endpoints.

3 Communication Architecture

The concept of Mob-WS involves two basic roles,
termed as Web Service Consumer (WS-C) and Web
Service Provider (WS-P). Within the context of this
work, the focus is on Peer-to-Peer (P2P) interaction,
where both the WS-C and WS-P are mobile nodes.

The asynchronous Mob-WS middleware provides a
foundation to develop and deploy asynchronous long-
lived services, not asynchronous messaging. This is
because asynchronous messaging does not necessarily
implies that the deployed services are asynchronous in
nature. Since asynchronous services start and continue
to perform their tasks over a longer duration of time,
therefore, the need to be able to monitor and control
such services becomes essential. This section presents
the architectural details for inter-component commu-
nication within the proposed middleware, the service

control and monitoring mechanisms and the service in-
vocation process.

For a general overview of the core architecture of
the asynchronous Mob-WS middleware, the reader is
refered to study [1]. The architecture of the overall
middleware consists of several components interlinked
togather. Within this manuscript, the focus will be
on discussing the asynchronous aspects of the architec-
ture.

3.1 Communication Subsystem

In order to build a system of asynchronous Mob-WS
three different types of endpoints are defined to cater
three distinct roles that forms a subsystem within the
middleware architecture. For detailed description of
each, a study of [1] is recommended.

3.2 Inter-Component Control Flow

Having explained the basic notion of the three roles
of asynchronous Mob-WS middleware in [1], a detailed
control flow of communication among them is now pre-
sented in this section. These details focus only on asyn-
chronous interaction and are elaborated in reference to
figure 1, and its parts (A), (B), (C) and (D).

3.2.1 Service Invocation - (A)

Consider two mobile nodes with the asnychronous
Mob-WS middleware deployed on them. Each node
will have the three basic communication components
described in 3.1. In order to consume asynchronous
Mob-WS, the Observer of the client node (labeled (A)
in figure 1) is required to send a SOAP request to
its peer with the service specific information and its
own Endpoint Reference (EPR) that should be used
by the host node to communication with the client
asynchronously. Once the desired SOAP envelope is
constructed, it is then send over the network to the
host peer. The protocol listeners (later refered as lis-
teners) of the host peer constantly waits for incom-
ing Mob-WS requests from the peer’s Observer com-
ponent. The client node could send this request over
HTTP, User Datagram Protocol (UDP) or Bluetooth
etc. since the Mob-WS invocation is independent of the
transport protocol. Once the SOAP envelope arrives at
the host node, it is delegated to the RequestHandler
and the listeners start waiting for new incomming re-
quests. The aim of RequestHandler is to determine
the service type, that is, asynchronous or synchronous.
Else, the RequestHandler passes the message to the
ASAPHandler which could be seen as a gateway to the
asynchronous Mob-WS consumption.

2



Observer RequestHandler ResponseHandler ASAPHandler Factory Instance

Asyn. Request + EPR

<<delegate>> Information
Extraction

Service
Identification

Request
Identification

Process
<<delegate>>

ACK + EPR

ACK + EPR

Asynchronous
Service

<<invokes>>

Result

Control / Monitor Request

Control / Monitor Response

Asnychronous Response + Result

Protocol
Listener

ACK + EPR

S
er

vi
ce

 L
ife

tim
e

<<delegate>>

P
ol

lin
g

In
te

ra
ct

io
n

C
al

lb
ac

k
In

te
ra

ct
io

n

Data
Availability

Requirements

S
yn

ch
ro

no
us

 
M

es
sa

gi
ng

<<creates>>

ACK

A

B

C

D

Figure 1. Asynchronous Communication Control Flow

At this point, the middleware has to identify the
purpose of request since, it could either be directed to
the Factory or Instance component. This is iden-
tified by extracting the information embedded within
the SOAP envelope. Assuming the request for ser-
vice consumtion, the middleware should first create an
Instance, which in turn invokes the desired service.
As stated earlier in 3.1, the Factory acts as a manager
and is responsible for Instance creation, therefore, the
request is delegated to the Factory’s Instance cre-
ation procedure. This is to note that Instance creation
does not imply immediate service invocation, rather
the Instance could be set to invoke the service at some
later time which is decribed in SOAP envelope received
from the client node. In this paper, we assume im-
mediate service invocation to keep things as simple as
possible.

Once the Instance is created with its unique
EPR, it instantly invokes the asynchronous Mob-
WS, whereas the Factory sends the Acknowledgment
(ACK) to ASAPHandler along with the EPR of the
Instance which is sent back to the client’s Observer
by the ResponseHandler over the preferred transport
protocol.

This is vital to note that the entire communication
between the peers decribed above is synchronous, but
it invoked an asynchronous Mob-WS. Once the ser-
vice is invoked, it keeps on performing its tasks for as
longer duration as desired. The client is notified syn-
chronously about the status of the service in order to
avoid its blocked state whereas the service continues to
perform its tasks at the server.

3.2.2 Asynchronous Service - (B)

One important aspect of the middleware architecture
is the dependancy between the Instance and the asyn-
chronous Mob-WS (later refered as service). The ser-
vice is not directly exposed to the invocating peer’s
Observer, rather it is the Instance. Since require-
ments of every service is dependant on its usage env-
iornment, therefore, it is left to the application devel-
oper how to make the result of the service available to
its clients.

For instance, in deadline critical applications, the
peer’s Observer might be interested in having partial
results while the service is still running, whereas, in
normal cases, there is no need to expose the result data
of the service, unless it has completely performed its
duties. This dependancy is labeled as ‘Data Availabil-
ity Requirements’ in figure 1.

3.2.3 Control and Monitoring - (C)

For an asynchronous long-lived Mob-WS it is essential
to be controllable and provide mechanisms for moni-
toring its state. This is because during the execution
of such services, the service consumer might be inter-
ested in receiving status updates or the requirements
of the client might change. For instance, in a sensor
based environment where the real-time information is
constantly changing, an asynchronous Mob-WS client
might want a service to utilize the updated context in-
formation that it has just received from its environment
and discard the one that was previously sent at the time
of service invocation. In order to meet such dynamic
change in requirements, a client should be able to send

3



control messages to the service Instance and on the
other hand, the service Instance should be capable of
updating itself at runtime.

The asynchronous Mob-WS middleware incorpo-
rates the control and monitoring mechanisms within
its architecture that makes the deployed services ca-
pable of adapting to dynamic changes. Once the ser-
vice is invoked and running, the client’s Observer can
send control and monitoring messages in form of SOAP
as illustrated in figure 1 (C). These messages are di-
rectly sent to the service Instance, since the client’s
Observer already contain its EPR that was received
during service invocation process.

This is vital to note that such dynamic service man-
agement makes use of the polling interaction tecnique
due to a short-termed nature of its messages. This
implies that such communication is synchronous in na-
ture.

Service Monitoring: Consider an example in which
the client’s Observer wishes to receive the properties of
the service that is currently in execution phase. Once
the status information is received, it can then analyze
and act accordingly. The client might wish to control
the service based on its current state. Such monitor-
ing requests can be send as SOAP envelopes from the
peer Observer directly to the service Instance. This
request message once received by the ASAPHandler is
analyzed and passed on to the Instance. For simplic-
ity, we show a direct link to the Instance in figure 1
(C).

Service Control: In order to control a service,
consider a scenario in which a service client wishes to
change the state of a running service. Such control
message could involve activities from setting various
properties of the service to pausing or terminating
the service. In such case, a control request as a
SOAP envelope from the Observer is received by the
ASAPHandler that describes which state the service
should change to. An asynchronous Mob-WS at any
given time could be in the states; open.notrunning,
open.notrunning.suspended, open.running,
closed.completed, closed.abnormalCompleted or
closed.abnormalCompleted.terminated. After changing
the state of the service Instance, a notification is sent
to the Observer that triggered the control message
sequence.

Any change in state of the service triggers a callback
StateChanged message to be sent to all the clients that
have subscribed to this particular asynchronous Mob-
WS. A change in state could be caused by some in-
ternal event such as occurrence of an exception during

processing, or could be triggered externally by a client.

3.2.4 Service Response - (D)

Upon completion of a long-lived Mob-WS, the
Instance is responsible for sending the result back to
the peer Observer(s). Since the Instance incorporates
the Observer’s EPR, therefore, a callback interaction
mechanism is adapted for communicating the service
response as depicted in figure 1 (D). This is done by
invoking a method at the Observer via SOAP. The
SOAP response carries with it, the entire result infor-
mation that the service has produced during its run-
time.

Once the Observer at the calling peer receives final
response, it acknowledges the Instance, and hence the
Instance expires.

4 Conclusion

In this paper, a communication architecture of an
asynchronous Mob-WS middleware is introduced that
discusses the idea of deploying long-lived complex asyn-
chronous Mob-WS on mobile devices. In addition to
Bluetooth binding for SOAP, the service interaction
techniques are also presented and briefly compared.
The presented middleware enables control and mon-
itoring of long-lived asynchronous Mob-WS and also
reduces development cost.

5 Acknowledgement

This work is funded by the Ultra High-Speed Mobile
Information and Communication (UMIC)1 research
cluster at RWTH Aachen University (RWTH) under
the German Excellence Initiative. The authors would
like to thank the members of the project for their con-
tributions.

References

[1] F. Aijaz, B. Hameed, and B. Walke. Asynchronous mo-
bile web services: Concept and architecture. In Pro-
ceedings of the IEEE 8th International Conference on
Computer andInformation Technology, page 6, Sydney,
Australia, July 2008. IEEE.

[2] L. Pham and G. Gehlen. Realization and Performance
Analysis of a SOAP Server for Mobile Devices. In Pro-
ceedings of the 11th European Wireless Confernce 2005,
volume 2, pages 791–797, Nicosia, Cyprus, Apr 2005.
VDE Verlag.

1www.umic-aachen.de

4




