
Enabling Resource-oriented Mobile Web Server for
Short-Lived Services

Fahad Aijaz, Syed Zahid Ali, Muzzamil Aziz Chaudhary, Bernhard Walke
Department of Communication Networks

Faculty 6, RWTH Aachen University
Kopernikusstr. 5, 52074 Aachen, Germany

Email: fah@comnets.rwth-aachen.de

Abstract—Mobile Web Services (MobWS) are a promising
technology for the integration of Information Technology (IT)
and Telecommunication (TelCo) domains. The advancements
in mobile communication and device technology, in terms of
software and hardware, have revolutionized the focus of research
and industry to investigate mobile service provisioning platforms
and architectures.

In this paper, we present a concept and architecture of a REST-
Interfaced Mobile Web Server as a service delivery platform.
Here, we discuss about the interaction strategy and URL-based
access techniques for short-lived synchronousMobWS. The paper
focuses on in-depth explanation of software architecture and its
components of server and compares the payload requirements
with the state-or-the-art SOAP based MobWS. The REST archi-
tecture has significantly reduced payload demands that shows
promising signs of optimized processing performance of the
mobile server when compared to SOAP.

I. INTRODUCTION

In recent years, WSs specified by the World Wide Web
Consortium (W3C) have evolved as a highly-regarded im-
plementation of SOA for system integration. The Internet
and mobile networks have started to merge based on WSs
spotlighting high-valued consumer and business services, and
use cases. The combination of mobile communication sys-
tems and WSs foresee high economical potential in terms of
WS provisioning from a mobile node, called MobWS. From
research and technological perspective, the maturity process
is ongoing; however several challenges must be addressed
to enable integrated P2P MobWS systems of IT and TelCo
domains.

The global acceptance of MobWSs as a mature platform
is still in its infancy. Enabling the true potential of MobWSs
in the current highly competitive global market faces several
research challenges and requires recommendations for efficient
solutions at various technical levels. [1] presents a detailed
study, based on the experience of several research projects,
about challenges for developing middleware on smart phones.
The importance of resource management, lightweight com-
munication protocols and asynchronous programming are also
highlighted. The work in [2], on the other hand, develops
a Mobile Host platform for provisioning MobWSs. In this
work, in order to reduce the processing latencies within the

This work has been supported by the UMIC Research Center, RWTH
Aachen University.

Mobile Host, BinXML compression technique is adapted. The
research in [3] presents the concept of first ever Mobile Web
Server and comprehensively analyzes the traffic performance
characteristics of MobWS. It further classifies MobWS into
three distinct classes, MobWS Access, MobWS Provisioning
and P2P MobWS, and presents multiple transport protocol
bindings for SOAP. Within the scope of research in [3],
the mobility issues in MobWS domain are also addressed.
Recently a technical report from Nokia Research Center in
Helsinki presented the concept of providing HTTP access
to Web Servers running on mobile devices [4]. It is further
described by the same group in [5], the technical approach of
porting the Apache httpd to the Symbian/S60 mobile platform
in order to enable Website hosting and access on mobile
phones.

In this paper we intend to study the architectural for the
P2P MobWS enfolding short-lived synchronous communi-
cation. In the first phase, synchronous MobWS interaction
strategy is discussed based on the operations specified in Web
Service Description Language (WSDL) standard [6]. Based
on these grounds, the synchronous server-side architectural
components are discussed in detail, taking into account the
Representational State Transfer (REST) and Simple Object
Access Protocol (SOAP) messaging frameworks. The later
phase evaluates and compares the influence on the architectural
performance of the server caused by each access technique.
Some preliminary performance evaluation is conducted based
on payload optimization and real-time measurements depicting
optimized processing.

II. ARCHITECTURE OF A REST-INTERFACED MOBILE
WEB SERVER

The MSWs, due to their instantaneous nature, simplify
the design process of their underlying architecture. The ar-
chitecture strongly relies upon the Synchronous Interaction
(SI) discussed earlier. Earlier research in [3] presents a com-
prehensive architecture and research findings in the area of
Service Oriented Architecture (SOA) based MSWs. There, the
SOAP standard is used to define the Messaging Framework
(MF) and presents several Mobile Synchronous Web Services
(MSW) access mechanisms over multiple transport protocols.
Detailed performance evaluation and theoretical analysis in
terms of measurements and analytical models are also pre-

sented. Within the scope of this research, we extend the work
in [3] to support Resource Oriented Architecture (ROA)-based
MSWs, called ’RESTful MSWs (R-MSW)’, using REST de-
sign principles. Here we do not discuss the MSW architecture
based on SOA reference model; however we do present its
comparison with REST in terms of message payloads.

A. Synchronous Interaction

The SI is suitable for systems performing short-lived tasks.
A P2P MobWS provisioning system directly inherits the
properties of standard WWW and the Internet. Thus, the
MobWSs that are designed to perform short-lived P2P opera-
tions strongly integrate SI as their underlying communication
pattern. These MobWSs are termed as MSW as depicted in
Figure 1. The figure illustrates a simple scenario when one
peer initiates the request-response process in order to consume
the service provisioned by the other peer.

P2­1P2­1

P2­2P2­2

P2­kP2­k

Mobile
Application

(A2)

Mobile
Application

(A2)

MobWS
Proxy
MobWS
Proxy

MOBILE SYNCHRONOUS
WEB SERVICES

PEER 2 (P 2)

Mobile
Application

(A1)

Mobile
Application

(A1)

MobWS
Proxy
MobWS
Proxy

PEER 1 (P 1)

B
LO
CK
ED

INTERNET/
NETWORK

1

4

2

3

SH
O
R
T
­LIV

ED

Fig. 1. P2P Synchronous Interaction

MSWs are suitable for use cases demanding immediate
response to a request. This is possible by ensuring the comple-
tion of service operation within a small time frame. Generally,
MSW are widely realized in an RPC-oriented manner; how-
ever other techniques are also possible.

B. Uniform Resource Locator (URL) Defined Synchronous
Access

Migrating a system from SOA to REST architecture is not
straight forward and raises several design requirements. The
Extensible Markup Language (XML) based MobWS imple-
mentation of SOA is highly flexible and extensible toward
heterogeneous networks and changes due to the transport
neutral behavior of SOAP and variety of existing Web Services
(WS) standard specifications. This however leads to coarse-
grained and thick SOAP messaging structures, especially in
case of mobile terminals. Realizing a system based on the
REST design principles imposes a dependency on Hypertext
Transfer Protocol (HTTP) and URL standards, while sig-
nificantly reducing the message payloads. The existing WS
standard specifications can be optimized for REST architecture
in order to handle requirement changes.

Exposing MobWS resources, defined by service methods,
with REST demands a clear definition of URL structure
that must be used to access R-MSW resources. In order to
meet this requirement, we develop generic URL structures for
synchronous interaction as shown in Figure 2.

HTTP : // : / / / /IP PORT SERVICE TYPE RESOURCE OPERATION

rest.comnets.de

9090

HTTP : // : /IP PORT SERVICE

Publication

HTTP : // : / / / /IP PORT SERVICE TYPE RESOURCE OPERATION

rest.comnets.de Publication

9090 Asynchronous

Factory

CreateInstanceRq

HTTP : // : / / / /IP PORT SERVICE TYPE RESOURCE OPERATION

rest.comnets.de Publication

9090 Asynchronous

Instance

GetInstancePropertiesRq

HTTP : // : / / HTTP : // : / / IP PORT SERVICE RESOURCE

HTTP : // : / /IP PORT SERVICE RESOURCE

Fig. 2. URL Structure Enabling Synchronous Access

Due to the strict dependency of REST on HTTP, binding
to other transport protocols is not recommended since in such
case, several design criterion have to be compromised. The
R-MSWs are instantaneous services that rely solely on the
behavior of SI. Thus, in order to consume such services, the
requester must formulate a URL, published by the service
provisioning node, which conforms to the structure shown
in the figure. The URL of the serving node consist of an
Internet Protocol (IP) address and the listening PORT. Since
the resources of R-MSWs are directly accessed, therefore
the SERIVCE parameter represents the name of the service
that the request intends to consume. Unlike SOAP request,
the service name is not specified in the HTTP payload. The
specification of service name in the URL helps in avoiding
the overheads of SOAP parsing and to identify the invoked
service. Thus, the R-MSWs resource is directly exposed
on the Internet/network. For instance, a simple R-MSWs
’PublicationService’, which maintains the publications records
on the peer node, can be directly accessed using the URL
http://rest.comnets.de:9090/PublicationService. Even a single
R-MSW may perform variety of operations, such as get,
update, insert or delete. In such cases, the URL alone does
not specify the actions that a requester intends to take.

C. Mapping HTTP Methods to URL

Due to the dependency on HTTP, the REST architectural
principles are strictly coupled with the HTTP methods to con-
vey the intended actions of the requester. The HTTP has a set
of methods with predefined goals [7], however, the most com-
monly used among them are GET, POST, PUT and DELETE.
Mapping the HTTP URL to the HTTP methods, facilitates
indicating the purpose of clients’ request. In the Publication-
Service example, mapping of the service URL to the HTTP
methods entirely changes the context of request. For example,
if the URL http://rest.comnets.de:9090/PublicationService is
mapped to the HTTP GET method, the service only provides
the list of publications. Mapping to HTTP POST represents
an update action and the service modifies the record of an
existing publication. The PUT method focuses on creating new
information and can be used to perform an insert operation,
like adding new publication to the records. Similarly, the
URL mapping to DELETE method signifies the removal
of a publication from the list that the PublicationService
has maintained. In situations where a service offer multiple
resources of one kind, such as various getX() methods like
getList, getAuthors, getConferences etc., a simple mapping of
URL http://rest.comnets.de:9090/PublicationService to HTTP
GET does not convey the targeted action of the request. Thus,
the optional parameter for specifying the target RESOURCE
must be used. With this extension, the requester can directly
specify the target resource in the URL and map to the

corresponding HTTP method. For example, in order to fetch
the list of publication, the requester formulates the URL
http://rest.comnets.de:9090/PublicationService/List and maps
it to the HTTP GET method, which clearly indicates the
targeted resource and action; getList operation. In order to
update, insert or delete the List, the same URL is used with
its respective mappings to POST, PUT and DELETE methods.

D. Server-side Architectural Components

The system proposed in [3] uses SOAP Remote Procedure
Call (RPC) mechanism to consume SOAP interfaced MobWS.
Thus, any SOAP request uses almost the same URL structure
as shown in Figure 2. The difference is created by replacing
the SERVICE parameter in the URL structure with soaprpc
and the RESOURCE parameter is completely removed. The
soaprpc parameter is specific to SOAP architecture and is
required to identify a SOAP RPC call. Since every SOAP
call must carry a SOAP envelope in HTTP payload, therefore
POST HTTP method is utilized.

On the other hand, any request for consuming MobWS
over the REST interface conforms to the URL structures
presented in Section II-B. Therefore, for any REST request,
the parameter soaprpc is not required which eases the request
type identification process by relying upon the structure of
received URL. Hence, the Listener component after receiving
the request, identifies the target architecture by checking for
the soaprpc parameter in the HTTP URL.

(22) case X:

(3) if (REST)

(8) Return: RCo

(24) Return: result

(10) delegate(RCo)

(26) forward(result)

(25) Return: result

(14) MWSo.invoke(RCo)

HTTP
Listener
(Listener)

HTTP
Listener
(Listener)

REST
Manager
(RM)

REST
Manager
(RM)

Request
Processor
(ReqP)

Request
Processor
(ReqP)

Deployment
Manager
(DM)

Deployment
Manager
(DM)

R­MSWR­MSW
Response
Processor
(ResP)

Response
Processor
(ResP)

(2) start (REQ, REST)

(4) delegate(REQ)

(0) REQ

(9) Return: RCo

(12) Return: name

(13) MWSo=lookup (name)

(19) Return: data

(18) getInputData()

(16) Return: method

(15) getHTTPMethod()

(1) if (REQ!=soaprpc)
REST = true

(20) parse(data)

(23) resource()

(27) send(result)

REST
Container
(RC)

REST
Container
(RC)

(5) REQinfo=extract(REQ)

(6) createBean(REQinfo)

(11) getServiceName()

(7) populate(REQinfo)

(21) switch(method)

(17) if (method!=GET)

Fig. 3. Sequence Diagram of the Server-side Architectural Components

Figure 3 illustrates the invocation process of R-MSW in
server architecture in a mobile terminal. The flow of in-
formation and control transitions between different server
components of REST architecture is shown. Upon arrival of
client’s request REQ, the HTTP Listener component (Listener)
identifies the request type based on the soaprpc parameter, as
explained previously. Assuming the request for R-MSW, the

Listener initiates a thread called Request Processor (ReqP)
by providing REQ and request type identification flag, in
this case, REST. The ReqP is a parent server component
responsible for managing incoming requests in accordance to
their requirements by delegating and initializing other server
components on demand. Since the REQ targets the R-MSW,
the ReqP simply delegates the control flow to REST Manager
(RM) after checking the REST flag. The RM is a generic and
major server component specially designed, as an extension
to original architecture, for MobWSs based on REST design
principles. The responsibility of RM is to extract all the
information embedded within the REST REQ and create a
read-only container namely, REST Container (RC). The RC is
a de-serialized version of REQ that is understandable by all
the server components involved in the invocation process of R-
MSW. Before the RC is created, the RM has to perform variety
of operations such as, parsing the URL and understanding its
structure, obtaining the HTTP Method, extracting the input
data from HTTP Payload and check for URL faults. Assuming
a no-fault scenario, the RM creates a coarse-grained RC that
populates all the extracted information in its properties. The
read-only nature of RC facilitates in strictly conforming to
the REQ, by preventing any server component or service
to accidentally modify the contained information. The REST
Container object (RCo) of RC is returned to the ReqP by
RM once it is created. Since the information delivered by the
client in REQ is now encapsulated within the RCo, therefore
its reference can be passed around as a single object across
other server components instead of multiple individual objects.
Upon receiving the RCo from RM, the ReqP delegates the
control flow, along with the RCo, to Deployment Manager
(DM) component which is responsible for lookup and invoca-
tion of the requested MobWS. The DM uses the RCo to obtain
the requested service name from RC. Since in DM, a list of
available services along with their corresponding instances is
maintained as a key-value mapping, therefore DM uses the R-
MSW name, obtained from RC, in order to lookup the related
MobWS object (MWSo). The MWSo is then used to invoke
the R-MSW and RCo is provided as an argument.

At this phase, the invocation of R-MSW does not imply
invocation of the requested service method in REQ. The R-
MSW is responsible for evaluating the mapping between the
HTTP method and the URL in order to identify the targeted
service method from the client. For this reason, R-MSW
obtains the HTTP method from RC through the received RCo.
Upon receiving the method, the service may obtain the target
resource using RCo, if desired. Obtaining the target resource
is only necessary if the R-MSW offers multiple methods of
same kind, for e.g. many getX() methods. For services offering
only one method of each kind, the mapped HTTP method can
be used directly for target invocation. Since providing multiple
or single kinds of methods is specific to service requirements,
therefore for keeping the discussion generic, call to obtain
target resource from RC is not shown in the figure. In the
next step, the R-MSW must check if the client has provided
some input data that should be used by the target resource.

Since the URL mapping to HTTP GET method implies no
payload in REQ, therefore the service only requests the input
data from RC (using RCo) if and only if the HTTP method
other than GET is mapped. In case the payload exists, the
R-MSW parses the input data and subsequently the target
service method is invoked which is directly identified by the
HTTP method mapping (illustrated as case X). Consequently,
the target R-MSW resource, upon completion, dispatches the
result which is received by the parent server component ReqP
through the DM. The ReqP forwards the result to Response
Processor (ResP) component which sends the result to the
client using the same connection.

III. PAYLOAD OPTIMIZATION

Independent of the underlying architecture, synchronous
MobWS are developed to be a short-lived processes. There-
fore, a synchronous requests carries the input data for the
invoked service as an HTTP payload. In case of SOA, this
payload is embedded within the SOAP envelope, whereas with
REST architecture, it is embedded in a format that conforms
to the application requirements. Since in REST architecture,
a resource can be directly identified by the URL, therefore
extensive SOAP parsing can be avoided.

In order to evaluate the payload optimization with REST,
we developed a simplest possible synchronous MobWS called
’echoString’ and hosted it on the MobWS framework. The
sole function of the echoString service was to receive a
string input parameter from the client and echo it back as a
response. The service was exposed for both REST and SOAP
MobWS architectures in order to study the message constructs
and payloads for each type of invocation. The SOAP request
was constructed with a well-known third party library for Java
Micro Edition (Java ME) called kSOAP, whereas for REST
request standard Java ME API was utilized. In Figure 4(a) and
4(b) the corresponding SOAP and REST MobWS requests are
depicted.

In comparison to SOAP, significant reduction of ≈ 98% in
MobWS request payload be easily observed in case of REST.
By using the URL structure for R-MSW acess, as illustrated in
Figure 2, the contents of SOAP request can directly be mapped
to the REST URL in order to avoid XML parsing latencies.
For instance, the <echoString ...> element in the SOAP
message is mapped to URL parameter echoString which is
present in the HTTP headers of REST request. Similarly, the
<String ...> element that carries the input data to service
is completely replaced by the HTTP payload of REST request.
With the predefined synchronous URL structure, we were able
to avoid the use of <ServiceType ...> element (refer to
[8]). Due to the existance of payload in REST request, the
URL was mapped to the POST method of HTTP. Since the
synchronous MobWS are based on SI, therefore the response
from the echoString was also transported over the same
HTTP connection. The responses received from the invoked
MobWS in case of SOAP and REST are depicted in Figure
5(a) and 5(b) respectively.

http://rest.comnets.de:9090/echoString

<SOAP‐ENV:Envelope
xmlns:xsi=http://www.w3.org/2001/XMLSchema‐instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:SOAP‐ENC=http://schemas.xmlsoap.org/soap/encoding/
xmlns:SOAP‐ENV=http://schemas.xmlsoap.org/soap/envelope/>
<SOAP‐ENV:Body

SOAP‐ENV:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/>
<echoString xmlns="urn:Services" id="o0" SOAP‐ENC:root="1">

<String xmlns="" xsi:type="xsd:string">
ABCDEFG

</String>
<ServiceType xmlns="" xsi:type="xsd:string">

Synchronous
</ServiceType>

</echoString>
</SOAP‐ENV:Body>

</SOAP‐ENV:Envelope>

58
0
By

te
s

POST /soaprpc HTTP/1.1
SOAPAction: urn:Services#echoString
Content‐Type: text/xml
Content‐Length: 580
User‐Agent: kSOAP/1.0
Host: soap.comnets.de:9090

<Rq>ABCDEFG</Rq>

20
 B
yt
es

POST /echoString HTTP/1.1
Content‐Length: 20
Host: rest.comnets.de:9090

(a) Synchronous SOAP Request for echoString
MobWS

http://rest.comnets.de:9090/echoString

<SOAP‐ENV:Envelope
xmlns:xsi=http://www.w3.org/2001/XMLSchema‐instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:SOAP‐ENC=http://schemas.xmlsoap.org/soap/encoding/
xmlns:SOAP‐ENV=http://schemas.xmlsoap.org/soap/envelope/>
<SOAP‐ENV:Body

SOAP‐ENV:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/>
<echoString xmlns="urn:Services" id="o0" SOAP‐ENC:root="1">

<String xmlns="" xsi:type="xsd:string">
ABCDEFG

</String>
<ServiceType xmlns="" xsi:type="xsd:string">

Synchronous
</ServiceType>

</echoString>
</SOAP‐ENV:Body>

</SOAP‐ENV:Envelope>

58
0
By

te
s

POST /soaprpc HTTP/1.1
SOAPAction: urn:Services#echoString
Content‐Type: text/xml
Content‐Length: 580
User‐Agent: kSOAP/1.0
Host: soap.comnets.de:9090

<Rq>ABCDEFG</Rq>

16
 B
yt
es

POST /echoString HTTP/1.1
Content‐Length: 16
Host: rest.comnets.de:9090

(b) Synchronous REST Request
for echoString MobWS

Fig. 4. HTTP Payloads for Synchronous MobWS Request

<Rs>ABCDEFG</Rs>

20
 B
yt
es

HTTP/1.1. 200 OK
Content‐Type: text/xml
Content‐Length: 20

<SOAP‐ENV:Envelope
xmlns:xsi=http://www.w3.org/2001/XMLSchema‐instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:SOAP‐ENC=http://schemas.xmlsoap.org/soap/encoding/
xmlns:SOAP‐ENV=http://schemas.xmlsoap.org/soap/envelope/>
<SOAP‐ENV:Body

SOAP‐ENV:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/>
<echoStringResponse xmlns="urn:Services" id="o0" SOAP‐ENC:root="1">

<return xmlns="" xsi:type="xsd:string">
ABCDEFG

</return>
</echoStringResponse>

</SOAP‐ENV:Body>
</SOAP‐ENV:Envelope>

HTTP/1.1. 200 OK
Content‐Type: text/xml
Content‐Length: 537

53
7
By

te
s

(a) Synchronous SOAP Response from
echoString MobWS

<Rs>ABCDEFG</Rs>

16
 B
yt
es

HTTP/1.1. 200 OK
Content‐Type: text/xml
Content‐Length: 16

<SOAP‐ENV:Envelope
xmlns:xsi=http://www.w3.org/2001/XMLSchema‐instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:SOAP‐ENC=http://schemas.xmlsoap.org/soap/encoding/
xmlns:SOAP‐ENV=http://schemas.xmlsoap.org/soap/envelope/>
<SOAP‐ENV:Body

SOAP‐ENV:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/>
<echoStringResponse xmlns="urn:Services" id="o0" SOAP‐ENC:root="1">

<return xmlns="" xsi:type="xsd:string">
ABCDEFG

</return>
</echoStringResponse>

</SOAP‐ENV:Body>
</SOAP‐ENV:Envelope>

HTTP/1.1. 200 OK
Content‐Type: text/xml
Content‐Length: 537

53
7
By

te
s

(b) Synchronous REST Response
from echoString MobWS

Fig. 5. HTTP Payloads for Synchronous MobWS Response

Since the same HTTP connection is used for the response
messages, therefore the requirement of explicitly transmit-
ting the <ServiceType...> element in case of SOAP
is no longer relevant, whereas no URL is generated for
the REST response. Compared to SOAP, significant HTTP
payload reduction of ≈ 97% is achieved in synchronous
response with the REST MobWS provisioning architecture.
With further architecture evaluations, a promising performance
improvement in terms of processing latencies is expected due
to the exponential reduction in payload. Some priliminiary
performance results in terms of processing latencies in SOAP
and REST Mobile Web Server architectures are compared in
Figure 6.

BA

Fig. 6. Preliminary Performance Comparison of SOAP and REST Mobile
Web Servers

IV. CONCLUSION

In this paper, a concept and architecture of a REST-
Interfaced Mobile Web Server is presented with a strong
focus towards MobWS provisioning. In the first phase, syn-
chronous interaction strategy for short-lived MobWS is elab-
orated. Based on these grounds, the architecture, based on
REST design principles, is discussed in detail considering the
server-side architectural components. It has been seen that
the payload demands are significantly reduced with REST
architecture for Mobile Web Server when compared to SOAP
which prominently effects the processing latencies and shows
optimized results.

REFERENCES

[1] O. Riva and J. Kangasharju, “Challenges and lessons in developing
middleware on smart phones,” IEEE Computer Magazine, October 2008.

[2] S. N. Srirama, “Mobile hosts in enterprise service integration,” Ph.D.
dissertation, RWTH Aachen University, 2008. [Online]. Available:
http://darwin.bth.rwth-aachen.de/opus/volltexte/2008/2567/

[3] G. Gehlen, “Mobile web services - concepts, prototype, and traffic
performance analysis,” Ph.D. dissertation, RWTH Aachen University,
Lehrstuhl fr Kommunikationsnetze, Aachen, Germany, Oct 2007.
[Online]. Available: http://www.comnets.rwth-aachen.de

[4] F. D. Johan Wikman, “Providing http access to web servers running on
mobile phones,” Nokia Research Center Helsinki, Tech. Rep. NRC-TR-
2006-005, May 2006. [Online]. Available: http://research.nokia.com/tr/
NRC-TR-2006-005.pdf

[5] M. T. Johan Wikman, Ferenc Dosa, “Personal website on a mobile
phone,” Nokia Research Center Helsinki, Tech. Rep. NRC-TR-
2006-004, May 2006. [Online]. Available: http://research.nokia.com/tr/
NRC-TR-2006-004.pdf

[6] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web
Services Description Language (WSDL) Version 2.0 Part 1: Core
Language,” Published on the internet, May 2005, w3C Recommendation.
[Online]. Available: http://www.w3.org/TR/2005/WD-wsdl20-20050510

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol – http/1.1,” United States,
1999.

[8] F. Aijaz, H. Bilal, and W. Bernhard, “Asynchronous mobile web
services: Concept and architecture,” in Proceedings of the IEEE 8th
International Conference on Computer andInformation Technology.
Sydney, Australia: IEEE, July 2008, p. 6. [Online]. Available:
http://www.comnets.rwth-aachen.de

