
An enhanced UDP SOAP-Binding for a mobile
Web Service based Middleware

Guido Gehlen, Fahad Aijaz, Bernhard Walke
RWTH Aachen University
Communication Networks

Kopernikusstr. 16, 52074 Aachen
{guge, fah}@comnets.rwth-aachen.de

Abstract— A Web Service based Middleware for mobile ap-
plications is a promising platform to accelerate the application
development for mobile systems. Currently, the Web Service
protocol stack is using by default the Simple Object Access
Protocol (SOAP) on top of HTTP. Since HTTP is using TCP, the
round-trip time of a Web Service call is long due to the connection
establishment of Transport Control Protocol (TCP)(three-way-
handshake) and the ARQ protocol (slow-start phase).

Some applications do not require delivery guarantees of TCP.
For these applications an unreliable transport of SOAP messages
over the User Datagram Protocol (UDP) is a natural choice. If
an application needs a reliable transport of SOAP messages a
simple Automatic Repeat Request (ARQ) mechanism on top of
UDP is better choice. This reliable UDP binding can be used as a
supplement for the default HTTP binding in order to deal with
the mentioned lacks of TCP. The session management of HTTP
is substituted by introducing Web Services Addressing properties
within the SOAP header.

This paper will present the architecture and the realization
of an unreliable and reliable UDP SOAP binding. Both bindings
will map two basic MEP to UDP services. The reliable binding
encapsulates a selective-repeat (explicit request) ARQ protocol
on top of UDP which ensures even the transmission of SOAP
messages over several datagrams. Some use cases and examples
motivate the work and stress the importance according to the
mobile middleware.

I. INTRODUCTION

Service Creation for mobile distributed applications is a
challenging area of activity due to the heterogeneous environ-
ment (multitude of devices and communication systems), lack
of a consistent service creation environment and middleware.

The term middleware is not uniformly defined, but for a
good discussion see [1]. In the context of this work middleware
is a software layer between the communication protocols and
the application and programming environment. For application
developers it hides the complexity of the communication and
distributed system. For the application it provides services
which enable distributed computing and especially for a mo-
bile middleware it additionally provides context information.

Web Services gain more and more in importance as a
middleware for applications which are loosely coupled over
the internet. The escalating technological advancements in
the era of distributed computing and communication systems
utilize Web Services as a core of interaction. The Service

Oriented Architecture (SOA) as the main concept behind Web
Services aims to achieve the same success as the World Wide
Web (WWW)[2].

A Web Service based Middleware for mobile applications
is a promising platform to enable a platform independent way
of distributed computing and accelerate the application de-
velopment for mobile environments. Section II-A summarizes
the Web Services basics which are relevant for this work
and II introduces the overall architecture of the developed
Web Services based middleware. Fundamental features of this
middleware are additional protocol bindings, policy driven
object monitors, and support for future Plug-and-Play services
in ad-hoc networks.

In all three extensions, the use of UDP is a natural choice.
UDP provides an unreliable transmission of message, which
is used to send out real time data, such real-time events, or
probe messages. Real time messages have to be send out as
fast as possible to ensure their relevance at receive time. A
retransmission of such messages would be unnecessary, since
they got obsolete in the meanwhile. Probe messages have to
be sent to a broadcast address or to a multicast group. UDP
enables broadcast and multicast communication. In section III-
A the motivation for a SOAP binding to UDP is elucidated in
detail.

In addition, this paper will show that UDP can be used to
reliably transport messages, if a simple ARQ protocol will
be implemented on top of UDP. The paper will introduce
the design and realization of the binding. A further paper
will show that these extensions perform better than using the
default Web Service transport Hypertext Transport Protocol
(HTTP) over TCP [3]. All extensions are developed on the
internet application layer and do not require changes of
internet protocols.

The presented realization is geared to the technical spec-
ification [4]. The terminology and the basic SOAP-Binding
framework is taken from [5], [6] and the protocol layer
description leans against the ISO reference model [7].

II. MOBILE WEB SERVICES BASED MIDDLEWARE

In order to provide applications and application developers
an Application Programming Interface (API) to a mobile

distributed environment, the Mobile Web Service based mid-
dleware has been developed. Although the complex Web
Services technologies seemed to be too heavyweight for a
mobile environment, the flexibility and extensibility of Web
Services facilitate the definition of a mobile middleware. The
advantages are:

• Compliance to the Extensible Markup Language (XML)
• Linkable to arbitrary XML Schema Document (XSD)

ontology
• Bindable to any arbitrary messaging/transmission proto-

col
• Platform and programming language independent
• Support from a multiplicity of development environments
• Existing security specification (WS-Sec.)
An overview of the middleware is given in section II-B,

but before a brief overview of Web Services and the Simple
Object Access Protocol (SOAP) is given. Further information
about this middleware can be found in [8], [9].

A. Web Services and SOAP

XML Web Services are already widely used as a middleware
for interacting internet applications. The Web Services middle-
ware is based on the SOA [2] specified by the World Wide
Web Consortium (W3C). To achieve high interoperability, all
SOA entities use a common language for service description,
messaging, and service registration. Web Services are using
the XML as a common language. For messaging the SOAP
[10], [5], [6] is used.

The SOAP envelope is structured in XML as well and
will be delivered by an arbitrary protocol, by default HTTP.
Interfaces are described in an XML subset, the so called
Web Service Description Language (WSDL) [11], [12]. This
description includes all the information needed in order to
invoke service methods from other nodes and is used to build
automatically client service-proxy (stub) code. The service-
proxy represents the remote service, i.e. all published remote
service methods are methods of the local proxy object. This
architecture bridges the native messaging inside the client
environment to the platform independent messaging in the
SOA environment.

In addition to the basic Web Services elements (SOAP and
WSDL), several extra specifications, such as Web Services
Security, Web Services Addressing, and Web Service Chore-
ography complete the Web Services middleware 1.

In conclusion, the Web Services specifications can be clas-
sified as a platform and programming language independent
middleware framework. Thus, and due to its flexibility it
is possible and reasonable to implement and extend a Web
Services middleware for mobile systems. In the next section
a brief overview of such a Mobile Web Services based
middleware is presented. The developed UDP binding is part
of this middleware, but can also be used separately.

1Web Services Activity - The goal of the Web Services Activity is to
develop a set of technologies in order to lead Web services to their full
potential, see http://www.w3.org/2002/ws/

B. Mobile Web Services based Middleware Architecture

The Web Services based middleware architecture is depicted
in figure 1. The middleware provides upper layers services
which support on the one hand the development of applica-
tions, on the other hand the application will be assisted at
runtime. For instance, the middleware provides the application
developers the possibility to invoke remote services, publish
local services, monitor remote data, enable the monitoring of
local data, and to manage context information.

At runtime the middleware manages the object exchange be-
tween services, discovers new services, and reacts on context
changes.

IP

TCP

HTTP WAP

UDP

Mobile Web Services

Object Monitoring

Context
Dissemination

SOAP

Development Environment

Application

Fig. 1. Mobile Web Service based Middleware Architecture

The middleware is capable to couple to different underlying
protocols, either to a session layer protocol, like HTTP, BEEP,
or WSP, or to a transport layer protocol, like TCP or UDP.
On top of these protocols a conversion layer, the SOAP
layer, affiliates the communication domain to the computing
domain. The main focus of this layer in respect of the
ISO/OSI reference model is the ISO layer 6, the presentation
layer, but with the absence of a session management and
reliability mechanisms, SOAP takes over these functionalities.
Depending on the application the SOAP layer also includes
aspects of the application layer, since SOAP facilitates a basic
object exchange application.

By default the Web Services middleware framework uses
the HTTP binding, thus, session management is handled by
HTTP and the reliability of the message transport by TCP.
By using UDP we have to differentiate between different use
cases. SOAP messages could be transmitted without awaiting
a response or to route the message to a further node. In this
case no session management is necessary. If no guarantee of
the message delivery is mandatory, no reliability mechanism
is necessary. By using the UDP binding as a replacement for
the HTTP SOAP binding, session management and reliability

has been realized by SOAP, see section III.

III. UDP SOAP BINDING

All SOAP bindings have to follow the SOAP Protocol Bind-
ing Framework [5]. The Binding framework defines general
rules for a valid SOAP-Binding. The specification says:

”SOAP enables exchange of SOAP messages using a variety
of underlying protocols. The formal set of rules for carrying
a SOAP message within or on top of another protocol (un-
derlying protocol) for the purpose of exchange is called a
binding.”[13]

In general, a SOAP binding specification has to enable one
or more Message-Exchange Patterns (MEPs). Thus, MEPs are
selected and implemented in the UDP binding based on the
services provided by the underlying User Datagram Protocol
(UDP).

In the following sections the UDP binding is motivated (
section III-A), a brief overview of the UDP services is given
(section III-B), the Web Services Addressing specification is
introduced and mapped to the binding (section III-C), the
supported MEPsIII-D are outlined, and a description of the
realized binding, separated in an unreliable and a reliable one,
is presented (section III).

A. Motivation for a SOAP Binding to UDP

The use cases for an unreliable and a reliable UDP bind-
ing are different. The unreliable binding primarily enables
the use of Web Services within ad-hoc networks where
services are discovered using multicast ”Probe” messages,
services announce themselves using ”Hello” messages, or
services disband by sending a ”Bye” message. The spec-
ification ”Device Profile for Web Services”[14] is follow-
ing this approach. There, specifications like ”Web Sevices
Dynamic Discovery”[15] and ”Web Services Eventing”[16]
are used which themselves are based on a UDP binding.
SOAP messages over UDP are used for service discovery and
announcement as well as for sending events to a multicast
group. The use of the unreliable transport of SOAP messages
is mandatory due to the multicast or broadcast communication.

In addition, the unreliable binding can be used in cellular
networks, for instance if real-time data (e.g. a position or
sensor data) is transmitted. In the case that such real-time data
messages are going lost a retransmission makes no sense, since
this data possibly is already obsolete at a later time.

The reliable binding can be used in particular as a sup-
plement for the default HTTP binding in mobile networks
in order to avoid the mentioned disadvantages of TCP in
mobile networks. Due to the high transmission delay of
mobile networks, the TCP connection establishment (3-way
handshake) and the slow-start phase in the ARQ mechanism
entail a high latency of transmitting SOAP messages using
the default HTTP binding. The connection establishment has
a negligible effect on the performance, if SOAP sender and
receiver communicating for a long duration via one TCP
connecting without closing this connection, but usually SOAP

messages are send only within one HTTP session and, thus,
for each message a new TCP connection is established.

A context-aware Instant-Messageing (IM) system is one
example application using this middleware, and thus, the UDP
binding. The instant messages are transmitted with the reliable
binding, the context changes are transmitted by using the
unreliable binding. There is not only an added value regarding
the performance in mobile networks, in addition application
developers benefit, since they do not have to think about prac-
tical communication protocols. Application developers only
have to decide, if the service methods should be accessible in
a reliable or unreliable manner. Application developers who
like to invoke remote methods only need to import the Web
Service using the WSDL description. The protocol conversion
is done automatically.

B. User Datagram Protocol

The User Datagram Protocol (UDP) [17] provides higher
layer protocols an unreliable and connectionless service to
send datagrams to remote hosts by using the Internet Protocol
(IP) [18]. Entities which communicate via UDP are addressed
by a port number of 16 bit. Thus, the UDP header consists
of a source and a destination port in the first 4 octets of a
UDP packet. The next 2 octets contain the length of the UDP
packet including the header information. The last two octets
of the header cover a checksum, see figure 2.

Length

Source Port

Checksum

Destination Port

Data Octets

0 15 16 31

Length

Source Port

Checksum

Destination Port

Data Octets

0 15 16 31

Fig. 2. UDP Packet Structure

From the ISO/OSI reference model point of view, UDP pro-
vides one service named ”DATA” with two service primitives,
UDP-DATA request and UDP-DATA indication. Before the
upper layers can use these service primitives, the uper layer
have to establish a service access point addressed by a UDP
port.

Since UDP is connection-less it is possible to broadcast
datagrams or to send datagrams to a multicast address. What
is missing in UDP in order to bind it directly to SOAP is a
session management and an enhanced addressing schema. In
case reliability is required, a reliability mechanism is required,
too.

C. Web Services Addressing

Web Services are designed to be flexible and independent of
any transmission protocol. Indeed, addressing of Web Service
nodes is dependent on the addressing mechanism of the used
transmission protocol, e.g. the use of HTTP implies that

Web Services are addressed by means of Uniform Resource
Locators (URLs).

The Web Services Addressing working group aims at defin-
ing transport-neutral mechanisms to address Web Services and
messages exchanged by Web Services. The working draft of
this specification [19] defines abstract properties which have
to be integrated within other Web Services technologies, such
as WSDL and mapped to concrete Web Services protocols,
such as SOAP. Two constructs, message addressing properties
and endpoint references have been designed in order to be
extensible and re-usable.

A Web Service endpoint reference is a entity to which
Web Service messages can be addressed. It supports the
dynamic generation and customization of service endpoint
descriptions, referencing of specific services instances, and
dynamic exchange of endpoint information. The structure of
a Web Service endpoint reference is illustrated by the XML
infoset:
<wsa:EndpointReference>

<wsa:Address>xs:anyURI</wsa:Address>
<wsa:ReferenceParameters> ... </wsa:ReferenceParameters>
<wsa:Metadata> ... </wsa:Metadata>
<xs:any/>

</wsa:EndpointReference>

Message Exchange properties convey message char-
acteristics including addresses for source and destina-
tion <wsa:From>, <wsa:To> and message identities
<wsa:MessageID> as shown in the following XML infoset:
<wsa:MessageID> xs:anyURI </wsa:MessageID>
<wsa:RelatesTo RelationshipType="...">

xs:anyURI
</wsa:RelatesTo>
<wsa:To> xs:anyURI </wsa:To>
<wsa:Action> xs:anyURI </wsa:Action>
<wsa:From> endpoint-reference </wsa:From>
<wsa:ReplyTo> endpoint-reference </wsa:ReplyTo>
<wsa:FaultTo> endpoint-reference </wsa:FaultTo>

The unique message ID <wsa:MessageID> can be used
i.a. to enable the session management at the sender and the
receiver. In typical enterprize applications, this message ID
may be generated by setting up a database infrastructure that
maintains the state of the unique ID. This state is then used
by the application for synchronization and for the generation
of new IDs.

The need of a shared resource, that is, the database, makes
this scheme difficult to implement as it may require portability
across different databases [20]. This affirms that the scheme
is not suitable for the applications running on mobile devices
in mobile communication and ad-hoc network environments.

Another non-database scheme for unique message ID gener-
ation can be to keep a singleton (an object with the existence
of just one instance across an entire application) that only
resides on the server application and acts as a synchronization
point for the clients requiring unique message IDs [21]. This
approach creates the scalability problem and may become a
bottleneck [20].

The failure risk may become higher in mobile environments,
which does not make this approach a natural choice. Therefore
the UDP SOAP Binding has adapted an approach to generate

these IDs in the memory by creating Universally Unique
Identifier (UUID) that combines enough system information
to make it unique across time and space, no matter when
and where it was generated [20]. The UUID is a string-
based message ID encoded in hexadecimal form. The string
consisting of 32 HEX digists is composed of the unique current
time in milliseconds (digits 1-8), the IP address encoded in
hexadecimal (digits 9-16), the hex representation of the object
hash code (digits 17-24) and an integer random number coded
in hexadecimal form (digits 25-32), see figure 3.

The UUID generated with this algorithm is guaranteed to be
unique across all devices in the network [20]. The algorithm
performs faster than other schemes already mentioned as the
entire process is executed in the memory without requiring
any synchronization from one point or access to some shared
resource such as databases. The freedom to avoid the databases
and synchronization makes it simple to implement and a
convincing choice for mobile and ad-hoc environments [20].
The layout of UUID used in UDP SOAP Binding is presented
in figure 3.

Current time [msec] IP-Addr. in HEX Object hash code Random number- - -

1 8 9 16 17 24 25 32… … … …

Fig. 3. Layout of Message UUID

The Web Services Addressing SOAP Binding specification
defines the binding of these abstract WS-Adressing properties
to SOAP and the Web Services Addressing WSDL Binding
specification the binding to WSDL.

D. Supported MEPs

In general a SOAP binding must enable one or more MEPs.
This section will select and specify the MEPs which are
supported by the UDP SOAP binding and the mapping to
SOAP and WSDL MEPs.

At SOAP level there are currently two specified MEPs, the
SOAP request-response and SOAP response MEP. The SOAP
response is not of interest, since a none SOAP request, as e.g.
a HTTP GET request will be responded by a SOAP message.

This paper will concentrate on the request-response MEP
and the very basic one-way MEP (this is no real MEP, since
only one message is involved).

These two SOAP MEPs can be mapped to the WSDL MEP,
which are defined in the [12], following table I.

SOAP MEP WSDL 1.1 MEP WSDL 2 MEP
SOAP request-response Request-Response,

Solicit-Response
In-Out, Out-In

SOAP one-way One-way In-Only, Out-Only

TABLE I
MAPPING OF SOAP, WSDL 1.1, AND WSDL 2MEPS

The mappings of these MEPs are important for the de-
veloper of sevice-proxy (stub) generators, since the WSDL

information regarding the new UDP binding and MEPs have
to be represented in the sevice-proxy code.

The WSDL 2 ”MEPs In-Optional-Out, Out-Optional-In,
Robust In-Only, Robust Out-Only” are similar to the MEPs
listed in table I and will be not mentioned separately. The
meaning of these MEPs is described in [12].

Both MEP, One-way and request-response, can be send out
not only unicast, but also a broadcast or multicast transport is
possible by using the corresponding IP addresses. In case of a
multicast/broadcast transport only the request is send out to a
multicast/broadcast address, the responsesf have to be unicast.

UDP

SOAP

UDP-SAP

Reliable Binding
(ARQ)

Unreliable
Binding

WS-Sec.

WS-Adr. SOAP Parser

Rel. One-Way
SAP

Rel. Req-Resp
SAP

Unrel. One-Way
SAP

Unrel. Req-Resp
SAP

Fig. 4. SOAP layer concerning the binding to UDP

From OSI communications layer point of view, see figure
4, the core SOAP parser provides upper layers four Service
Access Points (SAPs) by using Web Services Addressing
properties and coupling either to an unreliable or an reliable
binding. The four SOAP SAPs result from the variation of the
two supported MEPs and bindings.

1) One-Way: The one-way MEP representation for a UDP
binding is trivial, since UDP already defines a one-way trans-
mission of datagrams. Therefore, the SOAP one-way service
can be mapped directly to a UDP-DATA service. The SOAP
sender uses the ”UDP-DATA request” service primitive and in
case of an error free transmission the SOAP receiver will be
informed by a ”UDP-DATA request” service primitive.

Attention have to be paid to the maximum length of the
payload of a datagram. If the length of the SOAP message
exceeds the max. length of a datagram payload, the SOAP
message has to be segmented into several datagrams and sent
to the receiver. The receiver has to assemble the datagrams to
the original message. This procedure is illustrated in section
III-F about the reliable binding.

2) Request-Response: The Request-Response SOAP MEP
mapping to UDP is more complex, since UDP does not provide
any comparable service. Since we will not change the current
internet protocol stack, all additional features are implemented
within the SOAP layer. The correlation between the request
and response message is realized by using Web Services
Addressing properties [19]. Each message can be identified by
a unique message identifier <wsa:MessageID and a source
and reply address can specify the message flow between the

SOAP receiverSOAP sender

UDP-DATA
request

UDP-DATA
indication

SOAP-MESSAGE
request

SOAP-MESSAGE
indication

SOAP UDP UDP SOAP
UDP

datagram

Fig. 5. Sequence diagram of a unreliable One-Way SOAP message trans-
mission

service requestor and provider.

SOAP receiver (server)SOAP sender (client)

UDP-DATA
request

UDP-DATA
indication

SOAP-MESSAGE
request

SOAP-MESSAGE
indication

SOAP UDP UDP SOAP
UDP

datagram

SOAP-MESSAGE
responseUDP-DATA

request

UDP-DATA
indicationSOAP-MESSAGE

confirm

UDP
datagram

Message
correlation

Fig. 6. Sequence diagram of a unreliable Request-Response SOAP message
exchange

The Web Services Addressing information is stored within
the SOAP header. The response header can be constructed
from the request header as illustrated in the following example.

The request with the message ID 51F6DC39-1A5372A9-
62087DF1-C34F5921 is sent from mobile1 to mobile2
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://www.w3.org/2005/03/addressing">

<S:Header>
<wsa:MessageID>

51F6DC39-1A5372A9-62087DF1-C34F5921
</wsa:MessageID>
<wsa:ReplyTo>

<wsa:Address>
datagram://mobile1.comnets.rwth-aachen.de/soaprpc
</wsa:Address>

</wsa:ReplyTo>
<wsa:To S:mustUnderstand="1">

datagram://mobile2.comnets.rwth-aachen.de/soaprpc
</wsa:To>
<wsa:Action>

http://comnets.rwth-aachen.de/Contacts/Delete
</wsa:Action>

</S:Header>

<S:Body>
<f:Delete
xmlns:f="http://comnets.rwth-aachen.de/Contacts">

<ContactID> 4711 </ContactID>
</f:Delete>

</S:Body>

</S:Envelope>

The response message from mobile2 to mobile1 with
the message ID 3F9202A6-D72B94f2-92F2A572-B19632D3
inserts the message ID of the request message into the
<wsa:RelatesTo> tag of the response message.

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://www.w3.org/2005/03/addressing">
<S:Header>
<wsa:MessageID>

3F9202A6-D72B94f2-92F2A572-B19632D3
</wsa:MessageID>
<wsa:RelatesTo>

51F6DC39-1A5372A9-62087DF1-C34F5921
</wsa:RelatesTo>
<wsa:To S:mustUnderstand="1">

datagram://mobile1.comnets.rwth-aachen.de/soaprpc
</wsa:To>
<wsa:Action>

http://comnets.rwth-aachen.de/Contacts/DeleteAck
</wsa:Action>
</S:Header>
<S:Body>

<f:DeleteAck
xmlns:f="http://comnets.rwth-aachen.de/Contacts"/>

</S:Body>
</S:Envelope>

Thus, the session management of the request-response MEP
is realized by correlating the <wsa:MessageID> identifiers
at the SOAP sender.

E. Unreliable Binding

The unreliable binding simply transfers SOAP messages
within one user datagram. Since the datagram payload size
is theoretically limited to 65507 bytes (in practice this value
is dependent on the implementation), the size of a SOAP
message which should be transmitted by using this binding
is limited, too. A fragmentation of SOAP messages into many
user datagrams is not useful, since one lost segment causes the
loss of the whole SOAP message. Messages of a size greater
than the max. payload size should be transmitted using the
reliable binding described in the next section.

F. Reliable Binding

Although the default HTTP binding provides a reliable
message transmission, since TCP provides the reliability on
top of IP, a reliable UDP binding is useful in wireless net-
works. Low bandwidth and time-consuming media access and
ARQ protocols of mobile communication networks cause great
network delays. Thus, stop-and-wait-ARQ mechanisms should
be avoided, since the transmission of a packet is initiated
not till the acknowledgement of the previous packet has been
received. The TCP connection establishment and slow start
phase perform therefore bad in a wireless network.

For the reliable SOAP binding a selective-repeat-ARQ
mechanism will be introduced which is adapted to the trans-
mission of SOAP messages over UDP. Between UDP and
SOAP a protocol will be included which enables the reliable
transmission of arbitrary messages. In this paper we focus
on the transmission of SOAP messages, thus, this protocol
is placed within the SOAP binding. The protocol introduces
an additional header, including a sequence number, message
type flag, and the WS-Adressing Message-ID, see figure 7.

0,S,uuid:8466b620-2ce-d590dbc-85fe9e05
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://schema

1,C,uuid:8466b620-2ce-d590dbc-85fe9e05
s.xmlsoap.org/ws/2004/08/addressing">

<SOAP-ENV:Header>
<wsa:To>datagram://127.0.0.1:9090/soaprpc</wsa:To>
<wsa:Action>urn:Services - echoStringArray</wsa:Action>
<wsa:MessageId>uuid:8466b620-2ce-d590dbc-85fe9e05</wsa:MessageId>
<wsa:ReplyTo>

<ws

2,C,uuid:8466b620-2ce-d590dbc-85fe9e05
a:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:Address>

</wsa:ReplyTo>
</SOAP-ENV:Header>
<SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<echoStringArray xmlns="urn:Services" id="o0" S

3,C,uuid:8466b620-2ce-d590dbc-85fe9e05
OAP-ENC:root="1">

<StringArray xmlns="" xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:anyType[4]">
<item xsi:type="xsd:string">RWTH</item>
<item xsi:type="xsd:string">Aachen</item>
<item xsi:type="xsd:string">ComNets</item>
<item xsi:

4,E,uuid:8466b620-2ce-d590dbc-85fe9e05
type="xsd:string">EW2006</item>

</StringArray>
</echoStringArray>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Segment – 1, 312 bytes

Segment – 2, 312 bytes

Segment – 3, 312 bytes

Segment – 4, 312 bytes

Segment – 5, 312 bytes

Fig. 7. Segmentation of a SOAP envelope to many datagrams with addition
header information of the selective-repeat ARQ

The sender splits the SOAP message in M datagrams and
transmits each datagram sequently. Each datagram correspond-
ing to the same SOAP message carries in the ”Binding” header
the unique Message ID, the first datagram has an START flag
(S), the following datgrams a CONTINUE flag (C), and the
last message an END flag (E). The sequence number of the
datagrams is increased with each datagram by one, starting by
0, see figure 8.

After sending the last datagram the sender waits T second
for a final acknowledgement and indicates the successful trans-
mission of the message. If after this time no acknowledgement
is received, the SOAP sender either can retransmit the whole
message or indicate the application an error.

The SOAP receiver opens for each received datagram,
containing a new Message ID, a buffer. All received datagrams
with this message ID will be saved according to their sequence
number in the corresponding position of the buffer. After
writing the datagram with the END flag into the buffer or
waiting T seconds, the receiver requests with one NACK(..,..)
datagram the missing datagrams. If the message is completed,
a final ACK message is send to the SOAP sender, otherwise
the selective-repeat explicit-request procedure will be repeated.

The advantage of the selective-repeat ARQ is the less
amount of acknowledgements and retransmissions especially
if the datagram loss rate is low. In this case only one additional
ACK message is sent compared to an unreliable transmission.
The delay is as long as using the unreliable binding.

IV. IMPLEMENTATION ARCHITECTURE

As depicted in the figure 9, the server architectural imple-
mentation revolves around several components. This section

SOAP receiverSOAP sender

UDP-DATA
request

UDP-DATA
indication

SOAP-MESSAGE
request

SOAP-MESSAGE
indication

SOAP UDP UDP SOAP
UDP

datagram

UDP-DATA
indication

NACK(N+1)

ACK

UDP-DATA
indication

UDP-DATA
indication

Fig. 8. Sequence diagram of a reliable One-way SOAP message exchange
using a selective-repeat-ARQ

will explain how the Request-Response control flow is handled
and processed by these components.

The SOAP server shares a common Graphical User Interface
(GUI) among the two threads dedication for accepting either
the UDP or HTTP requests. This is achieved by introducing the
ServerController component that stands between the GUI and
the listeners. This component acts as a delegate for the GUI
and invokes the corresponding listener thread based on the
input. Besides, the ServerController component also performs
the logging operations for the SOAP server. In short, it controls
the the other two components named as UDPServerThread and
HTTPServerThread. This design makes the server architecture
flexible enough to plug in additional protocol listeners with
ease. We will only discuss the control flow for the UDPServer-
Thread in this paper.

<<component>>
<<library>>

kXML

<<component>>
<<library>>

kSOAP

<<component>>
<<subsystem>>

Logic

<<component>>
Service1

<<component>>
Service3

<<component>>
Service2

<<component>>
<<subsystem>>

Server

<<component>>
UDP Listener

<<component>>
HTTP Listener

<<component>>
Request Handler

<<component>>
Response
Handler

<<delegate>>

<<delegate>>
Deployment Interface

UDP Interface

HTTP Interface

Created by Borland® Together® Designer Community Edition

Fig. 9. Architecture of the mobile Web Services Server

Once the ServerController has invoked the UDPServer-
Thread, which is the listener for the UDP requests, now its
the job of this component to set up the initial configurations

of the server by registering the hosted services, listen for the
incoming requests and identify the transport mechanism which
can either be receiving a complete SOAP message in a single
datagram or the selective repeat mechanism, that is, receiving
SOAP messages in segments. Once all these tasks has been
done, the UDPServerThread passes on the received datagram
to the RequestHandler for further processing.

Upon receival of the datagram by the UDPServerThread,
the RequestHandler component extracts the SOAP message
from the packet, parses its XML and extracts the Uniform
Resource Identifier (URI) from the SOAP headers. In the
next step the SOAP XML is de-serialized and passed on to
the DeploymentInterface which invokes the requested service.
Finally, the control flow from the RequestHandler is handed
over to the ResponseHandler component for sending the
resulting SOAP message back to the client via the UDP.
The responsibility of the ResponseHandler is not just sending
the result to the client, but also to attach the SOAP headers
that conforms to the WS-Addressing [13] within the response
SOAP message.

The Java2 Micro Edition (J2ME) technology due to its
robust and flexible environment for the applications running on
the consumer devices, has been adapted for the implementation
of the SOAP server. On the other hand, kXML and kSOAP,
the open source APIs for XML and SOAP parsing from En-
hydra.org were utilized for manipulating the XML messages.
These APIs supports Document Object Model (DOM) parsing
using the ”pull” parsing technique which requires very low
memory overhead.

V. CONCLUSION AND OUTLOOK

The paper has presented an enhanced SOAP binding to
UDP and the realization for J2ME mobile phones. The binding
follows and extends the technical specification [4] and uses the
Web Services Addressing specification [19]. The extensions
are mainly related to the reliable transport of SOAP messages
over UDP and the segmentation of large messages into mul-
tiple datagrams. For this purpose, a Selective-Repeat protocol
has been added to the reliable binding on top of UDP. The
advantage is that no adaptation of the protocols are needed,
the enhancements are realized on ”application” layer within
the Simple Object Access Protocol (SOAP).

A further paper aims at evaluating the presented binding
compared to the default HTTP binding. Latency measurements
of remote procedure calls using the UDP and the HTTP
binding will prove the strength of the UDP binding in mobile
communication networks, like GPRS and UMTS.

REFERENCES

[1] B. Aiken, J. Strassner, B. Carpenter, I. Foster, C. Lynch, J. Mambretti,
R. Moore, and B. Teitelbaum, “Network Policy and Services: A Report
of a Workshop on Middleware,” RFC 2768 (Standard), Feb. 2000.
[Online]. Available: http://www.ietf.org/rfc/rfc2768.txt

[2] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion,
and C. F. D. Orchard, “Web Service Architecture,” Published on
the internet, Feb. 2004, w3C Recommendation. [Online]. Available:
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

http://www.ietf.org/rfc/rfc2768.txt
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[3] J. Postel, “DoD standard Transmission Control Protocol,” RFC 761,
Jan. 1980. [Online]. Available: http://www.ietf.org/rfc/rfc761.txt

[4] H. Combs, M. Gudgin, J. Justice, G. Kakivaya, D. Lindsey,
D. Orchard, A. Regnier, J. Schlimmer, S. Simpson, H. Tamura,
D. Wright, and K. Wolf, “SOAP-over-UDP,” Published on the
internet, 2004. [Online]. Available: http://msdn.microsoft.com/library/
en-us/dnglobspec/html/soap-over-udp.pdf

[5] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F.
Nielsen, “SOAP Version 1.2 Part 1: Messaging Framework,” Published
on the internet, June 2003, w3C Recommendation. [Online]. Available:
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

[6] ——, “SOAP Version 1.2 Part 2: Adjuncts,” Published on the
internet, June 2003, w3C Recommendation. [Online]. Available:
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/

[7] ISO/IEC, “Information Technology - Open Systems Interconnection -
Basic Reference Model: Conventions for the Definition of OSI Services,”
International Telecommunication Union, ITU-T Recommendation
X.210, Nov. 1993. [Online]. Available: http://msdn.microsoft.com/
library/en-us/dnglobspec/html/soap-over-udp.pdf

[8] G. Gehlen and G. Mavromatis, “Mobile Web Service based
Middleware for Context-Aware Applications,” in Proceedings of
the 11th European Wireless Conference 2005, vol. 2. Nicosia,
Cyprus: VDE Verlag, Apr 2005, pp. 784–790. [Online]. Available:
http://www.comnets.rwth-aachen.de/guge-pub.html

[9] L. Pham and G. Gehlen, “Realization and Performance Analysis
of a SOAP Server for Mobile Devices,” in Proceedings of
the 11th European Wireless Confernce 2005, vol. 2. Nicosia,
Cyprus: VDE Verlag, Apr 2005, pp. 791–797. [Online]. Available:
http://www.comnets.rwth-aachen.de

[10] N. Mitra, “SOAP Version 1.2 Part 0: Primer,” Published on the
internet, June 2003, w3C Recommendation. [Online]. Available:
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/

[11] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana,
“Web Services Description Language (WSDL) Version 2.0 Part
1: Core Language,” Published on the internet, May 2005, w3C
Recommendation. [Online]. Available: http://www.w3.org/TR/2005/
WD-wsdl20-20050510

[12] R. Chinnici, H. Haas, A. Lewis, J.-J. Moreau, D. Orchard, and
S. Weerawarana, “Web Services Description Language (WSDL)
Version 2.0 Part 2: Adjuncts,” Published on the internet, May 2005,
w3C Recommendation. [Online]. Available: http://www.w3.org/TR/
2005/WD-wsdl20-adjuncts-20050510

[13] M. Gudgin and M. Hadley, “Web Services Addressing 1.0 -
SOAP Binding,” Published on the internet, Mar. 2005, w3C
Working Draft. [Online]. Available: http://www.w3.org/TR/2005/
WD-ws-addr-soap-20050331

[14] S. Chan, C. Kaler, T. Kuehnel, A. Regnier, B. Roe,
D. Sather, J. Schlimmer, H. Sekine, R. D. Walter,
J. Weast, D. Whitehead, D. Wright, and Y. Yarmosh, “Device
Profile for Web Services,” Published on the internet, May
2005. [Online]. Available: http://www-128.ibm.com/developerworks/
webservices/library/specification/ws-eventing/

[15] J. Beatty, G. Kakivaya, D. Kemp, T. Kuehnel, B. Lovering, B. Roe,
C. S. John, J. Schlimmer, G. Simonnet, D. Walter, J. Weast, Y. Yarmosh,
and P. Yendluri, “Web Services Dynamic Discovery (WS-Discovery),”
Published on the internet, Apr. 2005. [Online]. Available: http:
//msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Discovery.pdf

[16] D. Box, L. F. Cabrera, C. Critchley, F. Curbera, D. Ferguson, A. Geller,
S. Graham, D. Hull, G. Kakivaya, A. Lewis, S. B. Lovering, M. Mihic,
P. Niblett, D. Orchard, J. Saiyed, S. Samdarshi, J. Schlimmer, and
I. Sedukhin, “Web Services Eventing (WS-Eventing),” Published on
the internet, Aug. 2004. [Online]. Available: http://www-128.ibm.com/
developerworks/webservices/library/specification/ws-eventing/

[17] J. Postel, “User Datagram Protocol,” RFC 768 (Standard), Aug. 1980.
[Online]. Available: http://www.ietf.org/rfc/rfc768.txt

[18] ——, “DoD standard Internet Protocol,” RFC 760, Jan. 1980,
obsoleted by RFC 791, updated by RFC 777. [Online]. Available:
http://www.ietf.org/rfc/rfc760.txt

[19] M. Gudgin and M. Hadley, “Web Services Addressing 1.0 - Core,”
Published on the internet, Mar. 2005, w3C Working Draft. [Online].
Available: http://www.w3.org/TR/2005/WD-ws-addr-core-20050331

[20] F. Marinescu, Ed., EJB Design Patterns, Advanced Patterns, Processes,
and Idioms. John Wiley & Sons Inc., 2002.

[21] P. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier
(UUID) URN Namespace,” RFC 4122, July 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4122.txt

http://www.ietf.org/rfc/rfc761.txt
http://msdn.microsoft.com/library/en-us/dnglobspec/html/soap-over-udp.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/soap-over-udp.pdf
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/
http://msdn.microsoft.com/library/en-us/dnglobspec/html/soap-over-udp.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/soap-over-udp.pdf
http://www.comnets.rwth-aachen.de/guge-pub.html
http://www.comnets.rwth-aachen.de
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/2005/WD-wsdl20-20050510
http://www.w3.org/TR/2005/WD-wsdl20-20050510
http://www.w3.org/TR/2005/WD-wsdl20-adjuncts-20050510
http://www.w3.org/TR/2005/WD-wsdl20-adjuncts-20050510
http://www.w3.org/TR/2005/WD-ws-addr-soap-20050331
http://www.w3.org/TR/2005/WD-ws-addr-soap-20050331
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-eventing/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-eventing/
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Discovery.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Discovery.pdf
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-eventing/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-eventing/
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc760.txt
http://www.w3.org/TR/2005/WD-ws-addr-core-20050331
http://www.ietf.org/rfc/rfc4122.txt

	I Introduction
	II Mobile Web Services based Middleware
	II-A Web Services and SOAP
	II-B Mobile Web Services based Middleware Architecture

	III UDP SOAP Binding
	III-A Motivation for a SOAP Binding to UDP
	III-B User Datagram Protocol
	III-C Web Services Addressing
	III-D Supported MEPs
	III-D.1 One-Way
	III-D.2 Request-Response

	III-E Unreliable Binding
	III-F Reliable Binding

	IV Implementation Architecture
	V Conclusion and Outlook
	References

