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Abstract—A Wireless Mesh Network (WMN) serves
to extend the wireless coverage of an Internet gateway
by means of Mesh Stations (MSTAs) that transparently
forward data between Stations (STAs) and the gateway.
This concept reduces deployment costs by exchanging
the multiple gateways, required to cover a larger area
with wireless Internet access, by a wireless backbone.
Unfortunately, this also reduces capacity, owing to multiple
transmissions of the same data packet on its multi-hop
route. Hence, different mechanisms to increase the capacity
of WMNs are investigated.

Multiple Input/Multiple Output (MIMO) is a technique
that is able to increase the capacity of a single link in
the same bandwidth and transmission power: Both the
transmitter and the receiver is configured with multiple
antennas. If multiple streams are transmitted in a rich
scattering environment, these streams can be separated and
decoded by the receiver successfully.

However, it is unclear how this single-link capacity
increase translates into a system capacity increase in a
WMN. In this paper, we will combine a realistic MIMO
model with a capacity calculation framework to show the
combined effect of the two technologies. The results show
that although not the full link capacity increase of MIMO
can be exploited, especially WMNs benefit from the MIMO
gain.

Keywords–Wireless Networks, Capacity, Multiple-
Input/Multiple-Output (MIMO), Mesh

I. INTRODUCTION

In the last years, two parallel research areas have
produced fundamental innovations for wireless data net-
works: First, the exploitation of multipath propagation
by multiple transmit and receive antennas to increase
the link capacity using the same bandwidth. Second,
the upcoming of Mobile Ad-Hoc Networks (MANETs)
where data is forwarded by intermediate nodes on dy-
namic, self-configured paths to extend the range of a
single wireless link.

In both areas the innovations have successfully found
their way into standards and products: Multi-antenna
technology, also known as Multiple Input/Multiple
Output (MIMO), is for example a crucial part of the
latest amendment of IEEE 802.11, “n” [2], to reach the
maximum gross throughput of 600 Mb/s (using, among
other techniques, 4 transmit and receive antennas). And
while MANETs are not deployed themselves, the results
from the research of wireless path selection protocols

are now standardised and implemented in Wireless Mesh
Networks (WMNs), e. g., in [3]: In contrast to MANETs,
data forwarding is restricted to special Mesh Stationss
(MSTAs), implementing the mesh facility. This facility
enables forwarding of frames between MSTAs so that
for example the limited radio coverage of a Internet-
connected MSTA (named mesh gate according to [3])
is extended without new wires. Throughout the paper, it
is assumed that MSTAs also provide the Access Point
(AP) facility for association and management of mobile
Stations (STAs). From their viewpoint, the coverage
extension via relaying is completely transparent.

The two research areas are parallel two each other be-
cause they are applied to different layers of the OSI/ISO
protocol stack: MIMO is a technology applied mostly
by the Physical Layer (PHY), plus some intelligence
in the Medium Access Control (MAC) required for the
advanced Rate Adaptation (RA) that now incorporates,
next to the selection of the Modulation- and Coding
Scheme (MCS), the number of streams to be transmitted.
In contrast, the ability to forward data transparently for
the application over multiple hops is at the heart of the
Network Layer (NL), with probably some improvements
in the MAC to measure the wireless link quality or
to schedule multi-hop transmissions. Hence, due to the
characteristics of the OSI/ISO protocol stack model, it is
straightforward to combine the advances of the PHY to
those of the NL; as a matter of fact, the two technologies
should be transparent to each other.

While this statement is true from a qualitative per-
spective, its quantitative implications are unknown: In
theory, MIMO provides a link capacity improvement
which scales linearly with the number of transmit/receive
antennas. Of course, this capacity increase would be ad-
vantageous especially for the wireless backbone between
the MSTAs where the aggregated data of the mobile
STAs is transported. However, it is not clear how much
of the link capacity increase of MIMO remains to the
system capacity of the WMN.

The scope of this paper is to estimate the improve-
ments of MIMO in a WMN. It is structured as follows:
After reviewing the related work on capacity estimation
of wireless networks in Section II, Section III details
the applied system model. At first, this system model is



applied to a single Basic Service Set (BSS), consisting of
multiple STAs and a single AP, in Section IV to estimate
the upper bound BSS capacity for a WMN. Then,
Section V introduces the capacity calculation method for
WMNs. This calculation method is applied in Section VI
to evaluate the effect of different MIMO configurations.
Finally, the paper concludes with Section VII.

II. RELATED WORK

Capacity calculation of wireless communication net-
works is a popular research topic. Two major trends have
evolved:

1) To determine the capacity bound of a random net-
work with certain properties, where the capacity is
considered to be a random variable and asymptotic
properties are calculated, and

2) To compute the capacity of a given, arbitrary
network using graph-theory based algorithms.

Besides these trends, work has been published that
considers a given network for calculating its capacity
from the shortest possible schedule by means of Linear
Programming.

1) Analytical Bounds: In their seminal paper Gupta
and Kumar [4] explored the limitations of multi-hop
radio networks with random source-destination traffic
relationships by computing the achievable throughput for
a random network obtained under optimal conditions to
be Θ (W/

√
n), where n is the number of nodes and W

the radio bandwidth.
Gupta and Kumar conclude that efforts should be

targeted to small networks, where nodes communicate
with near neighbours only.

Several researchers have considered to extend this
basic model, e. g., by incorporating different network
structures [5] or mobility of nodes [6]. Due to the same
approach chosen, these papers have in common that they
derive asymptotic scaling laws to describe the capacity
bounds for the considered random network. Application
of these results to any real WMN instance with a given
topology appears not to be possible.

2) Graph-based capacity calculation: The mentioned
disadvantage is avoided when concentrating on the cal-
culation of capacity bounds in a given network instance.
In [7] and [8] this is done by translating the properties of
the wireless medium (shadowing, interference, receive
probability) into two graphs: The connectivity graph
G = (VG, EG) and the conflict graph C = (VC =
EG, EC). While in G each vertex represents a node
and an edge represents a link between two nodes, C
represents links that cannot transmit simultaneously. The
capacity of the network is computed then using methods
from graph-theory.

Since computation of the capacity bounds of a given
wireless network is NP-complete even under simple as-
sumptions [9], approximation algorithms must be used.

For real-world wireless networks where link adapta-
tion is state of the art, the problem is even aggravated: A
node may choose among alternate MCSs to be used for a
transmission. If a high-rate, but interference susceptible
MCS is chosen, the link should be operated under low
interference only, in contrast to a more robust, low-rate
MCS that may function well under high interference.
Hence, it is impossible to generate the conflict graph C
without assigning to each link a single MCS in advance.
Therefore, most papers on capacity calculation restrict
the link model to one MCS only, thereby ignoring an
important characteristic of current wireless standards.

3) Linear Programming-based capacity calculation:
Algorithms published for calculating the system ca-
pacity of a given network taking different MCSs into
account all use a model similar to the one introduced in
[10]: Alternate assignments of MCSs are compared by
computing the set of achievable data rate combinations
between all source-destination pairs in the network.
Basic Rates are introduced as a key element, describing
a set of links active at a given time. The challenge
is to find the schedule of all feasible basic rates that
minimises the schedule’s duration. A capacity bound can
be derived from the duration of the shortest schedule and
the amount of carried traffic. Consistent with [9], the
number of basic rates and thus the algorithm runtime
complexity grows exponentially, rendering it useless for
networks with more than 30 nodes.

Reference [11] proves the computation of the shortest
schedule to be NP-complete and extends the work of
[10] by a column-based approach to solve the Mixed-
Integer Programming (MIP)-formulation of the optimi-
sation problem. Although this method makes use of
modern branch-and-price methods to solve the MIP,
large networks with 40 and more nodes cannot be solved
exactly. Instead it is proposed to stop the branching
process using a heuristic.

4) Previous Publications by the Authors: The con-
cept of linear programming-based capacity calculation
is picked up by the authors in [12], where the heuristics
Selective Growth (SG) and Early Cut (EC) to control the
number of network states are introduced and applied to
WMNs first. A more detailed analysis and the additional
heuristic Selective Growth/Delete (SG/Del) is provided
by [13]. These extensions to the linear programming
method are crucial to compute the capacity of large-scale
scenarios with 100 and more nodes.

The improved calculation methods have been applied
by the authors to calculate the capacity of WMNs
under different conditions: [14] considers hybrid wire-
less/wired mesh networks, [15] uses Ultra Wideband



(UWB) as transmission technology and [1] shows the ef-
fect of transmit power control on the capacity. Through-
out the publications, the capacity calculation method has
proven to be a versatile tool to estimate the effect of a
PHY technology to the system capacity.

III. SYSTEM MODEL

The system model is especially concerned with the
characteristics of a wireless network, i. e., the the wire-
less channel and the performance capability of the PHY
to transmit information using the wireless channel. In
compliance with the topic of the paper. According to the
topic of the paper, special treadment is given to model
MIMO transmissions.

A. Wireless Channel Model

The wireless channel determines the received signal
strength of a transmission from node Ni to Nj , posi-
tioned at pi and pj , respectively. Typically, a wireless
channel model is of the form

P (Ni, Nj) [dBm] = Pi + gi + gj (1)
− pl(pi, pj)− s(pi, pj) (2)

where
• Pi is the transmission power of node Ni;
• gi and gj are optional transmit and receive antenna

gains;
• pl(pi, pj) is the pathloss function that models the

attenuation of the radio wave due to the distance
between Ni and Nj ;

• s(pi, pj) is a shadowing fading component having
log-normal distribution.

The system performance highly depends on the char-
acteristics of this model, i. e., the parameterisation of
pl(pi, pj) and s(pi, pj). Therefore, it is crucial that the
selection is based on extensive real-world measurements
campaigns. Furthermore, the usage of a standardised
model allows direct comparison with results from the
literature that use the same assumptions.

Based on these considerations and the typical ap-
plication scenario of a WMN, we select the Urban
Micro (UMi) channel model described in [16], which is
designed to evaluate radio interface technologies in the
IMT-Advanced process. This model provides pathloss
functions for Line Of Sight (LOS), Non Line Of Sight
(NLOS) and Outdoor-to-Indoor (OtoI) links as well as
a description of a random process with correlated log-
normal distribution for the shadowing fading.

B. Physical Layer Model

The Physical Layer (PHY) model decides under which
conditions a packet transmission is successful, i. e., the
packet is decoded error-free at the receiver.

In our model, the success probability depends on two
factors:

1) How much noise from the background and other
active transmissions interferes with the signal and

2) which MCS is selected at the transmitter.

Throughout the paper we will assume IEEE 802.11n-
2009 [2], as the physical layer standard. Adaptation
of the methodology to other wireless transmission
technologies based on Orthogonal Frequency Division
Multiplexing (OFDM) is possible by adapting the cal-
culations to different MCS; however, this is not in the
scope of this paper.

As in [2], the MCS does not only comprise the
modulation and the channel coding, but in addition
the number of spatial streams nss. Hence, the MCS
comprises all information that determines the number
of data bits per OFDM symbol.

1) SINR: Signal degradation at the receiver is caused
by two factors: First, the thermal- and receiver noise;
second, interference from other active transmissions.

The power of thermal noise (dBm) is given by Nth =
−174 + 10 log10(∆f ), where ∆f is the bandwidth in
Hz ; the receiver noise Nrx is an additional degradation
caused by components in the RF signal chain and
assumed to be 5 dB.

Let now denote Nj the current receiver, trying to
decode a signal from Nj , starting at time t0 and ending
at t1. Furthermore, let I = {k : k 6= i, k 6= j} be
the set of active transmitters of all other overlapping
transmissions, having start time tk,0 and end time tk,1.

Then the interference Ii,j,I at Nj for the transmission
from Ni is computed in mW as

Ii→j,I =
∑

k∈Ii→j

min (t1, tk,1)−max (t0, tk,0)
t1 − t0

·P (Nk, Nj) .

(3)
This calculation averages each interfering signal over
the transmission time; hence, the effect of strong but
short interference peaks are underestimated. This simpli-
fication is tolerable when using the capacity calculation
methods described below, as interference will be aligned
optimally.

The final quality of the received signal is measured
by the Signal to Interference plus Noise Ratio (SINR):

SINRi→j =
P (Ni, Nj) [mW]

Ii→j,I [mW] + (Nth +Nrx) [mW]
. (4)

2) Packet Error Rate: The resulting Packet Error
Rate (PER) of a received frame, which corresponds
to the probability of a data burst with faulty Cyclic
Redundancy Check (CRC), depends on three parameters:
the MCS which is selected by the transmitter, the frame
size, and the SINR measured at the receiver.



Based on the SINR and the modulation scheme,
the pre-decoder Bit Error Rate (BER) can be derived
analytically for the modulation schemes defined in IEEE
802.11 as shown in [17].

IEEE 802.11 specifies two channel coding schemes,
namely Binary Convolutional Code (BCC) and Low-
Density Parity-check Code (LDPC). In this paper, we
restrict ourselves to the BCC scheme. Hence, the results
from [18] can be applied, allowing for estimating an
upper bound for the PER dependent on the SINR and
the packet length.

3) Link Throughput: For an error-free link, the link
gross throughput using MCS m is given by the number
of data bits per symbol, nmDBPS , divided by the duration
of one symbol:

Tm = nmDBPS/tsymbol (5)

C. Modelling MIMO Links

Coarse classification distinguishes two types of
MIMO techniques (both part of IEEE 801.11n-2009)
based on the propagation channel properties, i. e., on the
structure of the spatial correlation matrix at the antenna
array. In the case of high correlation of the transmitted
signal beamforming can be applied, whereas in the case
of low correlation diversity and multiplexing approaches
apply [19]. The focus of this work is MIMO methods
in the later sense, namely Spatial Multiplexing (MUX)
and Spatial Diversity (DIV) schemes.

In MUX schemes, nss > 1 streams are transmitted
simultaneously, each one using one dedicated antenna
of the transmitter. In a rich scattering environment the
signal of the combined streams takes different paths with
none or low correlation. Hence, different signals arrive at
the multiple receive antennas which can be processed to
gain the different streams. Obviously, the number of data
streams is limited by the number of transmit antennas,
ntx. Furthermore, the receiver must contain at least as
many receive antennas, nrx, as streams. Consequently,
a MUX scheme increases the data rate at most by
min(ntx, nrx).

DIV schemes, in contrast, exploit the diversity of the
multiple receptions of the same signal: The receiver with
multiple antennas has multiple copies of the transmitted
signal, each distorted by a different channel function.
Thus, appropriate signal processing algorithms can in-
crease the SINR of the signal by combining the different
streams.

In the schemes combining MUX and DIV, more than
one transmit antenna is active, but the receiver, as in
DIV schemes, has more antennas than the number of
spatial streams transmitted. To describe a link with ntx
transmit and nrx receive antennas, the common notion
“ntx×nrx” will be used. If not mentioned otherwise, we
will assume that either nss = ntx or that the transmitter

deactivates ntx − nss antennas to transmit nss < ntx
streams.

A detailed introduction to the history, benefits and
problems of MIMO systems can be found in [20].

1) Signal Model: A ntx × nrx MIMO system is
represented by Equation 6 where it is assumed that the
total transmit power is equally divided over the ntx
transmit antennas:

y =
√
ES
ntx

Hs + n; (6)

s ∈ Cntx×1 is the transmitted signal vector whose jth
component represents the signal transmitted by the jth
antenna. Similarly, the received signal and received noise
are represented by nrx×1 vectors, y and n, respectively,
where yj and ni represent the signal and noise received
at the ith antenna. ES denotes the average signal energy
during the transmission. Finally, H ∈ Cnrx×ntx is the
matrix representing the nrx · ntx channels between the
ntx transmit and nrx receive antennas.

If nss = ntx = nrx and H has full rank, i. e., H−1

exists, the Zero-Forcing (ZF)-receiver can extract s as
follows:

ŝ =

(√
ES
ntx
·H

)−1

y. (7)

This equation can be generalised for ntx 6= nrx by
using the Moore-Penrose pseudo-inverse matrix H† =
H∗/ (H∗H) instead of H−1, where H∗ is the conjugate
transpose of H.

Under ideal circumstances, one may increase the data
rate of the system by merely adding transmit and re-
ceiver antennas. Under realistic conditions, there is non-
neglectable correlation between the transmit and receive
antennas: In the extreme case, the channel H is equal to(

1 1
1 1

)
, which resembles a completely correlated channel.

In this case, the matrix is singular and cannot be inverted
by the receiver; hence, the reception fails, independently
of the SINR.

In practice, the MIMO channel does not fall com-
pletely in either of the theoretical cases described. The
antenna correlation and the matrix rank are influenced
by many different parameters, as the antenna spacing,
antenna height, the presence and position of local and
remote scatterer, the degree of LOS and more.

Using a widely accepted channel model, the MIMO
channel with correlated antennas can be described by
the matrix product

H = Rrx
1/2H0Rtx

1/2, (8)

where H0 represents the i. i. d. block fading complex
Gaussian channel according to [21] and Rrx and Rtx

are the long-term stable normalised receive and transmit
correlation matrices.



Link Type Angle Spread (rad)
APs STAs

LOS 0.2766 0.9815
NLOS 0.4486 1.2075
OtoI 0.3104 1.004

TABLE I: Parameters for the UMi angle of ar-
rival/departure spread

Under the assumption of a uniform linear array at
both the transmitter and the receiver with identical uni-
polarised antenna elements and the antenna spacing ∆T

and ∆R, respectively, the correlation matrices are given
by [22]:

Rrxi,j = ρ ((j − i)∆R, θR, σR) (9)
Rtxi,j = ρ ((j − i)∆T , θT , σT ) , (10)

where
• ρ (s∆, θ, σθ) defines the fading correlation between

two antenna elements having distance s∆,
• θT and θR denote the mean Angle of Departure

(AoD) at the transmit array and the mean Angle of
Arrival (AoA) at the receive array, respectively, and

• σT and σR is the mean AoD spread and mean AoA
spread, respectively.

A Gaussian angular distribution is used in [16], implying
that θ ∼ N(0, σ). With this assumption it is shown in
[23] that

ρ (s∆, θ, σ) ≈ e−j2πs∆ cos(θ)e−1/2(2πs∆ sin(θ)σ)2 . (11)

Essentially, this model results in a correlation function
which is Gaussian with spread inversely proportional
to the product of antenna spacing and angle spread.
Consequently, large antenna spacing and/or large angle
spread lead to a small correlation and vice versa. Support
of this model is given by [24], which finds by simulation
that correlation reaches a maximum with both antenna
arrays inline, i. e., θT = θR = 0

While the mean AoA and AoD can be derived from
the receiver and transmitter positions, respectively, the
spread depends on the environment. The UMi model,
used for the pathloss and shadowing, also defines values
for these, given in Table I.

The model differentiates between nodes close to the
ground (STAs), where many close scatterer and there-
fore a large angle spread can be expected, and higher-
elevation nodes with less scatterer and a smaller angle.

2) Post-processing per-stream SINR: To integrate the
impact of the MIMO channel model into the PER
calculation from Section III-B2, we extend the model
from [19] with the help of the results from [25], [26] to
incorporate a correlated channel.

For this, we reconsider Equation 7 including the
pseudo-inverse H†: The ZF-receiver multiplies the re-

ceived signal y with the matrix

GZF =
√
ntx
ES

H†, (12)

The error vector e of the processed symbol stream is
given by

√
ntx

ES
H†n, resulting in a noise power on the

kth data stream as

[E(ee∗)]kk =
ntxN0

ES

[
H†H∗†

]
kk

, (13)

where [X]kk denotes the (k, k)th element of the matrix
X. Hence, the post-processing SINR on the kth stream
is

SINRpost,k =
ES [E(ss∗)]kk

ntxN0 [H†H∗†]kk
(14)

=
ES
N0

1
ntx

1
[H∗H]−1

k,k

. (15)

As visible in the equation, post-processing SINR on each
stream is a combination of three factors:

1) The pre-processing SINR.
2) A reduction by ntx, because the transmitter has

to split its transmission energy among the ntx
streams.

3) A post-processing MIMO loss of [H∗H]−1
k,k.

[25] proves that the post-processing MIMO gain
on each stream follows a Chi-squared distribution
with 2 (nrx − ntx + 1) degrees of freedom. From
this fact, it is derived that the mean gain on each
stream without transmit- and receive correlation is
10 log10 (nrx − ntx + 1) dB.

Furthermore, [25] shows that transmit correlation
causes a degradation in effective SINR that can be
described by

KT = 10 log10

([
R−1
tx

]
k,k

)
(16)

on the kth stream.
[26] calculates the impact of the receive correlation

as

KR = 10 log10

( trntx−1(λ(Rrx))(
nrx

ntx−1

)
det(Rrx)

)−1/(nrx−ntx+1)
 ,

(17)
with
• trl() the lth elementary symmetric function defined

as

trl(X) =
∑
{α}

l∏
i=1

λx,αi (18)

for a positive-definite X ∈ Cn×n, where the sum
is over all ordered sequences α = {α1, . . . , αl} ⊆
{1, . . . , n} and λx,i denotes the ith eigenvalue of
X.



• λ() the diagonal matrix containing the eigenvalues
of the matrix argument.

To visualise the impact of the antenna correlation on
the post-processing SINR, the exemplary scenario in
Figure 1a is used: A receiving node is positioned in a
half-circle around a transmitting node; the orientation of
the node remains constant, i. e., with an angle αrx = 0
to the x-axis. With different positions, the AoD and
AoA varies and so do the correlation matrices. Assuming
a pre-processing SINR of 30 dB, antenna spacing of
0.5 wave-lengths and angle spreads as given in Table I
(LOS), the mean post-processing SINR is given by Fig-
ure 1b. As expected, a 1×1 configuration is independent
of the receiver position. All other configurations result
in a post-processing SINR decrease so that the 30 dBm
is not reached any more; the upper bound is given by
a system without correlation, i. e., KT = KR = 0.
Correlation is high if the antennas face each other or
if they are parallel.

3) MIMO Link Throughput: With the help of the
presented MIMO model it is now possible to compute,
for given node’s positions and pre-processing SINR the
post-processing SINR per stream and thus the per-stream
BER and PER.

As in Section III-B3, a relation SINR vs. gross
throughput can be derived if AoD and AoA are given.
Figure 2 omits for more clarity the different MCS but
shows only the enclosing hull that can be achieved with
a given MIMO antenna configuration and two nodes that
face each other with parallel antenna orientation.

The graph for the 1 × 1 case, starting at 5 dB and
levelling off at 25 dB/65 Mb/s presents the basic case that
would also be possible using the legacy IEEE 802.11-
2007 (plus the new 64-QAM 5/6 MCS). Adding more
antennas allows to receive the signal at lower SINR
levels (using DIV) and increasing the throughput (using
MUX), although the full throughput gain can only be
reached at very high SINR, i. e., above 33 dB for the
4× 4 case.

IV. SINGLE BSS OPERATION

In this chapter it is assumed that only one AP exists
that uses the carrier frequency fc. Thus, no interference
from other APs or STAs that do not belong to the AP’s
BSS exist, the SINR is simplified to the Signal to Noise
Ratio (SNR).

For wireless Internet access, this theoretical case only
exists if (a) the coverage area of the AP is as large as
the service area and (b) the carrier frequency is licensed
to the provider. While these conditions represent only
a theoretical case, performance metrics of a single BSS
are important for the subsequent multi-BSS evaluation,
because a single BSS is the trivial upper bound for the
capacity: any deployment of multiple APs will increase

the interference and/or the number of orthogonal chan-
nels and thus the used bandwidth.

The BSS capacity is given by the maximum through-
put that can be achieved in a BSS under the assumption
that all STAs always have data to transmit to the APs and
vice versa. The capacity depends on the link capacities
of the STAs in the BSS and thus on their positions.
As this differs from scenario to scenario, the evaluation
assumes that STAs are positioned with a uniform random
distribution over the BSS area. Thus, the capacity of
the BSS becomes a random variable C with Probability
Density Function (PDF) pC . We evaluate this capacity
using a Monte-Carlo approach: In one scenario, multiple
STAs are dropped randomly; their capacity is calculated
using the equations for the wireless channel model, the
post-processing SNR and the throughput from Figure 2.
This is repeated for multiple scenarios which differ by
the placement of STAs and the stochastic shadowing
fading.

Figure 3a shows the Cumulative Distribution Function
(CDF) of BSS capacity that is generated using the
Monte-Carlo method for a 1x1 to 4x4 antenna config-
uration. The maximum distance of a STA to the AP is
chosen such that the area covered equals to the mean
BSS area used in the following multi-AP evaluation,
namely 0.049 km2.

In the 1x1 case, the expected capacity is 37.5 Mb/s,
with a probability of roughly 40% that the highest MCS
with 65 Mb/s is reached. With every antenna added, one
more stream can be transmitted under optimal SINR
condition; the maximum capacity increases accordingly
up to 260 Mb/s. However, the probability that the required
SINR can be reached decreases as more streams result in
a lower post-processing SINR. In the end, the probability
of 260 Mb/s is only 22%. Consequently, the expected
capacity scales not linearly with the number of antennas,
but only by a factor of 1.71, 2.26 and 2.78 for the 2x2,
3x3 and 4x4-case, respectively.

Figures 3b and 3c show the effect of the transmit
and receive antenna correlation on the capacity: If both
the transmit and receive angle spread is π, antenna
correlation is minimal; the only factor reducing the post-
SINR is the transmit power reduction to keep the total
emitted power. Hence, only the minimum MIMO loss
of 10 log10 ((nrx − ntx + 1) /ntx) dB is incorporated.
Accordingly, as visible in Figure 3b, the probability to
reach the maximum capacity increases to 40% for all
antenna configurations. This scales the expected capacity
by 1.85, 2.69 and 3.53 for the multi-antenna cases in
comparison to the 1x1 case. A further capacity increase
would be possible by using highly sensitive MCSs like
256-Quadrature Amplitude Modulation (QAM) (not part
of IEEE 802.11n) in the high-SINR regions.

Figure 3c shows the expected capacity if the angle
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Fig. 1: Effect of antenna correlation on the post-processing SINR.
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Fig. 2: Link throughput vs. SINR; assumed PSDU length
is 1000 B and maximum PER 0.01.

spread is lower than in the UMi scenario: For demon-
stration, the angle spread from the Suburban Macro
(SMa) scenario is taken (0.105 rad for the AP, 0.527 rad
for STAs). As a result, the CDFs of the multi-antenna
converge to the CDF of the 1x1-case. Consequently, the
expected capacity increases only by 1.55, 1.81 and 2.01:
Introducing complex MIMO transceivers in this scenario
does not result in significant capacity gains.

V. MULTI BSS OPERATION

The major difference between a single BSS and a
WMN is the addition of interference from concurrent
transmissions. In a single BSS, a concurrent transmission
can only be initiated by two STAs or a AP and a STA.
In the first case the AP receives two transmissions at the
same time; hence, at most one signal can be decoded if
transmitted using a robust MCS. In the second case, the

AP is busy transmitting, there is only the chance that the
downlink transmission to the STA can be received if a
robust MCS is used by the AP. Both cases assume that
the interference by the other STA is low, so that at least
one transmission will fail and the other requires a long
time due to the robust MCS. Hence, to optimise capacity,
concurrent transmissions are avoided in a single BSS.

In a WMN this conclusion is not valid, because
links exist that are separated from each other such that
a concurrent transmission (using more robust MCS if
necessary) should be preferred to a sequential operation.
This is already demonstrated by the simple network
shown in Figure 4, comprising four nodes and two links.
It is assumed that the two links, named “1” and “2”, have
a maximum throughput of 30 / 22 Mb/s, if no interference
is present. If both links transmit concurrently, the max-
imum throughput is lowered to 20 / 15 Mb/s.

If both transmitters have 1 Mb of data to transmit,
it would take 1/30 + 1/22 ≈ 0.079 s until the data has
reached the receivers if both links are active sequentially.
Using an optimised mix of concurrent and sequential
transmissions, both links transmit concurrently first; after
link 1 has completed the transmission, 1-15/20 Mb are
left to be transmitted at link 2, which continues at 22 Mb/s.
In total, the data reaches the receivers after

1
20

+
1− 15

20

22
≈ 0.061 s, (19)

thus the required duration is shortened by 22%.
Hence, the strategy deciding which links are active

at what time instance is important to determine the
achievable capacity of the network. In this example the
calculation of the optimal distribution between sequen-
tial and concurrent transmissions is simple because only
two concurrent links exist. Every link that is added to
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Fig. 3: CDF of the capacity in a BSS.
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Fig. 4: Example network to demonstrate the effect of
concurrent transmissions.

the network potentially doubles the number of possible
combinations of active links, making the capacity calcu-
lation hard for any larger network.

A. Capacity Limits

The system model considers the restrictions and op-
portunities a node is constrained by and able to exploit,
respectively. To find the capacity of the WMN, we apply
an optimal scheduler that is able to plan concurrent
transmissions optimally.

Time is assumed to be divided into fixed scheduling
intervals of duration I . During one interval, a node
i generates a load of lij directed to node j. This is
expressed by the traffic requirement T which defines
source, destination and the load. For example, the traffic
requirement

T =


(source) (rate) (destination)
N2 →1 Mb N1

N6 →1 Mb N1

N1 →1 Mb N7)

 .

specifies in three rows the loads from N2 to N1, N6 to
N1 and N1 to N7, with 1 Mb each.

The task of the scheduler is to generate the se-
quence of transmissions such that this load is trans-
ported. This sequence is represented as the schedule(
(S1, δ1) ; (S2, δ2) ; . . . ;

(
S|S|, δ|S|

))
of network states Si

and durations δi, with 0 ≤ δi ≤ 1 and S the set that
contains all network states.

Each network state represents a possible combination
of active links, given by transmitter, receiver, rate, source
and destination of the packet flow. An example state
would be

S =


(source) (tx) (rate) (rx) (destination)
(N2  ) N2 →54 Mb/s N3 ( N1)
(N6  ) N5 →12 Mb/s N4 ( N1)
(N1  ) N1 →24 Mb/s N7 ( N7)

 .

This example specifies in three rows three simulta-
neous transmissions, one from node N2 to node N3 at
54 Mb/s with data originated at node N2 and addressed to



node N1; another from N5 to N4 at 12 Mb/s originated
from node N6 and addressed to N1, etc.

A network state is feasible if each transmission con-
tained is possible according to the system model. A
feasible schedule must contain feasible network states
only; furthermore, it must fulfil the offered traffic re-
quirements such that if Si is active for δi, 1 ≤ i ≤ |S|,
the requirements from T are met.

The sum
∑
i=1...|S| δi gives the duration of the com-

plete schedule. If this duration is larger than the duration
of the scheduling interval I , more traffic is generated
than what can be transported by the schedule. A schedule
is called optimal if no other feasible schedule exists that
has a smaller duration; let δ∗i denote the corresponding
optimal duration for network state Si. Then the minimum
resource utilisation to carry the traffic given in T using
the network states S is

RU(S, T ) =
∑

i=1...|S|

δ∗i . (20)

As defined in [10], the capacity region C(S) of a
WMN with network states S is the set of all load settings
T for which a feasible schedule exists:

C(S) = {T : RU (S, T ) ≤ I} . (21)

The convex hull of C(S), i. e., the set of all T where
RU (S, T ) = I , describes the capacity limits of the
WMN under any possible partitioning of resources
among the (source-destination)-pairs in the network.

Therefore, the dimension of the capacity region is the
number of STAs, nSTA, in the WMN, as each can have
a different load. To reduce the number of dimensions,
we compute only the uniform system capacity Cu(S),
defined as the point of the capacity where all nSTA STAs
have the same load l:

Cu(S) =
nSTA · l

RU (S, T )
. (22)

The calculation of the optimal schedule is performed
Cu(S) in two steps: In step one, the set S of all feasible
network states is computed. The second step converts
T and each network state into a matrix such that the
optimisation problem of finding the optimal schedule
becomes an instance of Linear Programming (LP):

minimise f(δ) =
∑

i=1...|S|

δi

such that
∑

i=1...|S|

δi · si = T

0 ≤ δi ≤ 1 i = 1 . . . |S|. (23)

The complexity of both parts of the algorithm, namely
the creation of the network states and the solving of the
LP instance, depends on the number of network states
S to be considered. As shown in [10], this number is
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Fig. 5: The network states of the network in Figure 4.

expected to increase exponentially with the number of
nodes, which limits the applicability to networks having
less than 30 nodes.

[13] proposes heuristics to optimise the generation of
the network states such that the upper bound capacity is
closely approximated. Thereby, up to 150 nodes become
feasible.

B. Example

The example network in Figure 4 is used to illustrate
network states and the resulting capacity region.

The network has two links and three network states,
depicted in Figure 5: link 1 active, link 2 active, or
both links active. In this network, the computation of
the capacity region C(S) given in Figure 6 is simple
owing to the small number of network states:
• The intersections with the x- and y-axis are given by

schedules where only S1 respectively S2 is active.
• The throughput of a schedule where only S3 is

active cannot be achieved by any linear combination
of S1 and S2; hence, the point (20/15) is part of
the hull.

• The remaining hull is a linear combination of either
S1 with S3 if link 1 needs to transmit more than
20 Mb (and link 2 less than 15 Mb), or S2 with S3

in the opposite case. Any combination of S1 and
S2 would result in lower throughput for one of the
links.

The uniform system capacity Cu(S) can be found by
restricting T to the points where the load of link 1 is
equal to link 2. The capacity limit under this condition is
given by T = (440/27, 440/27), resulting in Cu(S) ≈
32.6 Mb/s.

VI. EVALUATION

For the evaluation, we apply the WMN scenario
creator from [27]. It is used to generate 10 scenarios
of 1 km2 each with different shadowing conditions; then,
each scenario is covered with around 20 MSTAs with AP
functionality so that wireless coverage and connectivity
of the WMN is ensured.
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Fig. 6: Capacity region of the network in Figure 4.

In the second step, either all, 6, 4 or 2 of the MSTAs
equipped with mesh gate functions, i. e., connected to the
wired backbone; this results in approximately 0, 2.5, 5 or
10 MSTAs per mesh gate, respectively. Then, costs for
every link in the WMN are calculated by the maximum
transmission rate on the link; this allows for creating a
routing matrix using the Dijkstra all-pairs shortest path
matrix.

Traffic is generated in each scenario by 100 STAs,
positioned randomly and associated to the closest (in
terms of pathloss) AP. Each STA requests downlink and
uplink traffic from/to the Internet, divided as 90 to 10.
Downlink traffic origins at the mesh gate closest to the
STA (in terms of path cost), uplink traffic is destined to
this mesh gate. By combining the randomly generated
offered traffic and the routing matrix, a traffic require-
ment for each link in the network can be calculated,
composing the load matrix T 1.

Then, the capacity calculation procedure as described
above is applied in each scenario, resulting in a scenario-
specific value for Cu. Dividing this capacity by the
number of MSTAs results in the mean BSS capacity
of the scenario; this value allows for comparison to the
values found in the single BSS case, Section IV. Finally,
the scenario-specific mean BSS capacity is averaged
over the 10 different scenarios, resulting in an estimation
for the expected BSS capacity in a WMN. Besides
this expected BSS capacity, we calculate and plot the
confidence interval for a 95% confidence level of the
mean capacity estimator.

Similar to Figure 3, three different settings for the
MIMO model are considered: First, the default UMi
values as given in Table I. Then, for comparison, the
antenna correlation is minimised by setting the angle
spread of the MSTAs and STAs to π. Finally, the

1Optionally, T can only contain the end-to-end loads and the optimal
routes through the WMN are found automatically during the schedule
minimisation. However, a STA might be associated to multiple APs
and distribute its traffic over multiple routes, then. As routing is not
the scope of this work, the routes are pre-calculated as described.
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(b) No MIMO antenna correlation.
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(c) High MIMO antenna correlation.

Fig. 7: Expected BSS capacity of the WMN. In axb, a
is for the number of antennas of MSTAs, b for STAs



angle spread values from the IMT-A SMa are used to
demonstrate a scenario setting with high correlation and
low MIMO performance.

The baseline antenna configuration is a “traditional”
Single Input/Single Output (SISO) equipment: All de-
vices – MSTAs and STAs – only have a single antenna.
Of course, the BSS capacity for the baseline configura-
tion is independent of the MIMO model parameter set-
tings, as they only impact the performance in the multi-
antenna case. Nevertheless, the results from the baseline
configuration are given in all figures for comparison.

The other MIMO configurations assume either 2 or
4 antennas at all devices; Additionally, a “4x2” case is
given where all MSTAs are configured with 4 antennas,
whereas the STAs have 2 antennas only.

Figure 7 presents the expected BSS capacity for the
different MIMO configurations and model parameter
settings.

Clearly, the interference from the neighbouring BSSs
reduces the BSS capacity significantly below the ex-
pected capacity of a single BSS given in Figure 3. In
case of a network without MSTAs, i. e., a traditional
multi-AP deployment, the BSS capacity decreases by a
factor of four. Interestingly, this decrease is independent
of the antenna configuration and the MIMO model
setting. Consequently, the capacity increase of MIMO in
the single BSS is completely translated into a capacity
increase in the multi BSS network, i. e., the same non-
linear increase as found in Section IV is also present. For
example, using the UMi MIMO model parameters, the
expected capacity increases compared to the 1x1 case by
a factor of 1.6 and 2.4 for the 2x2 and 4x4 configuration,
respectively.

As expected, the introduction of MSTAs reduces
BSS capacity. The more MSTAs per mesh gateway
are deployed, the higher the mean number of hops
in the WMN, which cannot be countered completely
by an increase of concurrent transmissions. However,
the theoretical link capacity gain of MIMO is better
approached by the higher the number of MSTAs.

For the 5 MSTAs per mesh gate deployment and
the UMi MIMO model setting, the expected capacity
increase factors are 1.9 (2x2) and 2.9 (4x4) when com-
pared to the 1x1 case. Without antenna correlation, these
factors become 2.0 and 3.5, respectively.

The reason for a higher MIMO gain in the WMN
deployment is found in the capacity distribution of links
in the backbone of the WMN: According to the node
placement algorithm from [27], “good” positions for
MSTAs are preferred, leading to a high SINR between
adjacent MSTAs in the WMN. Hence, a 1x1 link is
improved more than what can be expected from the
average improvement as calculated in Section IV. This
improvement of few links is visible in the final results

because the capacity of the WMN backbone limits the
capacity of the whole WMN; hence, an improvement of
few, but important links leads to an improvement of the
complete network capacity.

VII. CONCLUSION

Both WMN and MIMO are interesting research fields
on their own. In this paper, we show that the combi-
nation of both gains valuable insights: WMNs benefit
significantly from the capacity increase of MIMO.

The results, based on the capacity calculation frame-
work, represent upper bound capacities. It is not clear
what remains of this capacity if a real MAC protocol,
using an imperfect (distributed) scheduler, is applied:
Introducing MIMO to WMNs increases the chance of
the rate adaptation algorithms to apply different MCSs;
consequently, more errors can be made by the sched-
uler, resulting in uncoordinated concurrent transmis-
sions. Consequently, distributed scheduling of MIMO-
enhanced WMNs appears to be a promising research
area.
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