PERFORMANCE ANALYSIS OF PROTOCOLS

Bernhard H. Walke
Dataprocessing Techniques
Department of Electrical and Electronics Engineering

COMPEURO gg

Hamburg, Hay 1989

Fern University of Hagen
D-5860 Iserlohn, West Germany

ABSTRACT: "Performance Analysis of protocols" is inter—
preted 1in this paper more widely as usual, to not only
cover the aspect of a protocol's traffic behaviour but
also such important areas as consistency of a specifi-
cation, correctness of an implementation, and confor-
mance to an existent standard. An overview is given on
the various techniques being currently in use to
formally specify protocols and prove some properties of
the specification, to implement a formally specified
protocol and verify the implementation, to analyze an
implementation with respect to its dynamic traffic
behaviour by simulation, to apply analytic modeling
techniques to a protocol to compute performance figures
like delay and throughput and to perform performance
tests to verify the conformance to a given standard.
Besides making developers of protocols aware of the
various techniques and tools available today one goal
of this paper 1is to collect and present basic judge-
ments on the power and limits of methods and tools cur-
rently available in the area of protocol development.

1. INTRODUCTION

The usual approach to the solution of complex
lems involves dividing the overall problem
number of subproblems which can be solved
This decomposition technique 1dis also
designing data communication networks which are so
complex that they are partitioned into a number of
separate subsystems that interact with each other in a

well-defined manner in order to perform the overall
task.

prob-
into a

separately.
utilized when

This division is done in a hierarchical or
fashion, starting with

top-down
an abstract specification for
the system. At the top level of the hierarchy, the
system description is decomposed into a set of inter-
acting modules. A module at one level is divided into
several interacting submodules at a level below. This
refinement is repeated until the tasks performed by the
submodules can be easily understood and implemented.

In terms of existent standards of the International
Organization for Standardization (1SO) a communication
network is specified hierarchically by an abstract
layered architecture as defined for Open Systems Inter-
connection (0SI) /1/, where the interacting modules are

open systems, each containing a set of submodules
called layers. Each Tlayer contains sub-submodules
called service entities, which communicate on a peer-

to-peer basis using protocols. A layer, say (N-1), pro-
vides a (N-1)-service at its upper layer interface by
exchanging (N)-protocol data units (PDUs) with some
service entities of layer (N), and uses the (N-2)-ser-
vice at its lower layer interface via the (N-1)-proto-
col, c.f. Fig. 1. A (N)-protocol comprises a set of
well-defined data units which might be used by a (N)-

service entity of a system A to communicate with its
peer (N)-service entity in system B.

A (N)-service entity is responsible to provide part-
ly or completely the service of layer (N) by carefully
following the service specification which specifies,
what reactions to events at the upper and lower layer
interfaces, respectively, are permitted, dependent on
the previous history represented by the current state
of the entity. So, a protocol can be defined as the
vehicle to carry the information needed to co-ordinate

l -
user of = (N)-protocol user of
service (N) : service (N}

|

| | |
!
Service of layer (N)
l
user of (N-1) - pr otocol user of
| service(N-1) [i III"bl ser vice(N—HI

Service of layer (N-1)
!

user of user of
| service(N-2) : "1 service (N-2)

I E;C. ‘

provider é:f service(N-1)

(N—ZlQﬂrotocol
]

vy

pruvideriof service (N}

open system A open system B

Reference Model
providers
entities
systems

Fig. 1: defining layers as service
and protocols to communicate between

of the same Tlayer but of different

the internal state transitions of two communicating
entities. FEach entity is represented by a process
running in the respective system, and the protocol s
used to synchronize the execution of two or more
processes running in parallel in a distributed system.

synchronization is performed by exchange of PDUs issued
by the interworking processes.

The growing concern regarding protocols is demon-
strated by the recent flood of publications in this
area. The first IFIP TC.6 sponsored international con-
ference, dedicated specifically to protocols took place
in 1978 in Liege /48/. The IEEE Transactions on Commu-
nication devoted a special issue to Computer Network
Architectures and Protocols in April 1980. Since then,

humerous workshops and international conferences were
held to bring key researchers in the protocol area
together,

.

Computer communication systems tend to become very
complex. To manage that complexity, the systems have to
be partitioned and, thereby, an increased use of proto-
cols 1is required. Although protocols cover only parts
of a system, experience has shown that correct proto-
cols are difficult to design. This lead to the use of
more formal specification techniques: finite-state
machines, Petri-nets, formal grammars, and high level
programming languages Lo describe protocols more for-
mally and precise. Such techniques support an automatic
machine-execution of a formal protocol definition and

are enormous helpful in automating the various tools
for protocol design, analysis, and implementation,
which we are going to discuss in the subsequent

paragraphs of this paper.

VLSI and Computer PeripheralF

2. STATE TRANSITION MODELS

State transition models are often used to describe
certain aspects of communication protocols. We consider
protocols in which nodes (modeled as finite <tate
machines) communicate by exchange of messages, which
are subject to unpredictable and unbounded delays. Such
protocols often admit a large number of messages (PDUs)
simultaneously in transit. Understanding a protocol
involves wunderstanding channel contents, i.e. contents
of messages that might be in transit at one time.

A popular model for these protocols consists of fin-
ite state machines connected by unbounded FIFO queues,
which is commonly referred to as CFSM model (communica-
ting finite state machine model) /2/. Various universal

(syntactic) properties of a protocol become reachabili-
ty properties in the CFSM model.

For example a CFSM protocol is free from state dead-
locks, if from a given initial global state it cannot
reach a global state with all channel queues empty and
all state machines in states that allow only receptions
but not transmissions /3/. A global state is defined as
a pair (S,C) where S represents a composite state of
the CFSM and C defines the channel content. A composite
state consists of a vector of states, containing one
state per FSM being involved as part of the CFSM model
of the protocol. Freedom of deadlocks can be proven by
a reachability analysis which also can demonstrate

other properties 1like the absence of unspecified
receptions /4/.

[f the global state space is finite, which is the
case for a limited permitted number of messages in the
channel queues, an exhaustive reachability analysis is
useful to automatically verify the reachability proper-
ties of the CFSM model. According to /2/ no algorithm
exists to verify deadlock-freedom (and other reachabil-
ity properties like unspecified receptions) when the
channel queues are unbounded. But common protocols do
not make use of the full generality of the CFSM mode]
and this is the reason, why automatic verifiability of
deadlock-freedom is promising. As most common protocols
have finitely many reachable global states, one can
generate them all and verify any reachability property
by dinspection. The list of these states is helpful to
understand the overall functioning of a protocol,

because it allows to examine all channel contents that
may occur during the operation of the protocol. In
doing so one is able to get a first insight into the

performance of a protocol.

2.1 IMPORTANT PROPERTIES OF A PROTOCOL

One important objective might be verification of a
proposed protocol against a service specificatinn, i.e.
to prove that a proposed protocol provides a cpecified
service and possesses desirable propeities anc lacks
some other. Then, the following properties ol a
protocol in general are of interest /19/:

- completeness (an allowed reception of a message by a
process in a given state must be possible in the
specification),

- deadlock-freeness (every stable-state N-tuple must
have at Tleast one next transmission allowed by an
entity, except the system final state),

- livelock or tempo-blocking freeness (a new reception
or transmission must not generate an overall systom
state that is one of the stales nn a path from the
initia’ the current overal] system state, r xcept
for Lhe overall system initial state for cyvelice
protocols),

- termination or cyclic behaviour (every interac! ion
path starting from the overall system initial state

and through a sequence of overall system states nnst

lead to the overall system final (initial) state),

- boundedness (each time a message is entered to a
channel, the total number of messages in that channel
must not exceed an upper bound for that channel),

~ liveness or absence of non-executable interactions
(every newly created overall system state must result
from any overall system state already existing).

2.2 ALTERNATING BIT PROTOCOL AS AN EXAMPLE OF A CFSM

MODE L

The alternating bit protocol 1is known to be a
simplyfied representative of common communication pro-
tocols. It is used to transmit data between two proces-—
ses over two wunreliable channels, c¢.f. Fig. 2. The
complete model is represented there by fewr finite
state machines (FSM) connected by fomr—~channels. The
sender process must wait for an acknowledgement to each
message before sending the next message. Each message
carries a one bit sequence number that alternates for
each message sent. Following /3,4/ the processes and
channels each are represented by a FSM whose transi-
tions represent transmissions. Five message types for
sending (-) and receiving (+) of messages, resp. are
used by the protocol, c.f. Fig. 3: ED = even data.
OD=odd data, EDA/ODA=acknowledgement of ED/OD, E=end of

data.
//l Channel 0]\
Process 0 F:;RH f;:{ Process 1
““wj Channel 1 _r*fﬁ
Fig. 2: Two processes communicating via separate chan-

nels

Processes 0 and 1 take turns in sending sequences of
data messages; each sequence ends with an E message.
Process 0 sends first, starting from state 0 and pPro-
cess | is then in state 4. A process waiting for an
acknowledgement (EDA, ODA) refrains to transmit its
message (ED, OD) until success.

The unreliable channels are modeled by two identical
FSMs, assuming all errors being located at one place,
and the rest of the channel functions according to a
FIFO queue. A channel starts in state 0 and ignores/
deletes some messages (remaining in state 0), whilst
the others are transmitted correctly. Since any of the
messages ED, OD and E may be repeated any number of
times, there 1is no upper bound on the number of
messages simultaneously in transit.

+ ODA,+E- ED EDA-0D
0= 0NN oNC
+0DA
+0D
tED-ED ”
+E +EDA +0DA ‘ UD
+ED
+EDA | E
(> 0):3i€05:20
D DA
+00||-0DA +£ED +0DA +0DANNG EDA
-EDA - 0DA EDA
O © 0 (9
Proces- chunnel

Fig. 3: FSMs for the alternating bit protoce | (nrocess)
and unreliable channels.

The protoc:
the protor:

~an be proven to be deadlock fire /3/. As
| has four FSMs each having 6 <tates. there

are 6%%4 = 1296 composite states to consider, which
must be examined during an exhaustive reachability
analysis. The example protocol has a cyclic communica-
tion graph and some other nice property P, which
reduces the efforts needed for analysis substantially,
to 16 composite states.

The example represents a CFSM protocol for which
deadlock freedom can be proven to exist. However, this
does not say that there exists an algorithm that auto-
matically reads any CFSM protocol, having the P proper-
ty and is able to decide, whether the protocol is dead—
lock free or not. It is likely, that any such algorithm
would be too slow to be practical /3/.

State spaces of more realistic protocols tend to be
substantially greater than shown for the alternating
bit protocol. Nevertheless, progress has been made in
developing tools being able to state existence or
absence of some interesting properties of a protocol
being specified in one of the usual forms like text,
graphic representation and/or formal language code /5/.
Communication protocols can be synthesized by building
a directed graph for the activity of a protocol entity,
which requires observation of four simple rules given
in /19/ defining a step-by-step generation of states

and connecting arcs and resulting, finally, in a FSM as
shown in Fig. 3.

3. FORMAL DESCRIPTION TECHNIQUES

Most of the tools and methods for
tion, implementation and testing
specification of the protocol be
language. If one aims

protocol valida-
require that the
given in a formal
at performing a consistency

verification, that a given protocol specification
provides the communication service defined for that
layer, c.f. Fig. 1, the service specification should

also be given in the same language. Most specifications
of computer communication protocols, however, are given
in an informal manner, which makes the application of
automated tools and methods difficult.

To reduce the inherent ambiguities of informal spe-
cifications, the above introduced state transition
diagram technique is often applied. Additionally, in

most OS1 application layer protocols the ASN.1 /6/ is
used to specify the parameter data structures of the
POUs /7/ as well as their encodings /8/. It s

important to note that the FSM models and the ASN. 1
notation describe different aspects of protocols. The
former describe "major" states and kind of input/output
interactions, ignoring the parameters, while the latter
describe the data types of the interaction parameters
and the coding of these parameters 1in the PDUs.
However, even taken together, they do not cover 3all
aspects of the protocol specification /5/. What they do
not cover are such questions as how the parameter
values of the output interaction of a protocol entity
depend on state variables and/or previouly received
interaction parameters. These aspects are covered by
full specification in formal languages, only.

In this context the CCITT X.409 recommendation is to
mention which presents a standardized specification
technique for application layer protocols for Message
Handling Services (MHS) and will become the subject of

an independent recommendation in the 1988 version of
the X.200 series.

3.1 STANDARDIZED FORMAL LANGUAGES

Many new formal languages have been developed in
recent years for specifying software modules and
especially protocols. These Jlanguages differ in the
emphasis they place on
— abstractness (how implementation independent they can

be),
- concurrency (how
parallel systems),
- analyzeability (how
verified), etc.

suitable they are for specifying

readily specifications can be

There is not, and never can expected to be. a single
and universal formal language, any more than there will
be a universal natural language or programming language
/9/. Currently, protocols of communication systems have
attracted much attention by the formal specifier
because they involve well-defined, self-contained
problems and present technical challenges due to the
inherent concurrency and distributedness.

In view of the efforts of IS0 to define standards
for 051 it is highly desirable that designers and
implementers world-wide will read and interpret the
standards in a compatible way. However, most of the [S0
standards are written in natural language. To ensure
precision and analyzeability it was decided to develop
some mathematically based languages and to call such
languages Formal Description Techniques (FDTs). The
objectives were /10/
~ to enable unambiguous, clear and precise descriptions
of 051 standards to be written,

- to allow such descriptions to be verified for con-
sistency and correctness,

- to provide clear guidance to designers and imp lemen-
ters of OS] systems as to what, but not how, they
should implement, |

- to act as a sound basis for conformance testing.

Being pointless to produce definitive formal des-
criptions of O0SI standards using FDTs which were not
themselves standards, 1S5S0 has been developing standards
for two particular FDTs: Estelle and LOTOS. Estelle
[11/ (Extended Finite State Machine Language) draws
together the research which has been undertaken on FSMs
and the languages they define. LOTOS /12/ (Language of
Temporal Ordering Specification) synthesises work on
algebraic techniques for specifying data types and
concurrency. Both Estelle and LOTOS have already been
balloted by ISO as Draft International Standards.

Another standardized FDT has been available from
CCITT since 1980 with SDL (Specification and Descrip-
tion Language) for describing telecommunications

systems, generally. SDL was further developed in 1984
/13/ and the latest update was finished in 1988.

A1l three FDTs are therefore substantially stable
and have been widely applied, especially SDL has been
excessively used for defining standards e.g. of the
future European Mobile Radio Network of CEPT/GSM.

3.1.1 Comparison of the standardized languages

There is presently some competition between the
three languages, which each have certain advantages. By
Joint agreement of the [SO and CCITT groups concerned.
each of the FDTs is equally acceptable, however, the
three FDTs habe different strengths and weaknesses.
This is due to the emphasis layed on different aspects,

so they should be seen as complementary rather than in
competition.

The above mentioned working groups have produced a
commom document, which gives gquidelines for the appli-

cation of FDTs to OSI /14/, explains the nature of a
FDT and gives carefully chosen examples in each of the
FOTs. In /15/ the criteria for good formal descriptions
are explained and a more technical comparison of the
FDTs is provided. In what follows we give here a short
characterization of the three FDTs according to /9,23/.

Estelle: The concept of extended FSMs

(EFSM) s

used, where one major state and a number of state
variables are used. EFSMs (called module) are running
in parallel and interchanging information messages
(called interactions). The way of exchanging inter-
actions is structured: A protocol specifier must
declare, for each information path (called channel)

between modules (and for both directions on it), the
complete set of interactions that can flow on it to-
gether with the content of each interaction, in terms
of elementary information fields. At each end of a
channel (called access point) a FIFO queue models the
storage capacity of the model. Different channels can
be associated to the same queue, thereby ordering the
arriving interactions according to their order of ar-
rival. Actions are expressed in a subset of the PASCAL
language. Estelle is rather implementation oriented and
therefore very suitable for giving reference implemen-
tations of protocols and to build compilers which will
generate some of the communication software automati-
cally. This feature makes it especially suitable for

performance analysis through simulation, using rapid
prototypes, during the development process of a
protocol.

SDL has a basis similar to Estelle but has been
widely used for implementing telecommunication net-
works. In difference to Estelle it has its own special
abstract data type (ADT) language ACT ONE /16/ and has
multiple representations (graphical and program like).
An automatic translation 1is defined between the two
types of representation. SDL is implementation orient-
ed, but its data typing feature allows it to be more
abstract, and the variety of existing tools and repre-
sentation make it easier to use at present.

LOTOS is based on the theory of process algebra and
originates from three algebraic Tlanguages: ACT ONE
being used as ADT language for defining data types
(e.g. service data units) and two lanquages for formal-
ly specifying communication systems: Milner's CCS /17/
and Hoare's CSP /18/. LOTOS thus has features for des-
cribing static (data typing) and dynamic (process
behaviour) aspects of the system. Data types are des-
cribed abstractly in terms of their components and the
effects of operations on them, avoiding implementation
concerns (like definition of length of a field etc.).
Dynamic behaviour is represented by processes interac-
ting synchronously by events. Two main differences of
LOTOS from Estelle and SDL should be mentioned: LOTOS
descriptions are more abstract, requiring a bigger step
to implementations and a fully formal definition exists
making rigorous analysis of a description possible.

One important aspect when applying specification
methods to define protocols are the possibilities of a
method to explicitly reference the concept of time and
of putting time constraints on the system performances.
A method should be able to specify

a) that an action must be executed within T seconds,

b) that the environment will react after/within T se-
conds,

c) a time-dependent waiting status (e.g. "wait T se_
conds").

This requirement is not completely fulfilled by any of

the three 1languages, but FEstelle appears to be most
powerful /23/.

This is not the place to discuss the pros and cons
of the three lanqguages in depth. Such a discussion is
possible only after having given an introduction into
the application of these techniques which can be found
in /20,21,22,24/. Moreover, the tools available for
analysis should be taken more carefully into account. A
quite deep discussion of such tools for static and

dynamic analysis of these specification methods can be
found in /5/.

3.2 NOT STANDARDIZED FORMAL METHODS

Besides the three languages there are a number of

other important specification methods, currently not
standardized, and associated tools. Many tools are
based on the Petri net formalism, others use different
specification methods. Various logic-based methods are
used, e.g. temporal logic /46/ allows the specification
and verification of liveness properties of protocols.

3.2.1 Petri Nets

Petri nets (PNs) are described here in more detail,
because we'll later discuss enhancements to them. which
advantageously support performance evaluation of proto-
cols defined by PNs. A PN comprises a set of places P,
a set of transitions T, and a set of directed arcs A.
Places are graphically represented as circles and
transitions as bars, c¢.f. Fig. 4. Transitions and
places, respectively, are connected through directed
arcs. Places may contain tokens, which are drawn as
black dots. A vector M, whose ith component represents
the number of tokens in the ith place defines the state
(usually called marking) of the PN. M' defines the
initial marking of the PN. Following /25/ a PN is
defined formally by

PN = (P, T,A,M), P = {pl,p2,..,pn}, T = {(t1.t2....¢tn}

Ae (P X TYU (T XP}, M ={m"1,m2,...m"nl. (1)

A place pi is an input (output) to (from) a transi-
tion ti (i=0,1,..) if an arc exists from the place
(transition) to the transition (place). A place

inhibits a transition if an inhibitor arc (dashed line
with circular head) connects the place to the transi-
tion. A transition is enabled and can fire, when all of
its input places contain at least as much tokens as
indicated at its arcs and all of its inhibitor places
are empty. When firing, a transition removes the
respective number of tokens from each input place and
places as many tokens in each output place as indicated
on the respective arcs (no indication on an arc i<
equivalent to one token). The distribution of tokens in

places is thereby modified, resulting in a new marking
of the PN.

In Fig. 4 a PN for the well-known multiple-reader-
single-writer problem is presented as an example /27/.
Five tasks are assumed to exist. A task working on its
local data (token in place pl) may wish to read (token
in p6) or write (token in p2). Access to global data is
limited by introduction of place p5 to one task in
write status and three tasks at most in read status. A

token in place p3 indicates a task being in write
status. The number of tokens in places PS5 plus p7 gives
the number of tasks in read status. A firing transition
may disable other transitions that are said to be in

conllict with the one that fires (e.g. t1 and t4 are in
conflict).

0

Fig. 4: Petri-net definition of the multiple-reader-
single-writer problem with five tasks

The reachability set of a PN with a given initial
marking M' is defined as the set of all markings that
can be reached from M' by a sequence of transition
firings. 1f the PN 1is such that, for any permitted
marking, the maximum number of tokens in any place is
notgreater than k, the PN is said to be k-bounded.

transition
needed to
reachability

Due to the large number of places and
resulting from a very detailed modeling
validate the design of a protocol, the

analysis becomes quite tedious. It can, however, be
performed automatically to derive properties like
liveness, boundedness and of properties like existence

of invariants etc. The complexity of algorithms to
prove such properties is exponential /26/.

4. PERFORMANCE EVALUATION OF PROTOCOLS

Much research has been done in the
performance evaluation of communication protocols,
mainly in the domain of packet-switched data networks
and local area networks. Examples are data-link control
procedures, flow-control protocols, and end-user-to-
end-user protocols where such analyses yield results
for throughput and/or response time. These analyses
have traditionally used traffic and queuing theory. An
area just being born is the estimate of performance
direct from a formal protocol description. One means to
obtain such a performance estimate direct from the
formal protocol specification is via simulation, c.f.
/47/. Here, the formal specification contains enough
additional information for a simulation model to be
automatically compiled from the specification. Running
the simulation model yields the desired performance
estimates. There exist an impressive number of tools

for analysis, which are mainly based on one of the
following techniques

area of

1) statistical evaluation using simulation,

2) exact analysis, based on Markovian modeling, using
- product form queueing networks (PFQN),
- stochastic Petri networks (SPN),

3) approximate analytic modeling and mixed techniques,

In what follows, a brief introduction to the current
state of the art in using these techniques is given.

4.1 PERFORMANCE EVALUATION BY SIMULATION

Statistical performance evaluation through simula-
tion 1is the most general analysis method to study com-
plex systems, since it allows them to be described by
models with different 1levels of details down to the

finest details. Simulation of complex protocols, how-
ever, brings up certain problems of which the principal
is the computation time needed to produce results that
are sufficiently precise.

Together with the development of computational
methods for exact analysis of Markovian queueing
systems during the 1970's and 80's, new approaches were
made and gave birth to a wave of new simulation
packages using the same basic model description. This
development was complemented by substantial progress
made in the field of statistical support for interpre-
tation of simulation output and for producing "good"
pseudo-random number sequences, making simulation for
performance analysis a broadly accepted instrument /28,
29,30, 31,32,33,34/. This acceptance is still growing.
Due to the rapid increase in computing capacity avail-
able from moderate-cost workstations and mainframes,
and dve to the wuser friendly interfaces offered by
professional simulation packages, simulation tends to
become a dominating method for protocol performance
analysis.

4.1.1 Simulation tools and languages

A wide variety of simulation languages exist /33, 34,
35/ vresulting from different approaches. Although the
first were designed some twenty years ago they are
still widely used.

One common approach is to create a set of program
modules that achieve the functions specific to discrete
event simulation, 1like management of the event
schedule, gathering of statistics, generation of random
numbers according to various probability distributions,
etc. The approach takes advantage of a programming
environment, where mathematical and graphical libraries
and input/output interfaces exist.

At the author's institute MODULA-2 is used for per-
formance analysis of protocols by simulation. In using
such a modern lanquage one is able to take advantage of
newly 1introduced concepts to support good programming
style, to ease development of error free programs and

to have at one's disposal features like processes and
coroutines, otherwise only found in simulation
languages. Simulation languages are specifically

adapted to the needs of modeling a system:

SIMSCRIPT /36/, for example is similar to a natural
language and wuses notions of entities, attributes and
entity sets to ease definition and handling of objects
like queues and customers. All the events are described
in subroutines, including the end of simulation. A main
program initializes the variables, starts the simula-
tion by programming the first event and defines the end
of simulation. The statistics demanded from variables
of a simulation must be required explicitly /37/.

SIMULA /34/, is based on ALGOL and offers besides
sophisticated data structures the concept of processes
to describe activity sequences. Thereby, parallelism
and synchronization of processes can be expressed,

which results in a more comprehensive way of system
definition,

GPSS /38/ is also based on the process concept. It
comprises some 50 operations, each followed by a list
of arguments and describing a basic activity of simula-
tion like 'generate' (a random number), 'queue' (wait
in a queue), 'depart' (from a queue), and describes
activities as seen by the customer (called 'transac-
tion' in GPSS). Statistics (mean and maximum of queue

lengths and response times) are automatically produced
at the end of simulation.

There exist an impressive number of further simula-
tion Tlanguages, which partly combine the features of
the languages mentioned. Some of them incorporate some
advanced, or to a special application adapted features,
c.f. /37/ for references to that languages. Simulation
is very often one technique offered as part of a tool
besides others, which is used to provide statistical
analysis results when exact or approximate analytical
methods are not applicable. Therefore, besides the
languages mentioned, also the tools using combined

techniques (simulation, exact/approximate analysis)
should be considered, c.f. /54,55, 58,59, 60/.

One technique usually applied there is to decompose
the problem at hand into sub-problems, some of which
possibly can be analyzed in isolation using exact or
approximate analytical techniques. The respective
results are represented then by use of an equivalent
server in the system's model and only the remaining
part is solved using simulation /63/.

4.2 EXACT ANALYSIS, BASED ON MARKOVIAN MODELING

Queueing analysis has been widely used to analyze
systems, by means of quite simplified models. Such
models mainly can be characterized through definition
of arrival processes to a number of queues, related
service processes and the system structure, mainly
being represented by a service discipline.

One example of such a model is shown in Fig. 5 where
a cyclic service discipline is assumed in a model with
N arrival streams into N separate queues, and each ar-
riving customer requires a randomly distributed service
time with mean B;. A switch-over time t between service
of consecutive customers is also included. This model
has been very successfully applied to evaluate the mean
transfer delay-throughput characteristics of the token-
ring media-access control protocol /39,62/ according to
standard 1EEE 802.5 for Tlocal area networks (LANs).
Other models of comparable complexity have been applied
in /39/ to evaluate the performance of other concurrent
LAN protocols, cf. Fig. 5, namely the protocols carrier
sense multiple access with collision detection (CSMA/
CD) and slotted ring.

101_] - I '
60 / l
,SLOTTEU :
JRING |
30 /]
o / csmnzcnj
g / BUS :
T / /
@ / /
= 6 e /
o 7~ ,'
E ~ :
5 3 2
= Z TOKEN
RING

0 02 04 06 08 10
~ offered traffic

Fig. 5: Cyclic service of a token-ring model and resul-
ting performance /39/. Included are also re-—
sults of other LAN protocols. Parameters are

the arrival vrate A. and the mean service time
B (1=1:2i s s M) 1

This type of analysis has been applied advantageously
in teletraffic systems analysis since the 1930's when
the notion of protocol was still unknown and since 1960
to analyze single- and multi-server models of computer
systems /40,41,42,43,44,45/. The state of the art has
evolved during this time period of application dramati-

cally to a very high standard, being represented today
by a number of very powerful tools. They contain the
expert knowledge of two generations of researchers in
the field of queueing systems and their analysis, and
are mainly based on a class of models having the Mar-
kovian property (at least for some imbedded states of
the underlying process). Using this type of analysis,
quite complex protocols, including the consideration of
time-out of a protocol /72/ and blocking /79/ can be

tackled. Further, co-operation of a large number of
independently in a network configuration operating
servers can exactly be analyzed by a class of queueing

models, called product form queueing networks and their
extensions.

4.2.1 Queueing Networks (QNs)

The term queueing network denotes a class of queue-

ing models, for which exact or approximate analysis
techniques have been developed. They are well
established as practical tools in computer system per-

formance analysis and capacity planning. The principal
reason for their success is the combination of expres-—
sive power and solution efficiency that they afford.

A queueing network is a collection of stations
arranged in a way that customers proceed from one to
another in order to fulfill their service requirement.
Stations represent system resources and are charac—
terized by a service rate, while customers represent
jobs in the system consuming capacity of the station
according to a given service time distribution. Each
station has an associated queue where jobs may wait
prior to service and a queueing discipline, which
determines the order of service for the waiting jobs.
Customers may be devided into several classes, such
that all customers within a class are statistically
identical with respect to routing probabilities and
service demands. Served jobs leave a station and join
the queue of another station according to the routing
probability p(i,r)(j,s) describing the fraction of
departures from a station i in class r that go next to
station j in class s. Each class may be open or closed,
cf. Fig. 6. In the closed-network part of Fig. 6 a
constant number N of class-2-jobs circulate at all
times, requiring at any queue at most N waiting
positions. In an open network (state dependent) arrival
and departure processes exist. A station together with
1ts queue is called a service center.

= = _ -
.
; R pmm”':szmnl
P 1111 Tt i
Pro.ni,n! (1.0(2,1
— Y . ~ ! output
input | | (1,213,2} | D3
: Praiia) [-—TWTI—@ |
| |
| Pa.anas j

1111] =queue ; (:)=serveri

Fig. 6: Mixed queueing network being open w.r.t. class
1 and closed w.r.t. class 2.

4.2.1.1 Product Form Queueing Networks (PFQN)

PFQNs are a special form of queueing networks, being
often referred to as BCMP networks /49/. that have a
product form solution. The service-time distributions
and service disciplines permitted at a station must be
such, that Markovian input processes to a service cen-
ter are transformed into Markovian departure processes.
This property offers the possibility to aggregate ser-

vice centers and replace them by an equivalent service
center, without changing the behaviour of the remaining
network. The aggregated service center can be solved
separately /50,51/. Efficient exact analytic solution
techniques exist, which make possible interactive
tools, enabling the user to explore a large design
space rapidly /53,54,55,56,57,58,59,60/. Some of these
tools are compared and evaluated in /37.61/.

The notation used to describe the models allows them
also to be developed very rapidly: only few parameters
are required and these correspond directly to cCompo-
nents of the application being modeled. One principal
limitation of PFQN is that they do not have a general
construct for representing synchronization. The ability

to represent concurrency of processes is a very impor-
tant requirement when protocols are modeled, which
normally contain parallelisms. To cover this, extended

ONs (EQNs) were
analytic solution.

developed, offering an approximate

4.2.1.2 Extended Queueing Networks (EQNs)

EQNs are QNs that have been augmented with passive
resources, fork and join nodes and split nodes. These
passive resources are represented by tokens counting
the number of resources that are currently available.
In EQNs, which e.g. can be described by RESQ /52/,
special nodgs are defined where customers can create,
acquire, release or destroy a token. A customer s
blocked, when a token is not available when needed, and
waits until another customer creates or releases it.

EQNs might also contain set nodes where data variab-
les can be modified. The data variables can be defined
globally or associated with an individual customer.
Such extensions make EQNs well-suited for application
for performance analysis of protocols, and make them
with respect to their descriptive power equivalent to
general-purpose simulation languages. When using data

variables, in fact, simulation is used to evaluate the
mode ls.

4.2.2 Stochastic Petri Networks (SPNs)

Stochastic Petri nets are a newer approach to system
performance modeling and analysis that are attracting
increasing interest. They were introduced by Molloy in
1981 /67/ and consist of PN models in which an exponen-
tially distributed firing time is associated with each
transition. The formal definition of a PN given in Eq.
(1) is extended thereby to
SPN = (P, T, A, M', R), (2)
where R ={r1, r2,...,rm}is the set of firing rates

(possibly marking dependent) associated with the trans-
itions.

Molloy has shown that SPN's are isomorphic to con-
tinuous time Markov chains, thus the standard analysis
techniques for this class of model can be applied to
compute performance measures of interest /68,69/. The
SPN markings correspond to the states of the respective
Markov chain, which is finite in case of k—bounded
SPN's. In /68,69/ a combination of immediate transi-
tions (firing in zero time) and transitions with expo-

nential firing time is introduced and was termed as
general SPN (GSPN).

The major problem of SPN's is one of efficiency, due
to the Jlarge state space resulting already from mode-
rate sized problems. Aggregation techniques suitable to
support the solution of smaller problems by exact or
approximate decomposition are currently not available.

One important question investigated in /68/ s
whether SPN's and EQN's are fundamentally the same, or
whether there are intrinsic differences that make one
approach more powerful than the other. The following
observations were stated there:

a) any open, closed or mixed single class EQN model can
be expressed as a SPN of equal complexity

b) any multi-class EQN can be represented as a SPN of
comparable complexity, if one allows to specify
scheduling disciplines for transitions and routing
probabilities per class

c) no algorithm is known to construct an equivalent EQN
from the SPN representation

d) there exist synchronization mechanisms that can be
represented in the SPN notation but not in the EQN
notation. |

Fig. 7 illustrates the construction of an equivalent
SPN model from a simple EQN model /68/. It can be seen
that there is less semantic information conveyed in the
SPN primitives, which reduces the conceptual informa-
tion available to the reader from the net diagram.

EQN related element SPN-equivalent

——H_—-—--ll—l———-————l-l—i—-———-—l-—-r-—————-—-————-l-——--—_-—--r——-——m——

queue, passive resource transition
allocate/and release node transition
Routing probability decision place

Memory Partitions

[—

/

,"’ reléu] 1710
B '-'allntuii Py P, :“O
CPU Py :]}“(::}_'

Terminals

\

- (a) EQN

-

Memory
Par titions

10—}

Think CPU
Time

(b} PPN

Fig. 7: Single class EQN and equivalent SPN /68/. The
thick bars represent timed transitions

It can be concluded from the observations a) to d),
that SPNs have more expressive power than EQNs but a

more complicated appearance, especially to persons
accustomed to the QNs notation.

With respect to the efficiency of evaluation, SPNs,
in general, require resources that are exponential in
the size of the model to produce results. So, only
models of relatively modest size may be solved at all,
and even for small models the efforts needed to compute
performance parameters are orders of magnitudes larger
than for EQNs. Thanks to the existence of good packages
e.g. /[70,71,76/ for SPNs and the growing capacity
available from modern computers, resources needed are
believed to be a weaker argument only against SPNs.

4.3 APPROXIMATE ANALYTIC MODELING AND MIXED TECHNIQUES

Process synchronization mechanisms, i.e. share of 3

common — resource set and co-operation between parallel
processes usually are of major importance for the
performance of protocols. However, their direct des-

cription within a queueing network model is not ac

straightforward and violates the product form assump-
tions. Examples of such mechanisms are simultaneous
resource possession, a process blocking another one,
blocking itself while waiting for a signal, or activa-
ting a process by sending some information. To model
these influences, approximately, supplementary service
centers were introduced in queueing networks introdu-
cing some well defined serialization delay. The service
center's parameters were defined iteratively and veri-
fied through simulation /64,65/. This technique also
was broadly applied to model resource constraints in
data base management systems, see references in /66/.

One interesting approximative approach to model
synchronization is described in /66/, where a flag
mechanism (using a Petri-net transition) is introduced,
which is demonstrated to be reduceable to an equivalent
exponential server with correlated arrival and service
processes. Applying this technique results in an
approximate solution of the queueing network.

Another interesting approach for the approximate
analysis of QNs with blocking, where a job is forced to

reside in the source station (keeping this server
blocked) until a place in the destination station
becomes available, was proposed in /74,75/. The

approximation 1is based on the fact that models having
the same state space, are equivalent and can be
characterized by the same performance parameters.
Therefore, a non-blocking closed QN with an appropriate
number of circulating jobs is derived and solved,
having the same state space as the blocking network.
The method is approximative, because for networks with
multiple stations (more than two stations) the state
space of a blocking network is not isomorphic to the
state space of a nonblocking network. The results
received by the method are especially well applicable
for protocol analysis, where many applications can be
modeled through two stations communicating under some
blocking conditions.

Performance analysis of communication systems does
not always rely on a detailed analysis of the under-
lying protocols. Analyses which do so, usually rely on
an analysis of the protocol state space transition
graph. For nontrivial protocols the state space tends
to become very Jlarge, resulting in a very complex
analysis. In /77/ a new performance analysis technique
which applies multi-class queueing models was proposed.
Although systems with many thousand states can be
handled by such models, state reduction techniques
known from research in the protocol validation area are
proposed to be used also for performance analysis. The
method of projections /78/ to reduce the state space is
shown in /77/ to substantially reduce the complexity of

the performance analysis and to produce faithful
performance results.

Separable (completely decomposable) QNs do not
provide a sufficiently rich set of model constructs.
E.g. to model priority scheduling and memory
constraints would result 1in non-separable networks.
Since even separable networks are intractable when
there are many classes, considerable research on
approximate analysis techniques was spent. Results of
these efforts were incorporated into production tools
for capacity planning, thereby extending the width of
their applicability substantially. However, the
interaction of several approximations can lead to
problems not encountered when using the approximations
in isolation, and the sensitivity to small changes in
parameter values can be more important than their
average or worst case errors /73/. There does not seem
to be any easy solutions to this problem resulting from
the conflicting goals of accuracy and efficiency.
However, taking into account that workload parameters
have very large inherent inaccuracies, this observation

should not be overemphasized. Concluding this paragraph
it can be stated that a number of promising approaches
for approximate performance analysis of cooperating
servers to model protocols have been developed.

5. CONFORMANCE TESTING

To achieve the objective of open systems intercon-
nection (0SI), systems must be tested in an approved
manner to certify that they conform to the relevant
standards. The 1S5S0 and CCITT are now working together
to produce a common methodology and framework for
conformance testing /80/ applicable to 0SI standards
and similar CCITT X-series and T-series recommenda-
tions. The work is already being used as the basis for
standardization of test suites for X.25 terminals, the
OS5I connection-oriented transport protocol (ISO 8073)
and MHS (X.400 series). The major aspects of the
testing methodology and framework are presented in

/81/.

Conformance testing can be considered a case of
consistency validation. A given protocol implementa-
tion, usually called "implementation under test" (IUT)
is checked against the protocol specification, which
acts as reference. The validation method is testing.
The 1UT is stimulated by test input which is generated
by one or several test modules /5/. The output genera-
ted by the IUT in response to the test input must be
observed and compared with the protocol specification
in order to determine, whether the observed output is a
possible one according to the specification. 1f any
behaviour of the IUT does not conform to the reference
specification, an error is indicated.

Testing can be performed to various extent and
therefore, for conformance testing four categories have
been identified:

- the basic interconnection test,

— a functional range test,

— full conformance tests,

- specific conformance resolution tests /81/.

A successful test (without an error being
not imply that the IUT conforms completely. A test
suite is a sequence of individual test cases, which
together have a good chance of detecting most errors of
an implementation. Some tools for automated testing and
the definition of test cases are existing already, see
/5/ for more details. Most tools generating test
sequences are based on EFSMs models, because many test
methods have been published for such models. An over-
view of methods used in this field can be found in
/82/. The set of test cases developed for the ISDN
D-channel network Jlayer protocol in /83/, and the
method to derive test sequences from a protocol speci-
fication given in Estelle in /84/ may serve as examples

found) does

to illustrate possible approaches in conformance
testing.
6. CONCLUSIONS
The discussion presented in this paper shows that

many methods and tools exist that have successfully
been used in the development process of protocols,
mainly for their specification, validation, performance
analysis and testing. The rapid growth of of new ideas
in these fields and their quick implementation as part
of existent tools is very impressive. However, the
potential Ffor a much Tlarger application of these or
related tools exists. It is coupled with the definition
of formal specifications of the O0SI protocols and
services, written in an accepted FDT and the integra-
tion of specification methods using EFSMs and perfor-
mance analysis methods based on FSM descriptions - into

common tools. There are a number of areas, where
further research and development is needed and s
expected to provide important improvements to the state
of the art. None of the aspects addressed in this paper
as being relevant for the performance analysis of pro-
tocols can be termed as sufficiently well covered by
the existent techniques. Much further efforts have to
be spent to make the methods in use more mature and
efficient, and to bring them into a position to
adequately solve the respective tasks.

REFERENCES

/1/ 1SO 7498, Information

Systems Interconnection
International

1984,

/2/ D. Brand, P. Zafiropulo: On communicating finite
state machines. J. ACM 30 (1983), 323-324.

/3/ J. Pachl: Protocol description and analysis based
on a state transition model with channel expres-
sions. Protocol Specification, Testing and Verifi-
cation_VII, H. Rudin, C.H. West (Eds.), Elsevier
Science Publishers B.V. (North Holland), 207-219.

/4] P. Lafiropulo, C.H. West, H. Rudin, D.D. Cowan, D.
Brand: Towards analyzing and synthesizing proto-
cols. IEEE Trans. Comm. COM-28 (1980) 651-661.

/5/ G.v. Bochman: Usage of protocol development tools:
The results of a survey. Protocol Specification,
Testing and Verification VII, H. Rudin, C.H. West
(Eds.), Elsevier Science Publishers B.V. (North
Holland), 139-161.

/6/ F. Caneschi, E. Merelli: An Architecture for an
ASN.1 Encoder/Decoder. Computer Networks and ISDN
Systems 14 (1987), 297-303

/7/ 1S0 DIS 8824 Information Processing — Open Systems
Interconnection - Specification of Abstract Syntax
Notation One (ASN.1)

/8/ 150 DIS 8825 Information Processing - Open Systems
Interconnection -Basitc Encoding Rules for Abstract
Syntax Notation One (ASN.1)

/9/ K.J. Thurner: LOTOS: A practical Fformal descrip-
tion technique for OSI. Internat. Open Systems,
Online Publications, Pinner, UK, 1987 265-770

/10/ 1S0: TC97/SC21/N1541 - WG] Programming of Work,
Geneva, Sept. 1986

/11/ 1S0: DP9074rev. - Estelle., A Formal Description
Technique based on an Extended State Transition
Model. Geneva, August 1986

/12/ 1S0: DP8807rev. - LOTOS, A Formal Description
Technique based on the Temporal Ordering of Obser-
vational Behaviour. Geneva, July 1986

/13/ CCITT: Z.100 to Z.104 — SDL. Specification and
Description Language. Geneva, Red Book 1984.

/14/ 1S0: TC97/SC21/N1534 - Guidelines for the Applica-
tion of FDTs to OSI. Geneva, September 1986

/15/ 1S0:TC97/SC21/N1543 - Development for the Applica-
Ltion of FDTs to OSI. Geneva, September 1986

/16/ H. Ehring et.al.:ACT ONE, an Algebraic Specifica-
tion language with two Levels of Semantics. Be-
richt Nr. 83-03, Berlin University, 1983 -

/17/ A.J.R.G. Milner: A Calculus of Communication Sy-
stems. LNCS 92, Springer Verlag, Berlin 1980

/18/ C.A.R. Hoare: Communicating Sequential Processes.
Prentice Hall, London, 1985

/19/ D.P. Sidhu: Synthesis of Communication Protocols.
ICC 1982, 4C.5.1-4

/20/ L. Logrippo, A. Obaid, J.P. Briand, M.C. Fehri:
An Interpreter for LOTOS, A Specification Language
for Distributed Systems. Software Practice and Fx—
perience 18(4), 365-385.

/21/ R. Saracco: CCITT SDL: Overview of the Language

and its Applications. Computer Networks and ISDN
Systems 13 (1987), 65-74.

Processing Systems - Open
- Basic Reference Model,
Organization for Standardization,

[22/ J.P. Courtiat: How could Estelle become a better
FDT? Protocol Specification, Testing and Verifica-
tion VII, H. Rudin, C.H. West (Eds.), Elsevier
Science Publishers B.V. (North Holland), 43-60.

/23/ J. Bruijning: Evaluation and Integration of Speci-
fication Languages. Computer Networks and ISDN
Systems 13 (1987), 75-89.

[24/ G. T'Hoft: Formal description techniques; Communi-
cation tools for data communication specialists.
Computer Networks and ISDN Systems 14 (1987), 311-
321

/25/ J.L. Peterson: Petri nets. ACM Computing Surveys,
Vol. 9, Sept. 1977, 223-252

/26/ M. Jantzen, R. Valk: Formal properties of place/
transition nets. LNCS 84, Springer Verlag, Heidel-
berg, New York 1980

[27/ 0. Herzog, W. Reisig, R. Valk: Petri-Netze: ein
Abriss ihrer Grundlagen und Anwendungen. Informa-
tik Spektrum (1984) 7: 20-27

[28/ J.P.C. Kleijnen: Statistical Techniques in Simula-
tion, Part I and Part 1I, Marcel Dekker, Inc. New
York 1974/1975.

/29/ 0.J. Dunn, V.A. Clark: Applied Statistics: Analy-
sis of Variance and Regression. John Wiley+Sons,
New York, 1987

/30/ H. Stenger: Stichproben.
berg, Wien, 1986

/31/ P. Bratley, B.L. Fox, L.E. Schrage: A Guide to Si-
mulation. Springer-Verlag, New York, Berlin 1983.

/32/ C.H. Sauer, E.A. MacNair: Simulation of Computer
Communication Systems. Prentice-Hall, Inc. Engle-
wood Cliffs, New Jersey 1983

/33/ R.S. Lehmann: Computer Simulation and Modeling:
An Introduction. Distrib. by Halsted Press Div. of
John Wiley+Sons, New York, 1977

/34/ W.R. TFranta: The Process View of
North-llolland, New York 1977

/35/ G. Fishman: Concepts and Methods in Discrete Event
Digital Simulation. John Wiley+Sons, New York 1973

/36/ P.J. Kiviat, H.M. Markowitz, R. Villanueva: SIM-
SCRIPT 11.5 Programming Language. ed. Alasdar Mul-
larney, CACI, Los Angeles, 1983

/317/ L. Coyette, D. Duong, B. Delosme: Evolution of
performance evaluation packages. Modeling Tech-
niques and Performance Evaluation, S. Fdida and
G. Pujolle (eds.) Elsevier Science Publishers B.V.
North Holland 1987, 311-32]

/38/ T. Schriber: Simulation using GPSS. John Wiley+
Sons, New York 1974

/39/ W. Bux: Local-area subnetworks: A performance com-
parison. 1EEE Trans.Comm. Vol. COM-29, 10, Oct.
1981, 1465-1473.

/40/ E.C. Molina: Applications
bility to telephone
(1927), 461-494.

/41/ C.D. Crommelin: Delay probability formulae when
the holding times are constant. POEEJ 25(1932),
41-50

/42/ J. Riordan: Stochastic Service Systems. John Wiley
+Sons, New York 1962

/43/ R.B. Cooper: Introduction to Queueing Theory. The
Macmillan Comp. New York 1972

/44/ L. Kleinrock: Queueing Systems Vol. 1 and Vol. 2.
John Wiley + Sons, New York 1975/76

/45/ D. Gross, C.M. Harris: Fundamentals
Iheory. John Wiley+Sons, New York 1974

/46/ B. Hailpern, S. Owicki: Verifying network proto-
cols using temporal logic, ICC 1980, 18-28

/47/ W. Bauerfeld: Protocol performance prediction.
Proc. 1CC, Boston, Mass. June 1983

/48/ A. Danthine (ed.): Proc. Computer Network Proto-
cols Symposium lLiege, Belgium, Febr. 1978 (see
also Computer Networks, Vol. 2, No. 4/5, Sept/Oct.
1978

Physica-Verlag, Heidel-

Simulation.

of the theory of proba-
trunking problems. BSTJ 6

of Queueing

[49/ F. Baskett, K.M. Chandy, R.R. Muntz, F.G. Palacios

Open, closed and mixed networks of queues with
different classes of customers. J. ACM, Vol. 22,
248-260 |

/50/ G. Balbo, S.C. Bruell:
aggregation 1in
Perform. Evaluation, Vol. 3 (1983), 177-185

/51/ E.D. Lazowska, J. Zahorjan, G.S. Graham, K.C.
Sevcik: Quantitative System Performance. Englewood
Cliffs, NJ, Prentice Hall, 1984

/52/ C.H. Sauer, E.A. MacNair, J.F. Kurose: The re-
search queuing package: Past, present, and future.
Proc. 1982 Nat. Computer Conf., AFIPS 1982

/53/ BEST/1: Reference Manual. BGS Systems, Inc. Walt-
ham MA, 1986

/54/ RESQ Users Guide, IBM Corp., 1982

/55/ PAWS/A Users Guide, Information Research Associa—
tes, 1983

/56/ A.E. Krzesinski, M. Booyens, P.S. Kritzinger, P.
Teunissen, S. van Wyk: SNAP — An analytical multi-
class queueing network analyzer. Proc. Int. Conf.

Computational aspects of

multiple class queueing networks.

Mod. Techn. Tools Perform. Analys., Paris, France,
May 1984
/57/ MAP Reference Manual. Quantitative System Perfor-
- mance, Inc. Seattle, WA 1986
/58/ S.K. Tripathi, A.K. Agrawala, M. Abrams, K.K. Ra-
makrishnan, M. Singhal: STEP-1: A user friendly
performance analysis tool. Proc. Int. Conf. Mod.

Techn. Tools Perform. Analys., Paris, France, May
1984, 201-221
/59/ M. Veran, D.

Potier: QNAP 2: A portable environ-
ment for queueing networks modeling. Proc. Int.
Conf. Mod. Techn. Tools Perform. Analys., Paris,
France, May 1984, 25-63

/60/ H. Beilner, J. Maeter: COPE: Past, present and
future. Proc. Int. Conf. Mod. Techn. Tools Perform
Analys., Paris, France, May 1984, 181-199

/61/ G. Bolch, 6. Zeis: Softwaretools zur Leistungsbe-
wertung von Rechensystemen. Angewandte Informatik
11/1987, 470-480

/62/ V. Rego, L.M. Ni: Apalytic models of cyclic ser-
vice systems and their application to token-
passing local networks. IEEE Trans. Comp. Vol. 37,
No. 10, Oct. 1988, 1224-1234

/63/ P.J. Courtois: Decomposability: Queueing and Com-
puter System Applications. Academic Press, NY 1977

/64/ S.C. Agrawal, J.P. Buzen: The aggregate server
method for analyzing serialization delays in com-
puter systems. ACM TOCS 1, 2, May 1983,116-143

/65/ A. Thomasian: Queueing network models to estimate
serialization delays in computer systems. Proc.
Performance 83, Maryland, North Holland 1983 45-59

/66/ D. Mailles, S. Fdida: Queueing systems with flag
mechanisms. Modeling Techniques and Perform.
Evaluat., S. Fdida, G. Pujolle (eds.), Elsevier
Science Publishers, North Holland 1987, 167-190

/67/ M.K. Molloy: On the integration of delay and
throughput measures in distributed processing mo-
dels. Ph.D. dissertation, UCLA 1981

/68/ M. Vernon, J. Zahorjan, E.D. Lazowska: A compari-
son of performance Petri nets and queueing network
models. Modeling Techniques and Perform. Evaluat.,
S. Fdida, G. Pujolle (eds.), Elsevier Science
Publishers, North Holland 1987, 191-202

/69/ G. Balbo, S.C. Bruell, S. Ghanta: Combining queue-
ing networks and generalized stochastic Petri nets
for the solution of complex models of system be-
haviour. IEEE Trans. Computers, Vol. 37, No. 10,
Oct 1988, 1251-1268

/70/ M. Ajmone-Marsan, G. Balbo, G. Ciardo, G. Conte: A
software tool for the automatic analysis of gene-
ralized stochastic Petri net models. Proc. Int.
Lonf. Modeling Techniques Tools Perform. Analys. .

i ————— e

Paris, France, May 1984
/71/ G. Chiola: Great SPN Users Manual, Vers. 1.3, Di-
part. Informatica, Univ. Torino, Aug. 1983

[72/ D. Manfield, P. Tran-Gia, H. Jans: Modeling and
performance analysis of inter-processor messaging
in distributed systems. Performance Evaluation 7
(1987), 285-298

/73/ J. Zahorjan, E.D. Lazowska, K.C. Sevcik: The use
of approximations in production performance evalu-
ation software. Modeling Techniques and Perform.
Evaluat., S. Fdida, G. Pujolle (eds.), Elsevier
Science Publishers, North Holland 1987, 297-307

/74/ 1.F. Akyildiz: On the exact and approximate
throughput analysis of closed queueing networks
with blocking. IEEE Trans. Software Eng., Vol. 14,
No. 1, 62-70

[715/ 1.F. Akyildiz: Mean value analysis for blocking
queueing networks. lEEE Trans. Software Eng., Vol.
14, No.4, April 1988, 418-428

/76/ G. Chiola: A graphical Petri net tool for perfor-
mance analysis. Modeling Techniques and Perform.
Evaluat., S. Fdida, G. Pujolle (eds.), Elsevier
Science Publishers, North Holland 1987, 323-333

[17/ P.S. Kritzinger: Protocol performance using image
protocols. Protocol Specification, Testing and
Verification VII, H. Rudin, C.H. West (Eds.),
Elsevier Science Publishers B.V. (North Holland),
321-335

/78/ S.S. Lam, A.U. Shankar: Protocol verification via
projections. IEEE Trans. Software Engin., Vol. SE-
10, 4, July 1984, 325-342

[79/ 7. Papir: Validation of admission delay model for
two-link wvirtual route with window flow control.
Performance Evaluation 7 (1987), 83-86

/80/ 150/1C97/5C21/WG16-1, 0SI Conformance testing
methodology and framework, edited by D. Rayner,
Egham, Sept. 1986. Part 1: General Concepts, 150/
TC97/SC21 N1525, Part 2: Abstract test suite spe-—
cification, 1SO0/TC97/SC21 N1526, Part 3-6: [S0/
1C97/5C21 N 1514, (1SO DP 9646/1 and DP 9646/2)

/81/ D. Rayner: Progress on standardizing OS] confor-
mance testing. Computer Standards and Interfaces 5
(1986), 317-334

/82/ B. Sarikaya, G. Bochman: Synchronization and spe-
cification issues in protocol testing. 1EEE Trans.
Communic. Vol.32, No. 4, April 1984, 389-395

/83/ E.P. Rathgeb, C. Homann, H.L. Truong, G. Waldmann:
Protocol testing for the ISDN D-channel network
layer. Protocol Specification, Testing and Verifi-
cation VII, H. Rudin, C.H. West (Eds.), Elsevier

Science Publishers B.V. (North Holland), 421-434

