
Architecture for Consuming Long-Lived Mobile
Web Services over Multiple Transport Protocols

Fahad Aijaz, Seyed Mohammad Adeli, Bernhard Walke
RWTH Aachen University, Faculty 6

Communication Networks
Kopernikusstr. 16, 52074 Aachen

fah@comnets.rwth-aachen.de

Abstract—The concept of Mobile Web Services (Mob-WS)
is catching pace within research communities due to rapid
classification of mobile devices enabling pervasive environments.
A Web Service based Middleware for mobile applications is a
promising platform to accelerate the application development for
mobile systems.

This paper introduces a middleware for time independent
Mob-WS that avoids the overheads of long durational syn-
chronous communication. Details of communication architecture
and interaction among the middleware components is presented
and discussed. Due to the transport neutral nature of SOAP,
the Bluetooth initial short-ranged transport protocol binding is
briefly presented. Finally, some preliminary processing latencies
are shown followed by conclusion.

I. INTRODUCTION

Mobile phones in today’s era are not just small devices that
provide the means of communication, rather, they are equipped
with more processing power, storage capacity and battery
performance. The continuous growth in mobile technology has
introduced variety of research domains that strongly focus on
developing innovative mobile applications and services that are
human centric and closer to the user’s personal needs. In such a
dynamic and rapidly growing ubiquitous mobile environment,
hand held devices are not only service consumers over the
Internet, wireless network or within the operators’ network,
but are also capable of hosting and providing services to their
peers. Such services, when hosted on mobile devices are often
termed as Mob-WS.

In this paper, a concept and architecture of a middleware
for communication of asynchronous Mob-WS is introduced
to perform long-lived operations. The work is based on the
existing Mob-WS framework first presented in [1]. Since syn-
chronous Mob-WS are not a feasible choice for long durational
tasks, therefore a need for asynchronously accessible Mob-
WS becomes vital. These Mob-WS demand mechanisms for
control and monitoring at runtime, since the requirements
of service consumer may change dynamically. The proposed
middleware supports the communication and deployment of
such controllable and monitor able asynchronous Mob-WS
by reducing the developement costs. Some priliminary perfor-
mance evaluations in terms of elementry processing latencies
are presented.

II. BLUETOOTH

Bluetooth is a wireless communication protocol mainly
used for short range wireless connectivity between Bluetooth-
capable devices. The most important advantage of Bluetooth
is the fact, that it is a cable replacement technology and does
not need any physical connection. Due to usage of low-power
signals, Bluetooth works with a low power consumption,
which makes it a popular protocol for interaction between
mobile devices. Bluetooth signals are omini-directional and
a direct line of site is not required for transmission. Since
Bluetooth technology is a universal standard, it guarantees a
high level of compatibility. There are three different proto-
cols which provide methods for transmitting data: RFCOMM
(Stream data), L2CAP (Packet Data) and OBEX (Object Data).
The protocol used in this work is Logical Link Control and
Adaptation Protocol (L2CAP).

Fig. 1. Bluetooth Protocol Stack Diagram

III. SOAP BINDING FOR BLUETOOTH

SOAP messages over Bluetooth are used for service invo-
cation, as well as monitoring and controlling of an existing
service instance.



Observer BTDiscovery DiscoveryAgent BluetoothTransport BluetoothServerThread

StartDeviceDiscovery

BTProtocol

Protocol UUID

Device Discovered

All Discovered Devices

call(URL - SOAP Action)

StreamConnection

CreateInstance

ACK + EPR Server
ACK + EPR

ACK + EPR

B
lu

et
oo

th
 D

ev
ic

e 

D
is

co
ve

ry

S
yn

ch
ro

no
us

 

In
st

an
ce

 C
re

at
io

n

Fig. 2. Bluetooth Device Discovery Flow

A. Bluetooth Discovery

Since wireless devices are mobile they need a mechnism
that allows them to find accessible devices and gain access to
their capabilities. Sun Wireless Toolki 2.5 includes the optional
package JSR 82 which contains the J2ME Bluetooth API. The
DiscoveryAgent class and DiscoveryListener inter-
face, which the Observer implements, provide the necessary
service for discovery. The Observer of the client node cre-
ates an instance of BTDiscovery to look for any Bluetooth
devices such as phones, PDA’s or computers. It is essential to
perform common Bluetooth operations like device discovery,
in seperate threads in order to avoid potential deadlocks, since
they may take several seconds to complete. After retriev-
ing the UUID of the specified protocol (in our middleware
L2CAP) from BTProtocol, it begins with the discovery
of Bluetooth devices. The DiscoveryAgent is used to
search for all accessible devices in the environment. The class
RemoteDevice represents a device within the range of reach
and provides methods to retrieve information about the device
including it’s Bluetooth address, name and available services.
The method deviceDiscovered() is called everytime a
new device is found, and inquiryComplete() when the
discovery is completed. Ath the end all discovered devices are
sent back as a result to the Observer. It is also possible for
the Observer to select a device from a list of pre-known
devices, which the local device contacts frequently. In this
case the device discovery would no longer be used.

B. Bluetooth Transport

Once a remote device is discovered on the client
node, the Observer sends a SOAP request using
BluetoothTransport class. This class represents a com-
munication interface on client-side and provides method to
facilitate SOAP calls over Bluetooth using the J2ME Generic
Connection Framework. In order to establish a connection
via Bluetooth the client makes use of the btspp protocol,
which consists of a host name, retrieved at the device dis-

covery, and a channel. The Bluetooth Serial Port Profile
(btspp://) is a wireless interface specification for Bluetooth-
based communication which emulates a serial cable and
provides a simply implemented wireless replacement. Using
the StreamConnection, it creates a new connection to a
specific device. In order to start the transmission it opens an
OutputStream and writes the SOAP message which is just
a simple text.

1) SOAP Transmission: The
BluetoothServerThread is the class responsible
for Bluetooth connections on server-side in our prototype.
It makes the server discoverable to other Bluetooth devices
and waits for an incoming SOAP request from a client. The
LocalDevice class represents the server and provides
method to configure the local device. After the connection
is established successfully, it is being forwarded to the
RequestHandler to process the request.

Applications can use a single instance of BluetoothTransport
for all SOAP calls to one, or multiple target endpoints.

IV. COMMUNICATION ARCHITECTURE

The concept of Mob-WS involves two basic roles, termed
as Web Service Consumer (WS-C) and Web Service Provider
(WS-P). Within the context of this work, the focus is on Peer-
to-Peer (P2P) interaction, where both the WS-C and WS-P are
mobile nodes, as shown in 3.

Mobile P2P Services

Mobile Service Consumer

Mobile Service Provider

WS-C WS-P

WS-P WS-C

WS-CWS-P WS-CWS-P

Web
Service-

Consumer
(WS-C)

Web
Service-
Broker
(WS-B)

Use

Discover Publish

Web
Service-
Provider
(WS-P)

Fig. 3. P2P Mobile Web Services

The asynchronous Mob-WS middleware provides a founda-
tion to develop and deploy asynchronous long-lived services,



not asynchronous messaging. This is because asynchronous
messaging does not necessarily implies that the deployed ser-
vices are asynchronous in nature. Since asynchronous services
start and continue to perform their tasks over a longer duration
of time, therefore, the need to be able to monitor and control
such services becomes essential. This section presents the ar-
chitectural details for inter-component communication within
the proposed middleware, the service control and monitoring
mechanisms and the service invocation process.

For a general overview of the core architecture of the
asynchronous Mob-WS middleware, the reader is referec to
study [2], [3]. The architecture of the overall middleware
consists of several components interlinked togather. Within
this manuscript, the focus will be on discussing the asyn-
chronous aspects of the architecture. For details regarding
other components and synchronous Mob-WS, another study
of [1], [4], [5] is recommended.

A. Communication Subsystem

In order to build a system of asynchronous Mob-WS three
different types of endpoints are defined to cater three distinct
roles that forms a subsystem within the middleware architec-
ture [2], [3]. For the reader’s convenience, we summarize the
entire communication architectire of the asynchronous mid-
dleware by presenting the following sequence of interaction
among these components. For detailed description of each, a
study of [2], [3] is recommended.

1) Observer sends a new service Instance creation
message to Factory containing a context data along
with its Endpoint Reference (EPR).

2) Factory creates an Instance, having a correspond-
ing unique EPR. The EPR of the Observer is also
passed to this Instance for later notifications.

3) Factory sends a response message to the Observer
that contains the EPR of the service Instance that has
just been created.

4) When execution of the service ends, the Instance
sends a notification message to the Observer con-
taining the result data that is produced as a result of
successful task completion.

5) The Observer sends an acknowledgment to the ser-
vice Instance indicating that it has received the result
data. Upon reception of the acknowledgment, the service
instance expires.

B. Inter-Component Control Flow

Having explained the basic notion of the three roles of
asynchronous Mob-WS middleware, a detailed control flow of
communication among them is now presented in this section.
These details are elaborated in reference to figure 4, and its
parts (A), (B), (C) and (D).

1) Service Invocation - (A): Consider two mobile nodes
with the asnychronous Mob-WS middleware deployed on
them. Each node will have the three basic communication
components described in IV-A. In order to consume asyn-
chronous Mob-WS, the Observer of the client node (labeled

(A) in figure 4) is required to send a SOAP request to its
peer with the service specific information and its own EPR
that should be used by the host node to communication with
the client asynchronously. Once the desired SOAP envelope is
constructed, it is then send over the network to the host peer.
The protocol listeners (later refered as listeners) of the host
peer constantly waits for incoming Mob-WS requests from
the peer’s Observer component. The client node could send
this request over HTTP, User Datagram Protocol (UDP) or
Bluetooth etc. since the Mob-WS invocation is independent of
the transport protocol. Once the SOAP envelope arrives at the
host node, it is delegated to the RequestHandler and the
listeners start waiting for new incomming requests. The aim of
RequestHandler is to determine the service type, that is,
asynchronous or synchronous. In case the requested message
is directed toward a synchronous service, the control flow
continues as described in [4]. Else, the RequestHandler
passes the message to the ASAPHandler which could be
seen as a gateway to the asynchronous Mob-WS consumption.

At this point, the middleware has to identify the purpose
of request since, it could either be directed to the Factory
or Instance component. This is identified by extracting the
information embedded within the SOAP envelope. Assuming
the request for service consumtion, the middleware should
first create an Instance, which in turn invokes the desired
service. As stated earlier in IV-A, the Factory acts as a
manager and is responsible for Instance creation, therefore,
the request is delegated to the Factory’s Instance cre-
ation procedure. This is to note that Instance creation does
not imply immediate service invocation, rather the Instance
could be set to invoke the service at some later time which is
decribed in SOAP envelope received from the client node. In
this paper, we assume immediate service invocation to keep
things as simple as possible.

Once the Instance is created with its unique EPR,
it instantly invokes the asynchronous Mob-WS, whereas
the Factory sends the Acknowledgment (ACK) to
ASAPHandler along with the EPR of the Instance
which is sent back to the client’s Observer by the
ResponseHandler over the preferred transport protocol.

This is vital to note that the entire communication between
the peers decribed above is synchronous, but it invoked an
asynchronous Mob-WS. Once the service is invoked, it keeps
on performing its tasks for as longer duration as desired.
The client is notified synchronously about the status of the
service in order to avoid its blocked state whereas the service
continues to perform its tasks at the server.

2) Asynchronous Service - (B): One important aspect of
the middleware architecture is the dependancy between the
Instance and the asynchronous Mob-WS (later refered as
service). The service is not directly exposed to the invocating
peer’s Observer, rather it is the Instance. Since require-
ments of every service is dependant on its usage enviornment,
therefore, it is left to the application developer how to make
the result of the service available to its clients.

For instance, in deadline critical applications, the peer’s



Observer RequestHandler ResponseHandler ASAPHandler Factory Instance

Asyn. Request + EPR

<<delegate>> Information
Extraction

Service
Identification

Request
Identification

Process
<<delegate>>

ACK + EPR

ACK + EPR

Asynchronous
Service

<<invokes>>

Result

Control / Monitor Request

Control / Monitor Response

Asnychronous Response + Result

Protocol
Listener

ACK + EPR

S
er

vi
ce

 L
ife

tim
e

<<delegate>>

P
ol

lin
g

In
te

ra
ct

io
n

C
al

lb
ac

k
In

te
ra

ct
io

n

Data
Availability

Requirements

S
yn

ch
ro

no
us

 
M

es
sa

gi
ng

<<creates>>

ACK

A

B

C

D

Fig. 4. Asynchronous Communication Control Flow

Observer might be interested in having partial results while
the service is still running, whereas, in normal cases, there is
no need to expose the result data of the service, unless it has
completely performed its duties. This dependancy is labeled
as ‘Data Availability Requirements’ in figure 4.

3) Control and Monitoring - (C): For an asynchronous
long-lived Mob-WS it is essential to be controllable and
provide mechanisms for monitoring its state. This is because
during the execution of such services, the service consumer
might be interested in receiving status updates or the re-
quirements of the client might change. For instance, in a
sensor based environment where the real-time information is
constantly changing, an asynchronous Mob-WS client might
want a service to utilize the updated context information that it
has just received from its environment and discard the one that
was previously sent at the time of service invocation. In order
to meet such dynamic change in requirements, a client should
be able to send control messages to the service Instance
and on the other hand, the service Instance should be
capable of updating itself at runtime.

The asynchronous Mob-WS middleware incorporates the
control and monitoring mechanisms within its architecture that
makes the deployed services capable of adapting to dynamic
changes. Once the service is invoked and running, the client’s
Observer can send control and monitoring messages in
form of SOAP as illustrated in figure 4 (C). These messages
are directly sent to the service Instance, since the client’s
Observer already contain its EPR that was received during
service invocation process.

This is vital to note that such dynamic service manage-
ment makes use of the polling interaction tecnique due to a
short-termed nature of its messages. This implies that such
communication is synchronous in nature.

a) Service Monitoring:: Consider an example in which
the client’s Observer wishes to receive the properties of
the service that is currently in execution phase. Once the
status information is received, it can then analyze and act

accordingly. The client might wish to control the service based
on its current state. Such monitoring requests can be send
as SOAP envelopes from the peer Observer directly to
the service Instance. This request message once received
by the ASAPHandler is analyzed and passed on to the
Instance. For simplicity, we show a direct link to the
Instance in figure 4 (C). The monitoring SOAP request
looks like as shown in figure 5.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing">
<SOAP-ENV:Header>

<!-- WS-Addressing request headers -->
</SOAP-ENV:Header>
<SOAP-ENV:Body>

<computePerf xmlns="urn:Services" id="o0"
SOAP-ENC:root="1">

<getPropertiesRq xsi:type=":getPropertiesRq"/>
</computePerf>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fig. 5. Service Monitoring Request

b) Service Control:: In order to control a service,
consider a scenario in which a service client wishes to
change the state of a running service. Such control mes-
sage could involve activities from setting various prop-
erties of the service to pausing or terminating the ser-
vice. In such case, a control request as a SOAP envelope
from the Observer is received by the ASAPHandler
that describes which state the service should change to.
An asynchronous Mob-WS at any given time could be in
the states [6]; open.notrunning, open.notrunning.suspended,
open.running, closed.completed, closed.abnormalCompleted
or closed.abnormalCompleted.terminated. After changing the
state of the service Instance, a notification is sent to the
Observer that triggered the control message sequence.

Any change in state of the service triggers a callback
StateChanged message to be sent to all the clients that have



subscribed to this particular asynchronous Mob-WS. A change
in state could be caused by some internal event such as
occurrence of an exception during processing, or could be
triggered externally by a client. Figure 6 shows a sample of
such control message. The response SOAP message follows
exactly the same structure except that the message name is
changed to changeStateRs.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing">
<SOAP-ENV:Header>

<!-- WS-Addressing request headers -->
</SOAP-ENV:Header>
<SOAP-ENV:Body>

<computePerf xmlns="urn:Services" id="o0"
SOAP-ENC:root="1">

<changeStateRq xsi:type=":changeStateRq">
<State xsi:type="xsd:string">

closed.completed
</State>

</changeStateRq>
</computePerf>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fig. 6. Service Control Request

4) Service Response - (D): Upon completion of a long-
lived Mob-WS, the Instance is responsible for sending the
result back to the peer Observer(s). Since the Instance
incorporates the Observer’s EPR, therefore, a callback in-
teraction mechanism is adapted for communicating the service
response as depicted in figure 4 (D). This is done by invoking
a method at the Observer via SOAP. The SOAP response
carries with it, the entire result information that the service
has produced during its runtime.

Once the Observer at the calling peer receives final
response, it acknowledges the Instance, and hence the
Instance expires.

V. PROCESSING LATENCIES

Results as depicted in figure 7 show that the major pro-
cessing cost takes place during the protocol and service
type identification and response process. This is because the
underlying protocol is identified either by parsing Web Service
Addressing headers in SOAP message request (e.g. in case of
UDP [5], [4]) or by checking for HTTP headers. In the current
implementation, Bluetooth transport binding also exists, and
therefore, a Bluetooth request is also identified by SOAP
parsing that adds to the cost. In order to provide the flexibility
of multiple transport protocols for service consumption, each
request has to under go such protocol identification process
since the SOAP message could change accordingly [5], [4],
[1]. The service type means synchronous or asynchronous
request. In case of synchronous requests, the processing be-
comes relatively simple when compared to asynchronous due
to difference in SOAP message sizes, their structures and
complexity of architectures.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

Asynchronous Service Creation Requests

P
ro

ce
ss

in
g 

La
te

nc
ie

s 
in

 M
illi

se
co

nd
s 

(m
s)

Asynchronous Mobile Web Service Creation
(Request Processing Latencies)

 

 
Protocol and Service Identification
Asynchronous Request Handling
SOAP Message Parsing
Response Generation and Transmission

Fig. 7. Asynchronous Service Creation Processing Latencies

VI. CONCLUSION

In this paper, a communication architecture of an asyn-
chronous Mob-WS middleware is introduced that discusses
the idea of deploying long-lived complex asynchronous Mob-
WS on mobile devices. Furthermore, some elementary perfor-
mance measurements are shown. The presented middleware
enables control and monitoring of long-lived asynchronous
Mob-WS and therefore forms potential basis for innovative
mobile applications and reduces development cost.

VII. ACKNOWLEDGEMENT

This work is funded by the Ultra High-Speed Mobile
Information and Communication (UMIC)1 research cluster
at RWTH Aachen University (RWTH) under the German
Excellence Initiative. The authors would like to thank the
members of the project for their contributions.

REFERENCES

[1] L. Pham and G. Gehlen, “Realization and Performance Analysis
of a SOAP Server for Mobile Devices,” in Proceedings of the
11th European Wireless Confernce 2005, vol. 2. Nicosia, Cyprus:
VDE Verlag, Apr 2005, pp. 791–797. [Online]. Available: http:
//www.comnets.rwth-aachen.de

[2] F. Aijaz, B. Hameed, and B. Walke, “Asynchronous mobile web
services: Concept and architecture,” in Proceedings of the IEEE 8th
International Conference on Computer andInformation Technology.
Sydney, Australia: IEEE, July 2008, p. 6. [Online]. Available:
http://www.comnets.rwth-aachen.de

[3] ——, “Towards peer-to-peer long lived mobile web services,” in
Proceedings of the 4th International Conference on Innovations in
Information Technology. Dubai, UAE: IEEE, Nov 2007, p. 5. [Online].
Available: http://www.comnets.rwth-aachen.de

[4] G. Gehlen, F. Aijaz, and B. Walke, “An enhanced udp soap-binding
for a mobile web service based middleware,” in Proceedings of IST
Mobile Summit 06. Myconos, Greece: ComNets, Faculty 6, RWTH
Aachen University, Germany, Jun 2006, p. 8. [Online]. Available:
http://www.comnets.rwth-aachen.de

[5] W. B. Gehlen G, Aijaz F, “Mobile web service communication over
udp,” in Proceedings of the 64th IEEE Vehicular Technology Conference,
IEEE. Montral, Canada: IEEE, Sep 2006, p. 1. [Online]. Available:
http://www.comnets.rwth-aachen.de

[6] J. F. et al., “Oasis asynchronous service access protocol (asap).”
[Online]. Available: http://www.oasis-open.org/committees/tc home.php?
wg abbrev=asap

1www.umic-aachen.de




