Multi hop connections using 802.11

Guido R. Hiertz, Yunpeng Zang

ComNets
Chair of Communication Networks
Aachen University (RWTH)
Germany

Jörg Habetha

Philips Research Aachen Germany

This version has been edited for publication as PDF file at ComNets, RWTH Aachen University.

Some animations may not be displayed correctly in PDF format.

Please see http://802wirelessworld.com for the original version in PowerPoint format.

Multi frequency Mesh

- Advantages of multi frequency mesh networks
 - Less interference
 - Exclusive channels
 - Reuse patterns
 - _ ...

- Disadvantages of multi frequency mesh networks
 - Frequency planning
 - Frequency coordination
 - Power consumption
 - **—** ...
 - **COST** (!)

Single frequency Mesh

- E.g. Consumer Electronics (CE)
 - Mass production
 - Limited battery power
 - Limited computing power
 - Ease of use

 - Cost sensitive (!)

- Even 50¢ extra might be too much
 - Multi TRX not always possible
- Single transceiver solutions
 - Easy to implement
 - Available
 - Well known, ...

→ Solutions for single frequency mesh needed

Introduction to multi hop

- What is Multi hop?
 - Relay connection
 - Used to forward packets/frames
 - Wireless Routers, L2 switches

The key element to mesh networks

- Next slides
 - Single frequency mesh networks
 - General assumptions
 - Introductive theoretical overview

Spatial frequency reuse scenario

- Assumption
 - TDMA channel
 - Equal transmission duration
 - Equal transmission power
 - Equal distance between stations
 - No errors on wireless medium

- Simplex connection
- Interference range limited to neighboring station
- Reception limited to neighboring station

→Best case

Spatial frequency reuse Reuse TX limited power 2 Spatial reuse by distance neighbor • Reuse distance Spatial reuse min. 4 area hops Time Packet forward direction

Real world, real 802.11

- Assumptions as before
 - Easy scenario
 - Stations placed on a line
 - Only neighboring in
 - Reception range
 - Interference range

- No local interferers
 - No associated stations
- Only Mesh Points
- General overview

802.11, details on backoff

802.11 forwarding in detail

802.11 = Single hop MAC

- Distributed Coordination Function
 - Coordinates single hop
 - Local BSS only
 - No Coordination for Multi Hop
 - Independent process in each STA
 - Network Allocation Vector (NAV)
 reserves single only
 - No priority to forwarding

No Multi Hop concept in 802.11

- Infrastructure based BSS
 - Multi hop connection via AP
 - Hops to/from AP wireless
 - Wired backbone
 - Four address format

- Independent BSS
 - All stations in reception range
 - No forwarding procedure defined

July 2004

doc.: IEEE 802.11-04/0709r2

Duplex route scenario

- One-way traffic hardly does not exist
- Same scenario as before
- Both endpoints generate/consume data
- Intermediate nodes forward only
 - No local traffic generation

802.11 duplex route in detail

Duplex multi hop

- Much worse than simplex connection
- Forwarding stations = Bottleneck
 - "Neighborhood capture" (11-01/596r1)
 - For system level, intra **BSS**
 - Here: For multi hop between stations

- No equal channel access probability
 - Un-proportional reduced for forwarding nodes
- Steady collisions with neighbors
- No priority to forwarding
- Uncoordinated access

July 2004 doc.: IEEE 802.11-04/0709r2

Conclusion

- 802.11 MAC is **not** sufficient for multi hop
- 802.11 leaves information unused for multi hop
- Multi hop is <u>the</u> key element to mesh networks

Without useful protocol for multi hop in core network, mesh will fail

July 2004 doc.: IEEE 802.11-04/0709r2

Thank you for your attention

hiertz@ieee.org

zangyp@ieee.org

http://ieee.comnets.rwth-aachen.de/cgi-bin/wiki.pl?Mesh