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Local Correlation Properties of Random Sequences
Generated by Queueing System M /M| 1

by Wenyue Ding and Friedrich Schreiber *

Report from the Institute of Teleprocessing, Aachen University of Technology

The elementary queueing system M/M/1 generates correlated random X-sequences ¢.g. the occu-
pancy, the waiting or delay time, whose stationary distribution functions F (x) are well known. By
means of “F (x) equivalent” 2-node Markov chains formulae are derived for the so-called local
correlation coefficient ¢ (x), which characterizes the correlation at any point x within the definition
range of these sequences. This correlation measure is important for error statements when evaluating
random sequences and is needed for the simulation as well as for the performance evaluation of

queueing systems.

Lokale Korrelationseigenschaften der vom Wartesystem M/M/1 erzeugten Zufallssequenzen

Das elementare Wartesystem M/M/1 erzeugt korrelierte X-Zufallssequenzen, z. B. die Belegung,
Warte- oder Durchlaufzeit, deren stationire Verteilungsfunktionen F (x) wohlbekannt sind. Mit
Hilfe von ,F (x) dquivalenten® 2gliedrigen Markov-Ketten werden Formeln fur den sogenannten
lokalen Korrelationskoeffizienten o (x) abgeleitet, der die Korrelation an einem beliebigen Punkt x
innerhalb des Definitionsbereiches dieser Sequenzen charakterisiert. Dieses Korrelationsmal} ist
generell wichtig fiir Fehleraussagen bei der statistischen Auswertung von Zufallssequenzen und wird
fiir die Simulation von Wartesystemen ebenso bendtigt wie fiir deren Leistungsbewertung.

1. Introduction

In applying queueing theory to modelling and per-
formance analysis of computer and communication
systems, it is usually sufficient to make statements
about the stationary distribution function or the sta-
tionary moments of the random variables of interest,
such as occupancy or waiting time. But it 1s known
that the chronological sequences of such random vari-
ables — called “random sequences” in short — show
strong correlations, which might become quite signifi-
cant for the evaluation of the systems and should
therefore deserve more attention.

Correlation considerations are necessary when for
example error statements about measured distribution
functions or moments have to be made in real or
simulated systems [5]. An extensive survey about the
work up to 1974 concerning this and other aspects has
been presented by Reynolds [12]. This and some newer
publications [8], [17] and [18] deal mostly with the
correlation coefficient ! of order i

Var (X) ’
which corresponds to the standard definition [9] and
will be denoted in the present context as the global

correlation coefficient representing a mean with re-
spect to all values of a random variable X.

0;=
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! In this paper it is not necessary to use the term “autocor-
relation”.

However, in order to determine the error at any
point x of a measured empirical distribution function
(d.f) F,(x), a different type of first order correlation
coefficient o (x) was defined in [15] by means of the
so-called “F (x)-equivalent” 2-node Markov-chain?,
which corresponds to a correlation measure 1ntro-
duced by Blomgqvist [1], [12] and is called the local
correlation coefficient, because it characterizes the
correlation in the local vicinity of any point x of the
random sequence. By example of the elementary
queueing system M/M/1, it 1s shown 1n the present
paper that this local correlation coefficient g (x), being
originally used and evaluated for simulation purposes
only [16], can be described by exact formulae as part
of the general queueing theory.

2. Random Sequence and Local Correlation Measure

2.1 A strict sense stationary random process produces
a continuous random variable X resp. a random se-
quence

X=(X,, Xppoos Xps Xyt 1s--2), 2)

which has the stationary d.f. and density
F(x)=Prob{X,Zx}; f(x)=dF(x)/dx. (3)

In case of a discrete random sequence with
X,€{0,1,2,...}, the density f(x) can be replaced by

2 The 2-node Markov-chain represents the elementary
generator for correlated 0/1-sequences [14] and is used 1n-
stead of the “F (x)-equivalent” binomial generator for uncor-
related 0/1-sequences, which is required for the statistical
determination of the empirical d.f. F,(x) of an independent
random sequence, see €.g. [7] and [13].
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its stationary probability function (p.f.)
Px)=F(x)—F(x—1), x=0,1,... (4)
The two-dimensional d.f.

F(x;, X;41):= Prob {XtéxtaXHl “__ile} (5)

of two successive random variables X,, X, , is needed
for describing the stochastic properties used here,
namely the first order correlations. In case of a contin-
uous random sequence the associated joined density is
given by

*F(x,, %, ,
FOxery) = S S Xe) _ e oy ey (6

axt axt—l— 1

where f(x,) is the stationary density eq.(3) and
J(x;41]x,) 1s a conditional density. In the case of a
discrete random sequence f(x,, x,, ;) is replaced by
the joint p.f.

P(xrrxt+1)=F(xt=xt—i—l)_F(xt_l:xtJrl_1):
ZP(xt+l|xt)P(xt)' (7)

Here P(x,) 1s the stationary p.f. eq. (4) and P(x, . | x,)
1s a conditional p.f., which in case of a homogeneous
Markov-chain is represented by the well known tran-
sition probabilities.

2.2 The local correlation coefficient g (x) will now be
defined. As shown by Fig. 1 [15], the definition range
of X on the real axis is divided into two parts at point
x, namely S, (x): {X,<x} and S, (x): {X,>x}. Now
we may introduce the local tranmsition probabilities
Do (x) and p, (x) being defined as the conditional prob-
abilities for the transition from the left to the right part
and vice versa )

Po (X):= Prob {x,,, >x|x,=x}, Sy(x) = S, (x);
pi(x):= Prob{x,,, <x|x,>x}, Sy (x) « S, (x).

In case of a continuous resp. discrete random se-
quence, the following formulae are obtained:

1 f 0o %) dxyd,
Po(x) ="~ F )
resp. x ng-i_l xiOP(x”xtJrl)
£ )
ITf(x”xtH)dxt dx. .
P (9 == 1—F (x)
ICSPp. x iﬁo x ‘é_'-lp(x“ xt+1)
- tl—F (x) "’

cf. eq.(6a,b) [15]. It can be shown that the double
integrals resp. the double sums of the first and of the
second line are equal. Now at any point x the local
correlation coefficient g (x) of the sequence is identical
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Fig. 1. Queueing system M/M/1: stationary compl. d.f
1 —F (x) and local correlation coefficient g (x) of different
random variables. Load: 4 =0.5 dotted, 4 =0.7 solid lines.
(a) Occupancy f, (b) delaytime d, (c) waiting time w.

with the correlation coefficient of an associated “F (x)-
equivalent” 2-node Markov-chain

e(X)=1=[po(x)=p, ()], —1=¢(x)=1, (10)

whose stationary probability Q (x) for state 0 is identi-
cal with the value of the stationary d.f. F (x) eq. (3) of
the considered random sequence

P1 (x)
Po (X) + p; (x)

see [14] and Section 3 [15]. From eq. (9) it is concluded
for the special case “X independent” that p,(x)=
1—F(x) and p,(x)=F (x) and that therefore g (x) is
always equal to O.

The coetficient g (x) describes the correlation of X,
X, atany point x and thereupon the local first order
correlation properties of the random sequence X: the
statement of g (x) characterizes the random process as
a supplement to the statement of the stationary distri-
bution function F (x)3.

Q(x) = = I (x),

(11)

* If we interpret x to be a signal amplitude as in statistical
signal theory, then we may interpret o (x) to be the first order
correlation coefficient depending on the amplitude.
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3. Local Correlation Coefficients
of Queueing System M/M/1

3.1 The Model M/M|1

In the queueing system M/M/1 considered here the
time a, between two successive arrivals of tasks N, and
N. ., is exponentially distributed with the density

f(a)=Aexp(—4a). (12)

The random sequence of the interarrival time (a,, a,,
...,d,d,.,...)is independent. The system has an un-
limited number of waiting positions and an exponen-
tially distributed service time b with the density

f(b)=pexp(—pub).

The random sequence of the service time (b, Dy swen
b,,b,,,...)is independent. Besides a and b are inde-
pendent of each other. The service strategy 1s first-in
first-out (FIFO). In order that the queueing system 1S
stable, the load 4 =A/u must be smaller than 1.

The occupancy f, is the number of tasks in the
system immediately after the output of task N, _. The
waiting time w, resp. the delaytime d, is the time be-
tween the arrival and the beginning of the service resp.
the end of the output of the task N,.

(13)

3.2 Occupancy

The occupancy B (i.e. the number of tasks in the
system) is a discrete random variable with the defini-
tion range {0, 1, ...}. During the service time b,, k>0
tasks can be received in the queueing system and the
occupancy will change from state ,> 0 into state /5, ,
=B, +k—1. For B,=0 as a special case, the state will
be B,.,=k, because in case of the empty queue the
first arriving task starting the service time b, has left
the system again at instant ¢+ 1. The number k of
tasks, which arrive during service time b,, 1s Poisson
distributed with the p.f. (Ab,)* exp (—Ab,)/k!. There-
fore the total probability P, (k) that k tasks have ar-
rived during b, is given by

P, (k)= | (Ab,)* exp(—Ab,)/k! uexp(—pb,)db, =
0

T outi\u+i)  144\U+4)
Thus we obtain the conditional p.f.*
P(ﬁt+1‘ﬁt]= (15)
Po(Brs 1) for f,=0;
=( Py (Bi+1— B +1) for f,>0, (Biv1—B+1)20;
0 otherwise.

In the stationary state B is geometrically distributed
with the d.f. F(B) and p.f. P(f)

FB)=1-A""" PH=(01-4)4". (16

4 Cohen has derived a similar formula for the case “imme-
diately after an arrival” [2].
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Then the joint probability according to eq.(7) 1s

P(ﬁtﬂ ﬁt+l) =
(1—A) ABe+1
(1,._|_A)ﬁt+1+1

— (1___A)Aﬁr+1+1
(1 _|_A)ﬁt+1—ﬂt+2

0 otherwise,

(17)

for f,=0;

for ,>0, (B+1—P:+1)20;

and by means of the double sum eq. (9) we obtain the
local transition probabilities

1—A4 Af*!

(B) = - p—
PO 144 1— 4FHT

1+ A4°

p,(p) = (18)

and following eq. (10) the local correlation coefficient
of the occupancy f

B=1— 12—
e = T A 1—Af
(19)
0 () = 2
— . o0) = :
e 1 44" £ 14+ 4
see Fig.1a.

3.3 Delaytime

The delaytime d, , ; of the task N, ; 18 a continuous
random variable, which depends on the delaytime d,
of the task foregoing N, and on the interarrival time a,
between N, and N,,,. If a, is greater than d,, N,
enters in an empty queueing system. In this case, the
waiting time w, , ; will be 0. Otherwise, N, , ; must wait
for the service until the task N, is finished. The waiting
time w, , , is equal to the delaytime d, minus the inter-
arrival time a,

L for
Yer1 T g _q for

a,=d

= (20)
a,<d,.
The delaytime d, . , consists of the waiting time w, 4
and the service time b, , ,

(21)

diy1=Wis1Tbe11-

By means of the Dirac-function o0 (x) we can assign to
eq. (20) the conditional density function

(22)
B 0(W;41) for a,2d;;
f(W:+1|draat)“{5 w, ,,—(d,—a,)] for a,<d,.

Integrating over all values of a, with “weight function”

" f(a,) eq.(12) a density depending on d, only is ob-

tained
(23)

— -exp[——i(dt—wﬁl)] for d,=2w,
0 otherwise.

The density of the sum of the random variables
eq.(21), which we now write in the conditional form
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d,,.|ld,=w,,|d,+b,,, 1s equal to the convolution
of the densities eq.(22) and f(b,, ) eq.(13)

£y i1d)=f eyl d) s £ (bysy) =

pexp[—uld,; 44 ‘|'Adt)]+

1 +Aexp[—p(d, 1 —d,)]

1+ 4 pexp|[—u(d,,+A4d,)]+
+ A exp[—-uA(dt—d:H)]

In the stationary state the delaytime d 1s described by
an exponential distribution with d.f. F (d) and density

f(d)

(24)

for d,,,2d,;

ot d,..y S

F(d)=1—exp[—(1—A) pd];

fd)=(1-A)pexp[—(1—A)pud]. >
The joint densitxy eq. (6) i1s then obtained
f(dt?dt+1)= (26)
pexp(—ud,,)[uexp(—pud)+
1— A +Aexp(Ad,)] for d,.,,=d,;

144 |uexp(—pud)[pexp(—pud )+
+Aexpid,,,)] for d,,,<d,.

Then the integral eq.(9) yields the local transition
probabilities

1—A1—exp[—(1+4)pud]

pﬂ(d)=1—|-A exp[(1—4) ud]—1 °
- (27)
py(d)= T {1 —exp[—(1+4) ud]},

and following eq.(10) we obtain the local correlation
coefficient of the delaytime d

1—A 1—exp[—(1+A4)ud]
1+4 1—exp[—(—A4)pud]

¢(d)=1 (28)

with the initial value ¢ (0)=0 and the same end value
0(c0)=2A/(1+ A) as for the occupancy p, see Fig. 1b.
3.4 Waiting Time

The waiting time w 1s treated as another example of
a continuous variable with correlation. With d,=
w,+ b, we conclude from eq.(20)

" B 0
‘T lw,+b,—a,

and obtain the conditional density

for
for

a,=zw,+b,

a<w il U

f(wr+1‘wt, bt, at) = {5 (wt+1)
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The stationary d.f. F(w) and density f(w) of the
waiting time are

Fw=1—Aexp[—(1—A4) uwl;

Jw)=(1—-A){d(w)+Aexp[—(1—A4) uw]}.
Therefore we obtain from eq. (6) the joint density
1—A
1+ A4

(32)

[0(W;41) 0(W,)+

+o(w, )Aexp(—uw,)+

+o(w,)Aexp(—puw, )]+
1—A {A%exp(—puw, +4iw, for w,, 2w,
Al

f(wt, wt+1) =

(33)

Atexp(—uw,+Aw,, ) for w,,.,<w,,

from eq. (9) the local transition probabilities

1—A Aexp[—(1—A4) uw]

PU(W)—I ;
+A1—Aexp[—(1—A) uwj
(34)
1—A4
pl (W)— 1—|—A .

and thereupon the local correlation coefficient ¢ (w)
for the waiting time w

1—A 1
1+A1—Aexp[—(1—A) uw]

0 (w)=1 (35)

with the same 1nitial value ¢ (0) and the same end
value g (o0) as for g (f) eq. (19), see Fig.1c.

3.5 Evaluation of the Results

As can be concluded from Fig. 1, the local correla-
tion coefficients g (f), ¢ (d) and o (w) of queueing sys-
tem M/M/1 are positive and increase monotonously
to approach the common limit ¢o(c0)=2A4/(1+ A).
Fig. 2 shows in case of the waiting time w the “band-
width” of the p-value as a function of the load A4: the
initial value g (0), the end value ¢ (c0) and the function
o (w), which 1s obtained by introducing the mean
waiting time uw =A/(1 — A) instead of uw in eq. (35)

1—A4 1

e(w)=1 1+4 1—Aexp(—A) (36)

As expected, the correlation increases monotonously
with rising load A. The corresponding functions g ()

for
for

a=w,—b,;

a,<w,+b,. (39)

Since a, eq.(12) and b, eq.(13) are independent we obtain the total conditional density depending on w,

only

f(wt+1|wt)=if Ef(wm\wt, b,y a,) £ (b,) f (a,) db, da, =

5(wt+1)e):p(—lwt)—|—
+A~exp[_‘u(wt+1_wt)] for Wt-!-l;wt;

P46 (w,eq) exp(—2w,)+
+Aexp[—A(w,—w,,.,)] for w,., <w,.
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I Fig. 2. Queueing system M/M/1: “band-width” of the local
correlation coefficient ¢ (w) of waiting time w as function of
the load A. p(0)=A/(1+ A), o(00)=2A/(1+ A).

resp. ¢ (d) can be obtained from ¢q.(19) and eq. (35)
by substituting f=p=A/(1 — A) respectively

ud=ud=1/(1-A).

4. Conclusion

4.1 The correlation formulae ¢ (), o(d) and o (w)
confirm the simulation results, Fig. 7a,b 1n [16]. As 1t
1s shown there, the function g (x) 1s required for the
statistical measurement of the distribution function
F (x) of a correlated random sequence, in order to
establish an error formula for the simulation run
length control, see eq. (4) and Section 3.3 1n [16].

4.2 The description of the correlation behaviour of
important random variables of a queueing system
such as occupancy, waiting time etc. by means of the
local correlation measurement p(x) completes or
knowledge about a queueing system and might have
a practical significance under various aspects. There-
fore 1t 1s 1interesting to investigate other queueing sys-
tems such as M/G/1 or the special system M/H,/1
with regard to the p(x)-functions and the effect of
other service strategies instead of FIFO. New investi-
gations [10] have shown for example that the optimal
strategy Shortest Remaining Processing Time First
(SRPT), which can be applied with considerable ad-
vantage in communication systems [6], [11], yields not
only a minimal mean value and a relatively small
variance of the delay time d, but also a decorrelated
delay time, namely ¢ (d) ~ 0, this feature represents an
additional important advantage of the SRPT-strate-
gy.
4.3 In this paper only the local correlation coeffi-
cient of the first order o (x) =, (x) was considered.
Further investigations can be devoted to the local
correlation coefficients of higher order o, (x), x=
2,3, ... as defined 1n 1n Section 6.2 [15], and to the
covariance spectrums defined by Blomqvist [1].

4.4 In case of a discrete random variable like e.g.
the occupancy f of a queueing system it might become
useful for statistical purposes to describe the interac-
tion between any single state ff and the entirety of all
other states by a “P(f) equivalent” 2-node Markov
chain and therefore by a local correlation coefficient
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0* (f) being attributed to the state f under consider-
ation. To give an example the following formula has
been obtained for the occupancy f of system M/M/1

A
1+ 4 for p=0;
2™ (h)= |+ A+ A2 : N
G+ A [A—(—ayar o P>0;
. A (37)
et ()= a7

This concept can be modified to serve also 1n cases of
a continuous random variable.
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