A simple & scalable traffic engineering solution for 802.11s

Date: 2007-09-17

Authors:

Name	Affiliations	Address	Phone	email
Guido R. Hiertz	Philips	ComNets, Chair of	+49-241-802-	hiertz@ieee.org
		Communication	5829	
		Networks, RWTH		
		Aachen University,		
		Kopernikusstr. 16,		
		52074 Aachen,		
		Germany		
Dee Denteneer	Philips	Philips, HTC 37,	+31-40-2749-	dee.denteneer@philips.com
		6515 AE	743	
		Eindhoven, The		
		Netherlands		

This version has been edited for publication as PDF file at ComNets, RWTH Aachen University.

Some animations may not be displayed correctly in PDF format.

Please see <u>https://mentor.ieee.org/</u> for the original version in PowerPoint format.

Abstract

• EDCA provides the basic medium access scheme for 802.11s mesh networks. As EDCA has been designed for single-hop communication it performs poor in a multi-hop environment. Self-induced congestion is an inherent characteristic of EDCA in mesh network. To overcome the disadvantages of EDCA in the harsh environment of wireless mesh networks, we propose a simple modification based on the principles of cooperation.

Outline

- Self-induced congestion in 802.11s
- Dissimilar capacity distribution in wireless mesh networks
- Solutions to avoid congestion 802.11s
- Cooperation in 802.11 EDCA
- Recommendation

Self-induced congestion in 802.11s

Problem

- 802.11 implements an opportunistic medium access scheme
 - EDCA & DCF stations compete on wireless medium
 - Devices operate selfish
 - Imbalance in up- & downlink in infrastructure mode, etc.
 - "All against one AP"
 - Maximization of share of capacity

- 802.11 assumes similar conditions for each device
 - All traffic delivered via central AP
 - 99% of all 802.11 WLAN have star topology
 - AP in radio range of all devices
 - AP involved in each frame exchange
 - Up- & Downlink
 DLS yet not used

Single-frequency channel operation

- Current products
 - Mesh: 802.11a

- Future products
 - Mesh & BSS share single transceiver

Shared medium & multiple hops

- Selfish operation of 802.11 devices
 - Useful in single hop environment
 - Opportunistic approach
 - Grab as much as possible
 - Stupid for Mesh networks

- Frames are forwarded over multiple hops
- MPs mutually provide forwarding service
 - MPs should not contend
 - MPs should cooperate

Neighborhood capture [1]

- Devices with less neighbors access wireless medium more frequently
- Capacity available at edge of netwo

Low Capacity

- Edge unawaı of center

- Center network suffers from competition
 - Less capacity available
- → Forwarders in a esh network get
 easily congested

Traffic aggregates & no priority over edge

Dissimilar capacity distribution in wireless mesh networks

Capacity distribution in Mesh

- Edge devices have low amount of neighbors
 - Wireless medium often detected as idle
 - Sufficient capacity

- Center devices have high amount of neighbors
 - Constant competition
 with neighbors
 - Wireless
 medium seldom
 detected as idle
 - Capacity not sufficient

Desired behavior: Refrain from access to wireless medium until next hop has forwarded

- May be difficult to detect if frames were forwarded
 - The acknowledgments send by the intended receiver of the forwarder may be out of range → It may be impossible to detect a successful frame forwarding
- May require an additional timeout

- May not work with nonomnidirectional transmissions
 - E.g. beamforming in 802.11n
- Each Mesh link has a unique encryption key
 - Mesh header including Mesh sequence number is in frame body

→ Not possible, not implementable

Solutions to avoid congestion in 802.11s

Solution 1: Multiple frequency channels

• Pro

- Unlicensed bands are available for free
 - Inefficient designs tolerable
- Provide dedicated links between neighboring MPs
 - Links become independent
- Increase spatial frequency reuse distance
 - Low interference possible
- Form "logical" but not physical mesh
 - No sharing of common resource needed

• Con

- Additional hardware required
 - Expensive
 - Some markets do not tolerate minor, additional cost
 - Not applicable in all scenarios
- Adjacent channel interference
 - Multiple transceivers in the same band are not independent to each other
 - No orthogonal operation possible
 - Expensive work-around needed
- Not described in 802.11s
 - Not to be considered by 802.11s?
 - Vendor specific

Solution 2: Use MDA

- MDA inherently avoids congestion
 - Neighbor MPs aware of their schedules
 - Capacity can be allocated to center network

- MPs mutually inform about planned transmissions
- Mesh forms backbone network for aggregated traffic
 - Data rates average

Solution 3: Modify EDCA

- Provide inherent congestion avoidance
 - Modify channel access to deal with forwarded traffic
- Introduce cooperative approach
 - It's of an MPs own interest that its peer MP can forward traffic

- How to achieve cooperation?
 - Provide sufficient capacity to you peer MP
 - Allow the next hop peer
 MP to forward the traffic
 - In a single frequency channel Mesh, the next hop peer MP uses the same frequency channel
 - → Refrain from access to the wireless medium

A simple modification to the 802.11 EDCA

A model for the wired world

- Traffic aggregates in the Mesh network
 - Congestion avoidance, back-pressure ... deal with an inherent problem
- Leaky bucket does <u>not</u> show whole picture
- Missing: Wireless links <u>not</u> independent!
 - Neighboring MPs <u>share</u> the wireless medium
 - \rightarrow Common resource

Cooperation in wireless: Self-limitation

- An MP becomes congested if it does not have sufficient capacity to handle traffic that is to be relayed
 - Neighbors need to help out
 - Support next hop

- Advantages
 - Self-limiting system
 - The more an MP requires others to forward traffic, the more it throttles itself
 - Each MP provides its next hop peer MP with at least the same capacity of the wireless medium that itself used for the frame exchange

Cooperation in 802.11 EDCA

Solution

- For each frame *f* that an MP A transmits to another MP B subject to being forwarded, MP A shall wait for the duration of the frame f before accessing the wireless medium again
- Cooperative design
 - If MP A requires MP B to forward a frame, MP A shall support MP B in providing the forwarding service
 - MP A should wait a least for a period that is equal to its own frame transmission before accessing the wireless medium again

Definition of waiting time *w*

• With DCF, the waiting time *w* equals the duration of the full frame exchange

sequence

- Including optional RTS/CTS, duration for fragmented frame transmissions and all necessary acknowledgments
- With EDCA, the waiting time *w* equals the duration of the TXOP used for transmission of the frame/frames that shall be forwarded
 - Includes everything
 - RTS/CTS
 - Block ACK

• ...

Generalized solution for 802.11s

- In 802.11s, all MPs use EDCA for frame exchange
 - With EDCA, any frame exchange is part of a TXOP
 - → The TXOP is the basic medium allocation unit
- If an MP requests the frame forwarding service of one of its peer MPs, the MP shall refrain from access to the wireless medium for a duration w that equals the duration of the frame exchange sequence during its last TXOP.

Means to implement *w*

- Adjustable medium access parameters with EDCA
 - AIFS
 - Minimum idle period
 - Via AIFSN
 - Contention Window
 - Initial size CWmin
 - Current Size CW
 - Maximum size CWmax
- Transmission duration
 - ТХОР
 - Shall be considered for further improvement

1. Set AIFS = wfor next contention

- 2. Add *w/aSlot* to next CW
- **3.** Set
 - CWmin = [w/aSlot] draw CW from [0, CWmin]
- 4. Suspend backoff until timer

t = NOW + w expires

Solution 1: Frame exchange duration dependent AIFS

Solution 1: Modify AIFS of next backoff

• Set AIFS = w for next contention

- Sever penalty for transmitting MP
- Wireless medium required to be idle for a period equal to the MP's last frame exchange sequence
 - May underutilize the wireless medium
 - May lead to starvation

Solution 2: Frame exchange duration dependent addition to the CW

Solution 2: Add [w/aSlot] to CW of next backoff

- Random number of slots CW drawn from [0, CWmin] enlarged by [w/aSlot] for next contention
 - CW may become very large
 - No uninterrupted idle wireless medium required as in solution 1

Solution 3: Frame exchange duration dependent CWmin setting

Solution 3: Modify CWmin of next backoff

- Set CWmin = $\lceil w/aSlot \rceil$ for next contention
 - On average, the *CW* duration will be $\sim w/2$
 - Easy to implement
 - May not provide full self-throttling needed for sufficient forwarding capacity

Solution 4(a): Frame exchange duration dependent backoff suspension

Solution 4(a): Suspend next backoff for a period w

- MP does not initiate a new backoff until a period w following its last TXOP has expired
 - The forwarding MP may find the wireless medium idle and does not need to contend with the forwarding service requesting MP
 - Penalty seems to be acceptable

Solution 4(b): Frame exchange duration dependent backoff suspension with early resynchronization to the wireless medium busy/idle state

Solution 4(b): Suspend next backoff until wireless medium becomes busy

- MP does not initiate a new backoff until a period w following its last TXOP has expired <u>or</u> until the wireless medium becomes busy and idle again
 - MP provides access to the WM for a least one other MP
 - May not guarantee the priority needed for the forwarding MP

Recommendation

Recommended modification of EDCA

• Solution 3 is easy to implement

- Frame exchange duration dependent CWmin setting
- Requires to record the duration of the last frame exchange sequence/TXOP
- In any case, the device performs a backoff and therefore draws a random number from [0, CWmin]
- CWmin can be easily adopted
- Mean penalty $\approx \frac{1}{2}$ * last frame exchange duration
- Provides compromise between full penalization and purely opportunistic EDCA behavior

References

• [1] M. Benveniste, "Neighborhood Capture" in Wireless LANs, Submission IEEE 802.11-01/596, November 2001

Backup slides

Remarks

• Modifications possible

- Example: Set $CWmin = k * \lceil w/aSlot \rceil$ where $k \in [0;1]$
 - Modifies penalty
- May be adjustable or administrator/user configurable
 - Needs default value set in standard

- Shall all Access Categories (ACs) of an MP be penalized?
 - Any medium access reduces the forwarders possibility to detect an idle wireless medium
 - From a resource sharing point of view, it does not matter which AC access the wireless medium