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Introduction and Summary

In literature, results of measuring a large number of variables suit-
able for describing computer-center operations have been pub-
lished, e.g.[1]. Such variables can be used in simulation studies
and for analytical treatment of computer models. Simulation mod-
els are frequently highly sophisticated whereas analytical models
are often much simpler. The former show a great similarity to real
systems whereas the latter tend to lack credibility. The reason
for this is that the Markovian assumptions are the only ones
where a mathematical treatment has a chance of success.
Nevertheless computational results of analytical models often
agree very well with simulation output [1], so that the drastic
simplification seems to be justified. Two typical simplifications
are the approximation of highly skewed distribution functions
(d.f.) by negative exponential d.f.'s and the substitution of
complicated CPU") scheduling algorithms by simple first-come-
first-serve (FCFS) or processor-sharing (PS) servicing.
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We intend here to show that with the help of a trick it is also pos-
sible to apply the analytical results of Markov models (with expo-
nential service-time d. f.) to distribution functions with greater
variance. The trick involves the scheduling algorithm of the servers
and does not affect the analytical computation. Instead of FCFS
or PS scheduling we use a preemptive discipline similar to those
used in real systems. In so doing one can explain why simulation
results from realistic models with realistic scheduling algorithms
correspond so well to analytic results from a Markov model. The
idea Is presented by way of an example: Computation of the
equilibrium distribution of customers in a closed queueing
network with one degenerate exponential server.

*) This research was partly supported by the 2nd EDV-Program of the Ger-
man Federal Republic.

1) Central Processing Unit



First we consider the piecewise exponential d.f. as a good
approximation to measured compute-time d.f. and explain the
well-known preemptive-priority-class-processing(PPCP)sched-
uling algorithm which is optimal for maximum throughput
and minimum mean response-time. Then we Introduce the
degenerate exponential d.f. as a somewhat simpler approximation
and recognize PPCP scheduling to degenerate in this case to
LCFS-P scheduling. By this we show the computability of
queueing networks with LCFS-P scheduling suddenly to be
very attractive also for operating systems.

We demonstrate how to use the well-known computational
algorithms for exponential servers also in the case of degenerate
exponential servers. An example shows that computational
results for a simple queueing network with a degenerate
exponential server and simulation results for a better (piecewise
exponential) approximation to measured compute-time d.f. do,
infact, agree very well. This demonstrates that such networks,
together with a suitable interpretation, can also be applied to
compute steady state parameters under realistic service-time d.f.
and optimal scheduling.

1. The model

For a large variety of queueing networks with nearly arbitrarily
connected queues and servers, computational algorithms are
known ([2, 3] and ref. there). To illustrate the new idea we
use the well-known central server network [3] (Fig.1). More
complicated networks can be modified in the same way. the
only difference being the greater number of parameters. Closed
queueing networks are well suited for representing the overall
behavior of multiprogrammed computer systems. Such networks
can be used to study the behavior of fixed-partition systems in
batch mode. Here there are n programs running concurrently
on the system and M queues, each of which is in front of a server.
Program behavior is characterized by an alternating sequence of
compute and 1/O intervals where each interval is possibly
oreceded by a queueing delay. A terminated program is instantly
replaced by an identical job. A given job may not use the CPU
and 1/O service stations concurrently. Throughput can be
computed from the probability that the CPU is idle.

2. Processing times

From measurements of cumulative-frequency d.f.’s of compute
time tr per interval (the total amount of compute time between
consecutive page or segment faults), it is known that an ex-
ponential distribution function

P(tg <t)=1—e #l (1)

with mean  E(tg) = 1/u;

and variance 02 (tg) = 1/uj

is only a rough approximation. Figure 2 shows this for measure-
ments made on the Telefunken Computer TR440 (compare

curves 1 and 3).
A better approximation is possible using a hyperexponential

function

/
P(tﬁgt) — —ZWi'e"’"‘it (2)

/
with mean  E(tg) = 2 w;/u; (3)

J
and variance o2 (tg) = 2 2 w;/uf — (E(tr))”- (4)

/=1
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The coefficient of variance

C = o (tr)/E (tRr) (0)

is C = 1 forexponential functionsand C > 1 for hyperexponential
functions. A two-phase hyperexponential d.f. (curve 2 of
Figure 2) approximates the experimental data much better than
an exponential function.

Treatment of queueing networks with hyperexponential pro-
cessing-time d.f. is possible [4], but throughput greatly depends
on the scheduling algorithm. |If overhead is considered, no
optimal algorithm is known. Without overhead, throughput-
optimal scheduling of hyperexponential processing time must be
such that all waiting intervals always have consumed the same
processing time [6]. Consequently, infinitesimal time slices must
be used, which is not acceptable for small overhead either.
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Fig. 2. Experimental data for the length of compute time intervals fg
(TC—TR 440, batch mode) and different approximations with the same mean
and (curves 2, 4, 5) also the same variance

1 measured: mean =0.2s, variance = 4.5s2

2 hyperexponential;

ue =19.7s71, pu, =0.067 s—1, w,; =0.99
3 exponential
4 piecewise exponential;

uy =184s=1, pu, =0.067s"1, t;4 =025s
5 degenerate exponential;

py =0.983, u= 0.085 s~
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Recent work [ 7, 8] has shown that another approximation using a
piecewise exponential function of the form

;
P(tg <t) =1 — exp ".E Lgi (Wi = Big1) = Mjgqr (6)

/=1

with U1 < U < oot Uj oo < Uk (7)

has some advantages: The throughput-optimal scheduling
algorithm for zero overhead is known [5, 7] very simple, and also
“plausibly optimal™ for (small) nonzero overhead. In most cases
two exponential pieces are sufficient (Fig. 2, curve 4). Little is
gained by using more than two pieces [8]. For two pieces, the
mean and variance are given by

E(tg) =1/pus + (1 puz—1/uq) e #ilg _ (8)
and
02 (tgr) = u12+ (2/us — 2/ ) e#1lg1 x

X g1 + 1 o+ (1 o — 1/ pq) e #1lg1} (9)

A similar, empirically determined distribution function has already
been used by Rehmann et al. [9] to discribe the compute load of
large time sharing systems.

Optimal scheduling of customers with the d.f. given by eq. 6
requires preemptive priority for first-class compute intervals
(with tg < ty4) over all other classes, for second-class intervals
(t;1 < tgr < ty,) over all higher-order classes (3., 4.,..., K+ 1),
and so on. The order within each class is arbitrary (e.g. FCFS)
[5]). We call this algorithm preemptive-priority-class-processing
(PPCP). One advantage of using a piecewise approximation
rather than a hyperexponential approximation is that optimal
scheduling becomes trivial (e.g. [9]).

Another advantage Is that this approximation is the starting
point for a tricky but very powerful simplification: Our experience
with piecewise exponential functions, using two pieces to
approximate different measurements for compute-intervals, is
that first-class intervals contribute only a small portion of the
CPU load, the main load coming from the second class. This
finding encouraged Marte [10] to formulate a new distribution
function

P(tr <t) =1-(1—-p,) e ™ (10)
which 1s called degenerate exponential. From Figure 2 (curve 5)
It can be seen that, although only a rough approximation, it is
nevertheless much better than an exponential function because
not only the first but also the second moment of measured data
Is taken into account. Mean and variance are given by

E(tg) =(1-pg)p (11)

6% (tg) = (1 = p3)/u? (12)
Using the new function (eq.10) short service times are approxi-
mated by the time ¢tz = O and the remaining service time by
an exponential d.f. (Figure 3). These short service times appear
in eq. (10) with probability p,. The degenerate exponential distri-
bution function can be considered as a special two-phase
hyperexponential d.f., or a special case of the piecewise
exponential d.f. and last but not least as a generalization of an
exponential d.f.
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Fig. 3. Important attribute of the degenerate exponential function

a) Degenerate exponential compute-time d.f.
b) Distribution of compute time after a given consumed CPU time 5 > 0.

The optimal scheduling algorithm remains the same as in the
case for piecewise exponential functions with two pieces:
First-class intervals (with tg = 0) have preemptive priority over
second-class intervals. In the case of degenerate exponential d.f.
this algorithm PPCP is identical to the well-known last-come-
first-serve-preemptive (LCFS-P) algorithm [11].

As will be shown in the next chapter, thisd.f. (eq.10) is well suited
for analytical treatment of Markov models.

3. Networks with degenerate exponential service
time d. f.

Following the solution of Gordon and Newell [6] for general
closed queueing networks with exponential servers and a fixed
number of circulating customers, Buzen [3] has found simple
computational algorithms to solve for the basic equilibrium
distributions. His ‘central server network’” (Fig.1) has M
exponential servers and n circulating customers. Customers
leaving the 1st (central) server proceed to the /th server with
probability p; (/= 1, ..., M), and customers leaving one of the
M — 1 peripheral servers proceed directly to the central server
with probability one. u; is the mean service rate of the /N
exponential server (/= 1,2,..., M) when it i1s busy (e.g. for the
central server u, = 1/E(tg); eq. (1)).

In many cases the coefficient of variance of the central server’s
service-time d.f. 1Is much greater than 1, in which case the
degenerate exponential d.f. would be a better approximation
than the exponential d.f. In many cases also the computer
system to be modeled has some preemptive or time-slicing CPU
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scheduling algorithm which should be modeled approximately.
We take this into account by using LCFS-P scheduling [11],
being sure to choose an optimal algorithm to serve compute-
intervals which have a degenerate exponential distribution. The
network (Fig.1) must be slightly modified by adding a new path
from the central server queue directly to the output line of the
central server (Fig.4). This path is used under LCFS-P scheduling
with probability p, by zero length compute-intervals. The mean
service rate of the central server must be altered from u; to u

(eq. 10)

p= pu (1= pg) (13)

taking into account that the mean service rate of nonzero
compute-intervals must be less than ;. By doing this the mean
service time E(tg) (eq.11) for all compute-intervals together
remains unchanged (eq.1). Now we can proceed to compute
the equilibrium distribution of customers In the network
P(n{, n- ..., Ny), Where n; i1s the number of customers present
at the /-th facility, in the same way as Is demonstrated in [2, 3].
We only have to replace x4 in [2, 3] by /(1 — p,) (eq. 13). The
same Is valid for the evaluation of the marginal distribution of
exactly k customers present at the ith facility. The same tech-
nique is appliable for the more general networks of Gordon and
Newell [6] or Jackson [12]. Each server/, having a degenerate
exponential instead of exponential service-time d.f., must be re-
placed by a server with LCFS-P scheduling and the modified
service rate u') = u; (1 — pyi), where u'’) is the service rate in
eqd. (10), p,; the probability for zero length service-time at the jth
server, and u; the service rate for the it" server in the equations
from Gordon and Newell for an exponential server i.

3.7 An example

We consider a very simple network (Fig.5) which we have also
studied by simulation. This network is a strong simplification of
the network In Fig. 4. It has only one peripheral server, and the

Pe
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204475 memory nby storage 10

Fig. 5. Network with

1) degenerate exponential CPU time,
2) optimal CPU-scheduling LCFS-P, and
3) exponential I/O time
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probability p, for a customer using the new program path is zero.
Let NV be the number of customers in the CPU queue (including
the job possibly being serviced) and n — N the number In the
|/O-server queue. Then one obtains from the stationary condition
for an exponential central server [2, 3]

PWN) py=PWIN=1)pu; (14)

and with eq. (13) for a degenerate exponential central server
(Fig. 5)

(15)

=P(N-=1)u,.

Our network iIs so simple that we need not use the computational
algorithms of [3] to solve for P (V). By recursion we obtain

1 = r
Py = p (o) | #2017 P0) (16)
|~
and with the normalizing condition
n
2 P(i) =1 (17)
1=0
the throughput Is
"
D=1[1-P(0)] —— (18)
1 = pg
From eq. (16, 17) we have
M (1-py)
u
PO)=——"—"—+—"—. (19)
3 _I Yo (1 _pg) }IH—']
u

The non-idle probability 1 — P(0) = D - E(tgr) of the CPU is

| E(ty) }n _
E(tr)

[E(tH) ln+1 _
E (tgr)

D - E(tg) = (20)

expressed in terms of mean |/O service time E (ty) = 1/u- and
mean compute-interval time £ (tg), (eq. 11).

If one knows £ (m), the mean number of compute-intervals per
program, then it is possible to compute the program throughput
Reintroducing p; (Fig. 4) and thereby a geometric distribution

for the mean number of compute-intervals per program, one
can compute £ (m) from p;

1
E(m) = —.
P1

(22)

Remember that the normalized throughput eq. (20) does not
depend on p,, the probability of compute-intervals having length
zero In eq. (10). This throughput is the same as for exponential
compute-interval d.f. with an arbitrary scheduling algorithm.

Throughput does not depend on p, because we have prescribed

the special (and optimal) scheduling algorithm LCFS-P. For
other algorithms (e.g. FCFS) the throughput depends on p,,.
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Fig. 6. Computational results and simulation for degenerate (curves) and

piecewise exponential d.f. (dots). Simulation was carried out forn = 2 and 3

D-E (tg) = CPU non-idle probability

4. Evaluation and assessment

We have seen that the piecewise exponential d.f. is well suited to
approximate experimental data (Fig. 2). Using this d.f. and the
PPCP discipline, CPU scheduling is similar to those algorithms
used In real computer systems. The use of more time slices to
schedule compute intervals (not jobs!) does not substantially
Influence throughput or mean response time (as is demonstrated
in [8]).

A very interesting goal is to compute throughput under optimal
CPU scheduling for d.f.’s with a coefficient of variance C > 1.
For piecewise exponential d.f.'s we did not succeed, but for the
rough approximation of a piecewise exponential function by a
degenerate exponential function we did succeed. Figure 6
answers the question for our model (Fig.5), how large an error
IS made by computing results for a degenerate exponential
function instead of a piecewise exponential function with
parameters shown iIn Figure 2. One can see (for n = 2, 3) that
there is no essential difference between computational results for
aegenerate exponential d.f. (curves) and simulation results (dots)
for piecewise exponential d.f. Forn = 1 and oo there is obviously
no difference in throughput which depends on the d.f. because
only mean1/O servicetime and mean CPUtimedetermine through-
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put In these cases. For other n there is a difference which arises
from the possibility of simultaneously servicing compute times
of all first-class intervals of the piecewise exponential functions
and 1/O times. This is not possible for degenerate exponential
compute times (where first-class intervals have zero length).
The difference vanishes as the number n of programs in the
network increases.

Now we can see why comparisons of computational results for
Markov models coincide so very well with simulation results,
e.g.[1], although Markov models are mostly treated only for
exponential service-time d.f. and simulation is carried out for
highly skewed service time d.f.'s and some time slicing. Such
comparisons are reasonable and show good agreement because,
by using a well adapted scheduling algorithm, it is possible to
reduce the effect on throughput for a coefficient of variance C > 1
to the same degree as iIf we had C = 1 and had used arbitrary
scheduling. ZE/Fl-UL
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