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In this paper a Special Semi-Markov Process (SSMP) for modeling ATM in-
put processes at the cell level is introduced. The discrete SSMP/G/1 queue is
analyzed yielding a recursive formula of the waiting time distribution for the
calculation of which an accurate numerical algorithm is given. Finally, correla-
tion effects of the interarrival time on queues is discussed.

1 Introduction

Successful design of the future Broadband ISDN (Integrated Service Digital Network) op-
erated by the ATM (Asynchronous Transfer Mode) principle depends on adequate models
of the traffic sources which include characteristic correlation properties. In this paper a
class of Special Semi-Markov Processes (SSMP) is suggested for modeling these sources.
It 1s shown that the SSMP can directly represent discrete processes, especially the input
processes resulting from the ATM systems. As a first application the SSMP/G/1 queueing
system is analyzed yielding a recursive formula for the stationary waiting time distribution.
The correlation effect of input processes on the waiting time is discussed.

Some other kinds of special semi-Markov processes e.g. [10] [6], including the well-
known Markov-modulated Poisson processes (MMPP), are restricted to continuous pro-
cesses. Queues with general semi-Markov input processes and some specific service time
distributions are analyzed in [3] [7] [8].

2 Characterisation of SSMP

A descriptive definition of a semi-Markov process (SMP) is given in [9]. An SMP is a
stochastic process which moves from one to another of a countable number of states. The
successive states visited form a Markov chain and the process staysin a given state a random
length of time with a distribution function (d.f.) which may depend on this state as well
as on the one to be visited next. The SSMP is an SMP whose sojourn time distribution in
a given state depends only on the actual state. Hence, the transition distribution matrix

9] of this SSMP is given by
Q = (Qij(z)) = (pi; Fi(z)), 0 <z < oo, 5§ = 1,200 ot (1)
or in discrete-time domain

Q=(Qi.?(k))=(p‘]ﬂ(k))ﬁ k=011:23'”1 i:j= 1,2,.--,m (2)



where P = (p;;) denotes the transition probability matrix of the Markov chain, and F; the
sojourn time d.f. in state :. The arrival occurs immediately after the process has jumped

to the next state.

Let P; be the stationary probability of the matrix P, the marginal d.f. of the interarrival
time 1s given by

F(z) = )  PiF{z). (3)

1=1

The h-th order transition probability matrix of P is given by the A-th power of P:
P = Pk = (p})). (4)
Then the h-th order autocorrelation coefficient of the interarrival time is
Z Z Pf:‘i_'i(pgf) —- P;)X;
Th = ﬂi—ﬁw—“a (5)

where X; is the mean of the random variable having the d.f. Fi(z) and Var(X) is the
variance of F(z). For the two-state case (m=2) this formula is reduced to

. Hh,PlPQ(:\-;-] == _)?2)?_

Th = Var(X) ’ (6)

where k is the first order correlation coefficient of the Markov chain with the transition
probability matrix P and is given by k = 1 — p12 — p91.

3 SSMP as traffic source models in ATM systems

In an ATM system the cell generating process from different call types can be easily char-
acterized by the SSMP. Here are some simple examples:

e Voice source: a two-state SSMP could be used. State 1 corresponds to the silent
period and additionally the talk spurt in case of one cell (at least in the theoretical
case), state 2 to the talk spurt in case of more than one cell, Fig.1. The interarrival
time distribution functions in the each state are chosen as follows

) 0, k<d ~_ )0, k<d -
Fl(k) B { Fsil(k - d), k> d Falk) = { 1, k> d (7)

where d describes the constant interval of two successive cells and Fi;;(k) is the distri-
bution of the silent length. In this model the silent length is not necessarily geometric
distributed. The number of cells in the talk spurt has a geometric distribution, but
this restriction can also be by-passed by taking more states for the talk spurt.

e Video with variable bit rate: every state 7,7 = 1,2,---, m means a state with
relatively constant bit rate A;, Fig.2. The diagonal element p;; of P should be strongly
greater than other element p;;, since a scene of relatively constant moving contents
lasts for a while. A geometric distribution for F;(k) may be sufficient. Another
distribution type could be used to fit the slight variations around ;.

e Data source: many data sources can be approximated by renewal processes, which
can be regarded as SSMP with only one state.
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Fig. 1 A two-state SSMP model of an individual call with talk spurt and silent period.
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Fig. 2 An SSMP model for a variable bit rate video source.

¢ The superposition of several SSMP processes does not necessarily result an SSMP.
But it could be approximated by an SSMP having only few states. Markov modu-

lated Poisson processes (MMPP) are successfully applied for modeling superposition
processes in many areas. A very close relation between SSMP and MMPP can be

proven: an MMPP having two states is actually a continuous-time SSMP.

4 Waiting time distribution of the discrete SSMP/G/1 queue

In [2] a relation for the waiting time of SM/G/1 queue is given, which can only be solved
for some particular cases. Our approach is based on the Lindley equation [5]. The following

notations are used in the sequel:

Ay
B,
W,
S
Cin-1),i
Ps(z)

Px (k)
Px_s.(k,1)

time between (n — 1)-st and n-th arrivals
service time of n-th job

waiting time of n-th job

state for n-th arrival (S5, = 1,2,---,m)
By — An-—ll(sn-—l — 7')

Pr{S = 1}

Pr{X = k time slots}

Pr{X, = k time slots A S, = }

The bi-variante sequence {(W,, Sn),n = 0,1,---, } is a Markov process, since the stochas-



tic properties of (W,,S,) can be completely described by (Wp_1, Sn-1):

1%% _ M;n—l T Bn = An-—llsn——l; 1 I/V'n—l + Bn - An—lISn—l Z 0; (8)
o 0 otherwise;
Ps.(7) = ) _pijPs,_, (). (9)
1=1

Qur aim is to obtain a recursive formula for the joint probability density Pw,s,(k,7).
Because the state S,, is not determined by W,_; we have

PI{W =k35n:j|‘4fﬂ—1 _l Sﬂ 1 —3}
Pr{Wn = kIW 1 =10,51 = t}PI‘{Sn = jISn-—l = 3}
pi; Pr{W, = k|W,_; =1, 5,1 = 1}. (10)

From eq.(8) with the random variable C(,_;); defined above we obtain

Pr{W, = k|Wy—y = ,Cla_nyji=¢}= { ﬁgz)—z-c) gthz;gio; (11)
From this equation we have
Pr{W, = k|W,_1 =1, 5,-1 = i} (12)
=S Pr{Wy = EWaer = 1, Cinor)} P, (€) (13)
_"PC(n_n,;(k —[) it & > 0,
- ZO: P, _(c=1) ifk=0. (14)
From eq.(10) we have
pii Poi_yy i (k= 1) if k> 0;
Pr{Wn =k, Sn = jiWar =LSaa =i} =0 §~ popo o py k=0 (1Y

The recursive formula for joint probability density Pw, s, (k,7) is then obtained

>

[=01

Pr{W, =k, S, = j|Wa_1=1,5.-1 = i} Pw,_,s._,({,%) (16)
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P:jPC(n_l) i(k - DPw, _.s._,(,1) ifA>0

oy
i
-

(17)

[~]8
mwmﬂ

0
Z pi;Pci,_iy (¢ =) Pw,_s,_, (I, 1) ifk=0

C=

N
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or in a compact form which we call the extended Lindley-equation (5]

PWﬂSﬂ(k’j) -t ZP‘:.?'WO[PC(H—I),:E (k) * Pwn—lsn—l (k‘! ?’)] (18)
1=1



where the convolution operator * is defined

oo

z(k)*y(k):= ) a(k-Dy(l) (19)

|==00

and mg denotes the discrete version of the sweeping up operator:

0, k<0
0
ro(z(k) =< > z(), k=0 (20)
[=—00
z(k), k>0

Since the random variable C(n—l),i is the sum of B, and —A,_1|(Sr-1 = 1), its probability
density is then given by the convolusion:

PC(n—l).i(k) = PAn—ll(Sn-—l =1)(_k) * PBn(k)? (21)
where the conditional probability for the interarrival time is given by
Pa, i |(Sni=i)(k) = Fi(k) = Fi(k — 1) = Pa(k) (22)

which is actually independent on n. Also Pg_(k) is the service time probability density and
is assumed to be time-invariant:

Pg,.(k) = Pp(k) (23)

Finally, we obtain | |
Pc(n (k) = Poilk)= PA‘i(k‘) x Pg(k) (24)

Eq.(18) is reduced to the Lindley-equation [5] in case of renewal arrival processes, that
means if F;(k) = F(k) or p;; = P;.

—1),i

5 Numerical algorithm for the stationary waiting time distribution

The stationary waiting time_distributibn may be solved by taking the limit of eq.(18) , with
eq.(24)

Pws(k,7) = ) _pijwo[Pc,i(k) * Pws(k,1)] (25)
1=1

where nan;g Pw.s.(k,i) = Pws(k,?). The waiting time probability density and the d.i. are

given by
Pw(k) =)  Pw,s,(k,1) (26)

1=1
and
k :
Fw(k) =) Pw(l) (27)
(=0

In case of a renewal arrival process the stationary probability density can be very efh-
ciently and accurately solved by using the Cepstrum concept [1}, which is unfortunately
not straight forward applicable for other SSMP. We apply the directly iterative method
whereby the FFT (fast Fourier transform) algorithm is used for efficient computation of
the convolutions [1]. The calculation schema for one iteration is represented in Fig.3.
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Fig. 3 Calculation schema for the waiting time probability density of a two-state
SSMP/G/1 queue.

The necessary number of iterations is clearly dependent on the starting density Py, s, (k,2),
on the minimal error required, and on the parameters of the queue. So if the load p = B/A

(A: mean interarrival time, B: mean service time) or the correlation r, eq.(6) is high, one
needs more iterations for the same accuracy. To ensure the error not exceeding a prescribed
limit we choose two iteration sets, one with a starting d.f. which is definitely under the
stationary d.f. and the other definitely over. The former approaches up to the stationary
waiting time distribution, while the latter approaches down to it. This makes possible to
give an error measure about the calculated waiting time distribution. A universal, but not
efficient choise of the two starting functions could be

Pw, s, u(k, 1) = 5 6l &), Pw,s,.0(k,1) = F; 6(k — K) (28)

where K is the maximal distribution length. If information about the waiting time distri-
bution is a priori available, more efficient starting functions could be used.

One error measure can be defined as the maximal relative error of the complementary
d.f. Gw(k) = 1— Fw(k) and given by '
{IGw,a(k‘) — Gwu(k)|

Gw (k)

where Gw (k) = 0.5[Gw o(k)+Gw,u(k)] and G ;, is the prescribed minimal level of G- (k).
The iteration is stopped, if the error A is less than a prescribed value.

A = max } for k=0,1,---,K and Gw(k) > Gmin (29)

To illustrate how this algorithm works, we choose the well-known M/M/1 queue having
the load p = 0.7. However the interarrival time d.f. und the service time d.f. are discretized
to enable the use of our method. The results after 10th, 20th, 30th, 40th iterations from
both sides and the exact result are shown in Fig.4.

6 Correlation effect on queues

We now give a numerical example of the two-state SSMP/D/1 queue where the marginal
distribution of the interarrival time is kept fixed for a given load p. The service time has



a normalized constant length of 1. The interarrival time in state 1 or 2 is geometric or
binomial distributed, respectively:

Par(k) = (1-q)gf, k=0,1,-- (30)

PA,?(k) ( i_ ) (1 — GZ)kq;_ka k = 01 1':' g€ (31)

Following parameters are chosen to be fixed
6232, P1=0.9, .P2=0.1.

For a given load p the parameters ¢; and g2 are chosen under the balanced mean condition
Py A; = P, A, and given by

@2=1—-—— (32)

For a given p the only parameter which can be varied is the correlation measure s eq.(6).
The mean waiting time depending on x is shown in Fig.5. We can conclude irom our
results that the positive correlation have negative effect on the queueing performance. This
negative effect increases for increasing correlation and increasing load. Thus when designing

an ATM system the correlation of input processes should be generally taken ito account
and the renewal assumption or renewal approximation of these processes must be very

carefully examined.
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Fig. 4 The compl. waiting distributions Fig. 5 Mean waiting W of a two-state
of the discretized M/M/1 queue SSMP/D/1 queue in dependence of
after 10th, 20th, 30th, 40th itera- correlation x eq.(6).
tions from both sides.

7 Final remarks

This paper presents first queueing results of the SSMP model. Future research will be
done to solve some loss systems in which the assumption of an infinite queue size can not



be made. Formula very close to the extended Lindley equation for these systems can be
obtained and the lost probability can be calculated, which is extremely important for some
data types in B-ISDN. Lost probability is discussed by Tran-Gia and Ahmadi for renewal

batch arrival [11].
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