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In this paper we introduce a correlated input process model SSMP (Special Semi-Markov Process) for telecom-
munication networks. Many other models, including the two-state Markov modulated Poisson process MMPP(2),
separately treated in the literature are shown to be special cases. The SSMP can be applied for directly modeling
discrete-time input processes which are important for the future broadband ISDN. The SSMP can be used for
modeling individual processes as well as their superpositions. Based on measurements of interarrival time, fitting
equations for a two-state SSMP are given and validated by simulation examples. Finally, the effects of correlations
and the marginal distributions of interarrival time on queueing performance are discussed.

1 Introduction

Correlated input process models are of increasing interest for the
performance evaluation of telecommunication networks. This is
due to the fact that the superposition of bursty input processes,
e.g. overflow processes or packetized voice sources, are often
shown to be non-renewal.

Bursty properties can also be expected in the future network
B-ISDN partly due to the variable bit rate video traffic. Models
are provided for video sources e.g. in [9], [12]. The superposi-
tion of these video and other traffic sources such as voice, data
etc. may yield a complex arrival process characterized by high
peak rates, long bursts, general marginal distributions and cor-
relations between arrivals.

Markov modulated Poisson processes, especially those having
two states MMPP(2), have been successfully applied for model-
ing input processes, e.g. [4], [5], [7], [15], [11].

Ramaswami and Latouche provide a discrete phase type (PH)
model for packet arrival from individual asynchronous input
lines [14]. Fontana and Guerrero [3] proposed another corre-
lated arrival process model called multi-mode process which is
based on a discrete-time Markov chain and exponential distribu-
tions of the interarrival times in each state. This model aimed
at characterizing the interarrival time correlations, which are
discussed in the packet train model by Jain and Routhier [6].

In this paper we introduce a Special Semi-Markov Process

(SSMP) for modeling input processes because of the following
facts:

® Many statistical properties of input processes can be taken
Into account in the SSMP: e.g. arbitrary marginal distri-

bution of interarrival times, correlations between arrivals,
burstiness, etc.

® Both continuous-time and discrete-time processes can be
described by SSMP. The latter is appropriate for the input
Processes in ATM (Asynchronous Transfer Mode) systems.

* Many other correlated input process models mentioned

above can be regarded as special cases of SSMP, see sec-
tion 2 and 3.

e Queues with the SSMP as input processes can be analyzed
by using the methods provided in [2].

2 The SSMP model and its applicability in
telecommunication networks

The SSMP is simply an extended model of the multi-mode pro-
cess [3]. Instead of exponentially distributed interarrival time in

each state, the SSMP allows a general distribution type. Com-
pared with the multi-mode process and also the MMPP the
advantages of our model are obvious:

1. The SSMP can fit an arbitrary marginal distribution func-
tion of interarrival time;

2. as a result of 1 the SSMP can directly describe the discrete-
time processes that are useful for modeling among others
the input processes of ATM systems.

An SSMP(m) has m states. Depending on state 7 the interar-
rival time has a distribution function F;(z). The state change
occurs immediately after an arrival according to a Markov chain
with the probability transition matrix P = (p;;). The SSMP 1s
a special case of the semi Markov process whose interarrival
distribution depends on both states ¢ and j [13].

Let P; be the stationary probability for state ¢ of the Markov
chain with transition matrix P, the marginal distribution of the

interarrival time is given by

F(z) =) PiFi(z). (1)

i=1

Let X; be the mean interarrival time in state i and Var(X) the
variance of the total arrival time X given by eq.(1), then the
h-th order correlation coefficient between interarrival times can

be obtained:

S ) RXG - P)X;
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where pg‘ ) is the element of h-th order transition probability
matrix defined as "
(Pij )=P o (3)
In case of m = 2 eq.(2) is reduced to
ﬁh.Ple(?l — -fz)z
Py = Var(X) (4)

where k 1s the first order correlation coefficient of the 2-node
Markov chain given by

K=1-p12—pn (5)

whose stationary probabilities are given by

Py = PZI’ P,=1-P. (6)

T 1—-k

From eq.(4) we conclude that for the conditions x > 0 and
Py, P, > 0and X; # X, the correlation coefficient ph 1s positive
and decreases geometrically with h. Another useful correlation
measure will be defined in section 4.

Applying the SSMP for modeling input processes is moti-
vated by the fact that many correlated input process models
discussed in the literature can be regarded as special cases of
SSMP and can be equivalently or alternatively represented by
SSMP. Here are some examples:

e When the distribution function F;(z) is exponential, the
SSMP degenerates into a multi-mode process [3] which can
be proven to be equivalent to the well-known MMPP(2) in
case of two states, see section 3. The MMPP(2) is widely
used for modeling overflow processes e.g. [11] and super-
position processes of packetized voice and data sources e.g.

5].

e The SSMP provides an alternative description to the dis-
crete PH model introduced by Ramaswami and Latouche
[14] for modeling individual calls in an ATM-network. Dif-
ferently to a PH model e.g. Fig. 3 [14] we need no extra
states for the silent period of a call, see Fig. 1. The in-

terarrival time distribution for states i = 2,---, m is given
by
10, =z<d;
Fl'(I)"'{ 1, z>d (7)

where d describes the constant interval of two successive
packets (cells) during the talk spurt [2]. The interarrival
time for state 1 is the sum of the silent period and d:

F1 (.1:) = { %Sil(‘r - d), : :_<>_ g; (8)

where F;)(z) is the distribution of the silent length. The
transition probability p;; corresponds to the probability of
the number of packets during the talk spurts.

falk spurt ——
silent period

Fig. 1 The SSMP model of an individual call with talk spurt
and silent period.

e SSMP is a natural candidate for modeling video sources
with variable bit rate [2]. The states correspond the the
levels of the arrival rates. The distribution in each state
describes the slight variation of the rate.

e Batch arrivals can be easily introduced in our model by
allowing F;(z) having a step at z = 0. In Fig. 2 it is
shown a renewal process with batch arrivals. But our mode]
1s obviously not restricted to these renewal batch arrivals.

The parameters are chosen as follows:

0, z<0;
F;(:ﬂ):{ 1, a:;O (9)

for 1=2,---,m

Fi(z) corresponds to the distribution of the renewal inter-
val, p;; to the density of the number of batches.

batches \ ,
renewal interval

Fig. 2 SSMP as a model for renewal process with batch ar-
rivals.

e A special case of SSMP is used for modeling a process re-
sulting from a load distribution scheduling strategy pro-
posed by Tran-Gia and Rathgeb [17]. The matrix P of this

process has a cyclic structure, Fig.3:

Fig. 3 A special case of SSMP used in [17].

3 Matching the MMPP(2) by a 2 state SSMP
model

The MMPP(2) is applied to model input processes for several
purposes, see section 1. In this section we show that the count-
ing process of MMPP(2) can be exactly matched by the count-
ing process of an SSMP(2) having exponential distribution in
each state. A stronger result is given in [8]: The point pro-
cesses generated by the MMPP(2) and its matched SSMP(2)

are stochastically equivalent!

The MMPP(2) is characterized by two matrices [11]: the
matrix of arrival intensities A and the state transition matrix
of an underlying continuous-iime Markov chain R given by

_ Al 0 _ —T1 r
=B 8) me(mn) o
Let X, be the time between the (n — 1)-st and n-th arrival
(Xo = 0), Jn the state of the Markov chain while the n-th

arrival occurs. The sequence {(Xn,Jn),n > 0} is a Markov



renewal sequence [13]. The transition probability matrix F(z)
and its Laplace-Stieltjes transform f*(s) are given by [10]

i} .
F(z) = f lR-A)lpdy, (11)
0

f*'(s) = E{e™*X} = (sI-Q+ A)"'A. (12)

We begin to characterize the event-stationary version of
MMPP(2). The stationary probability of the matrix (p;;) =
F(z — o0) is given by

Airy Aary
p = (5

- - 13
ATy 4+ Agry Apra+ )«2"1) (15)

The sum variable S,, = X;+X2+4- -+ X, has the distribution
function

Fs_(z) = Pr{S, <z} (14)
where Fs,(z) = 1 for z > 0. The density of Sy, is given by

Z PJo }: FJuJi(I Z FJ.-;J (I) (15)

Ju-—l Jl'"'l -.—1

where (p1,p2) = p and Fj;(z) is element of F(z) eq.(11). The
Laplace transform can be obtained:

2 2
£5.8)= Y pse D fion(s): Z f3._,2.(8)  (16)

JD=1 J1=1 l‘l"l

or in a matrix form
f5.(s) = p[f*(s)]"e, (17)
where e = (1,1)7.

Let N; be the number of arrivals during the time interval
(0,%]. The relation between N; and S, is obviously

Pr{N; < n} =Pr{S, >t} =1- Fs_(1) (18)

and

Pn,(n) =Pr{N;=n}=Pr{N; <n+1}—-Pr{N,; < n}
— FSn (t) == FS.+1 (t) (19)

The z-Transform of Py, (n) is given by

Qw,(2) Z[an(t) — Fs,,,()]z"
= (20)

l Z_IEFS (t)z

4 n=0

The Laplace transform of Qx,(z) with respect to f is then given
by

®(s,z) = WQN,(Z)E i
0
1 z-=1lg=, /\.n
= —+ =Y f (21)

Inserting f3 (s) in eq.(17), we obtain

B(s,2) = —+— Zp[f"'(s
n=0
= —+ I -t te, (22

where I = diag(1, 1). Finally with p eq.(13) and f*(s) eq.(12)

we have

3+£E—£(c- d)z
B(s,2) = d —_
.52+a3+c-—z[s(a-b)+2c—d]+z2(c—-d)

(23)
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where a, b, ¢, d are only dependent on the parameters Ay, A,,
ri, r2 and given by

At + A2+ 1+ 12

A1Ag + A1rg + Aary
Arg + Agry.

a
b
c
d

Now the corresponding SSMP(2) is described by the following
transition matrix

( P11 P12 ) - ( 1_p12 P12 ) (25)
P21 P22 P21 1—pn
and the exponential distribution in each state

Fi(z) =1—e™#%, 1=1, 2. (26)

The stationary probability vector is obtained

= (P, Py) = ({5, 1) (27)

where x is given by eq.(5). The transition distribution rmatrix
F(z) and its Laplace-Stieltjes transform f*(s) are given by

F(z) =

( (1=~ pra)(1 —e~ 1%}

pi12(1 — e™#1%) ) (28)
p21(1 — e~#32%) !

(1 = p21)(1 — e~#3%)

H#1 H1
} = .
oo ( 15'12)3_1_)!1Il pus+p1 -
8) = .
P21 2 (1—P21) £2
§+ Q2 §+ Y2

The formula eq. (22) is valid for all Markov renewal processes.
We apply it again to obtain the Laplace transform of the z-
transform of the probability Pr{N; = n} in event-stationary
case for this SSMP(2). From eq. (22) by inserting p eq.(27)
and f*(s) eq.(29) we have

¢’ —
(3’ Z) Y b
s + T — —(C - d’)z (30)

s2+a's+c — z[s(a’ — b’) +2¢ —d+ 22(c' — d')

a’, b, ¢/ and d’' are for the following expressions:

]

a = M+ p2

O = (1-«k)(Pip2+ Pap) (31)
¢ = pipe

d = (1-~K)pips.

Comparing ®’(s,z) eq.(30) with ®(s,z) eq.(23), we conclude
that if
d=a, d=b, ese; d=d, (32)

the counting processes of the MMPP(2) can be completely
matched by the SSMP(2).

Finally we are able to prove that for a given parameter set
A1, A2, 1, 9 there is a unique solution of uy, ps, P, P2, 6 2 0
and vice versa.

A stronger result is shown in [8]: If the condition (32) is
fulfilled, the joint distributions of the first n (n > 1) intervals
agree. Therefore the point processes generated by the MMPP(2)
and SSMP(2) whose parameters are matched by eq.(32) are in
strict sense equivalent! Queueing results obtained for the one
model can be transfered for the other.
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4 Fitting equations of SSMP(2) by measure-
ments of interarrival time

As mentioned in section 2 the individual cell arrival processes
in ATM systems can be very closely characterized by SSMP.
Unfortunately the superposition of several SSMP 1s not neces-
sarily an SSMP. But an analytical description of the superposi-
tion process of individual cell arrival processes is indispensable
for analytical investigations of e.g. statistical multiplexer and
switching systems. For these purposes we propose an approx-
imate method to charzcterize the superposition of cell arrivals
by a SSMP(2) model. The reason why we choose the two state
model is obvious:

e it is the simplest SSMP that 1s non-renewal;

e the two state MMPP, which is shown to be equivalent to a
special case of SSMP, see section 3, is successfully used to
represent the burst superposition process;

e compared with MMPP the SSMP has two further advan-
tages: 1) fitting a general marginal distribution and 2) char-
acterizing discrete-time processes.

Qur fitting method is based on the measurement of the interar-
rival time sequence

x=(Xg,Xz,---,Xn_th,-“), (33)

which can be produced both in simulated systems and in real
systems. Four statistical measures should be evaluated:

1. the distribution function F(z)

2. the first order local correlation coefficient [1]

pi(z) =1 — Pr{X, > z|X;-1 <<z}
ane PI{X,-, < len_l > I}

3. the second order local correlation coefficient [1]

pa(z) =1 - Pr{X; > z|Xn-2 <z}
- Pr{X, < z|Xp-2 > z}

4. the joint distribution function

h(z) =Pr{X, <z, Xp-1 <z,Xn-2 <7}

The measured process should be approximated by an SSMP(2)
whose theoretical statistical measures mentioned above can be
given by

F(.‘B) = PIF;[(:C) + Png(x) (34)
) = R o)

h(:ﬂ) = K:P1P2(F1(I) — Fg(t))z*
[H:(Pl Fg(ﬂ:) + P2F1 (I)) + QF(I)] + Fs(a:)

which can be used as fitting equations for the parameters and
functions of the SSMP(2):

(37)

K, Pl! P?: Fl(x)‘.l F?(z)'

4.1 Estimation of x

For each z we can get an estimation of x from eq.(35) and (36)

PQ(Z) (38)

= pr(z)

For the reason that the measurements of functions p;(z) and
p2(z) are less accurate for small F(z) and 1 — F(z) we use a
weight function for the final estimation of «:

w(z) = F(z)[1 - F(z)]. (39)
The final estimation will be made by weighting the function
k(z):
/ w(z)k(z)dz
£ = = ) (40)
/ w(z)dz
0

In discrete-time case the integrals lead to sums.

4.2 Estimation of P, and P;
We introduce two auxiliary functions A(z) and B(z) defined by

Alz) = El(z)F(::l[l — F(z)] (41)
h(zl —- F3(z) 2F(z)
B(z) = —~A2) : . (42)

The temporary estimations of P; and P; are dependent on z.
From eq.(34) and (37) we obtain for each z

[Pi(z) — Pa(2)][Fi(z) — Fa(z)] = F(z) - B(z)  (43)

Suppose Pi(z) > P(z), we get a condition for Fy(z) and Fy(z)
that will be used in the sequel:

Fi(z) > Fy(z) if F(z)> B(z);

Fi(z) < Fy(z) if F(z)< B(z). (44)

Finally, from eq.(35) and (43) under the condition P(z) +
Py(z) = 1 we have

_1 F(z) - Bz)
A=t Tam s - s
Pz(x) =1- Pl(.t‘) (46)

The final estimation }“;1 and P, can be made by using the weight
function eq.(39), analogous to eq.(40).

4.3 Estimation of Fi(z) and Fy(z)

The last step will be the estimation of Fi(z) and Fy(z), but it
is the least problematic one due to the known values of x, F’;
and P;. From eq.(34) and (35) we obtain

Fi (z)

Il
htj
—
|
f —
H_
=
zl l
.
——
X,
oy
=

F3 (z) (48)

[
g
O
H

-
Y
=
al?

The +/—signs are decided by the condition given in eq.(44).
Finally the transition matrix (p;;) can be obtained:

P12 =P, (1- k), p11=1-=pi2 (49)
pa1 =P2 (1— k), p22=1-pn



The fitting equations presented above are exact in mathematical
sense, if the original process is an SSMP(2) and the mesurements
of F(z), pi1(z), p2(z) and h(z) are exact. However one could get
some statistical problems by implementing this procedure, due
partly to the finite length of the sequence measured and partly
to the fact that the original process is not exactly an SSMP(2).

The measuements of the tails need a considerablly large num-
ber of events. We suggest the LRE (Limited Relative Error)
algorithm which guarantees that the relative error of the com-
plementary distribution function 1 — F(z) at any point z does
not exceed a prescribed value [16].

Some values of k(z) may be out of the definition range, but
it is not a problem one should worry about. We do not need
to take these values into consideration, since at least one value
of k(z) is necessary for the whole procedure. Similar heuristic

could be applied for Pi(z) and P;(z). For Fi (z) and F2 (z)
there is another method necessary: if F; (z) < 0(i = 1 or 2), we
replace it with 0; if F; (z) > 1(i = 1 or 2), we replace it with 1;

finally, if the estimated density of F; (z) 1s negative (¢: = 1 or 2),
we replace the density with 0.

The SSMP(2) can cover a wide range of superposition pro-
cesses, but no doubt 1t 1s restricted to some classes. We leave it
for our future work to find out which type of superpositions can
be fitted by SSMP(2). An extensive simulation study is indis-
pensable. For superpositions which are unable to be fitted by
SSMP(2), a more state SSMP should be suggested.

For many cases the functions Fy(X) and F(z) can be de-
scribed (approximately) by some simple analytical functions
having only few parameters. Efficient fitting algorithms should
be developed for these cases. However we emphasize that the
SSMP renders possible to take into account the arbitrary dis-
tributions and therefore it is a powerful model.

5 Waiting time distributions: an example

Now we apply the fitting algorithm for the superposition of
discrete-time SSMP’s. To illustrate the effects of the marginal
distribution and correlations on queueing systems, we approx-
imate the original superposition process by four processes:
GEO, GI, SSMP(GEO,GEQ), SSMP(GI,GI). The notation
SSMP(A,B) stands for an SSMP(2), whose interarrival time dis-
tribution has type A and B in state 1 and 2, respectively. The
GEO process has a geometric distribution function

F(z)=1—-¢**! for k<z<k+1 (50)
with the mean X = IL The geometric decay parameter ¢
—4q

can be estimated by the measured mean interarrival time X :

-H*

X

~— 01
14+ X (1)

g=

The GI type has a general discrete distribution which can be
fitted by taking only the measured marginal distribution into
account. SSMP(GEO,GEO) can be considered to be a discrete
analogy of MMPP(2), which is widely applied in modeling the
Superposition processes in communication networks. The pa-
fameters of the SSMP(GEO,GEO) can be fitted by first using
the fitting method of a SSMP(2), see section 4 and calculating
the means X, X, for state 1 and 2 and then computing qi, ¢2
by using eq.(51). The SSMP(GI,GI) is a better fitting process
t]i_lan SSMP(GEO,GEO), since both correlation and the general
distribution of the original process can be fitted.
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The waiting time distribution of the discrete SSMP/G/1
queue 18 analyzed in [2]. SSMP/G/1 obviously includes the very
special case GI/D/1 and SSMP(2)/D/1, in which the arrival
process has only one or two states, respectively. The service
time has a deterministic distribution. The choice of this ser-
vice time distribution is encouraged by the fact that the pack-
ets (cells) in ATM systems have a constant length of 53 octets,
which leads to a constant service time for each cell.

The simulated superposition process in our example includes
the following individual processes:

e one source of SSMP(GEO,GEQO) with the geometric decay
parameters ¢; = 0.8 and g2 = 0.5. The parameters of the
matrix P are given by p;2 = 0.18 and p;; = 0.12 which lead

to Py, =0.4 and x = 0.7 and

e two sources of GEO with the common geometric decay pa-
rameters ¢ = 0.925.

Fig.4 shows the complementary waiting time distributions of
the -/D/1 queue. The service time has a constant normalized
length of 1. The input processes are the simulated superposition
process described above and its four approximations: GEO, GI,
SSMP(GEO,GEQO) and SSMP(GI,GI). The waiting time distri-
butions of the queues with approximated input processes are
computed by the algorithm described in [2]. The waiting time
distribution of the queue with the original superposition process
1s evaluated from the simulation by a procedure based on the
LRE algorithm [16]. The prescribed maximal relative error of
the compl. waiting time distribution G(z) is given by 5% for

G(z) > 103,

/ i _ T
1 1 = SSMP {GEO; GEO)
G(x) 1y
-.'.1 -
107 =) "( simulation —
...:E‘:q L
/1, A, SSMPIGLGI)---
2| GE0 12
10 ¢ — ij"'ﬂ I.-."'I
E L-t" h-l"""l
: —t1 L—:"'l
- Gl o0 s
— R - I--L..
0 5 10 15 20 25 30
X

Fig. 4 Compl. waiting time distributions of the -/D/1 queue
with the simulated superposition input process on the
one side and approximated input processes on the other

side: GEO, GI, SSMP(GEO,GEQ) and SSMP(GI,GI).

From Fig. 4 we can conclude that the SSMP(GI,GI) is a very
accurate approximation of the simulated superposition process
in this example, while the GEO and GI approximations un-

derestimate and the SSMP(GEO,GEQ) approximation slightly

overestimates.

6 Conclusion

In this paper we have introduce a special semi-Markov process
(SSMP) for modeling correlated input processes in telecommu-
nication networks. The applicability of the SSMP model in real
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systems 1s shown by the fact that many correlated input process
models including the well-known MMPP(2), which is success-
fully applied for modeling the superposition of burst processes,
can be considered to be special cases of SSMP. Compared with
MMPP(2), the SSMP has two further advantages:

1. a general marginal distribution can be taken into account;

2. as aresultsof 1it can be used for directly modeling discrete-
time processes, which is important for performance evalu-
ation a.o. in B-ISDN based on the ATM principle.

The SSMP can be applied for modeling both the individual
cell arrival processes and their superposition. A fitting algo-
rithm for the SSMP(2) having two states is given, based on the
statistical measurement of the interarrival times. This fitting
algorithm is validated by simulation examples. The algorithm
1s also appropriate for measurements of real systems.

To 1llustrate some effects of the distribution and correlation
of input processes on queueing systems we have approximated
a superposition process by four processes:

¢ GEO: only mean interarrival time of the measurement is
considered;

¢ GI: only marginal distribution of the measurement is con-
sidered;

e SSMP(GEO,GEO): correlation and mean in each state
are considered;

e SSMP(GI,GI): both distribution and correlation are con-
sidered.

The waiting time distributions of -/D/1 queues with the ap-
proximated input processes are analyzed by using the method
presented in [2]. Compared with simulation results, both dis-
tributions and correlations of interarrival times cannot be ne-
glected in general. Therefore geometric approximations as well
as renewal approximations of interarrival times should be very
carefully examined for certain cases.

Our future work will include characterizing the superposi-
tion input processes for ATM systems, eventually by applying
the fitting method described in section 4. For this purpose sim-
ulation studies as well as measurements of real systems will be
important.

Acknowledgement

The author thanks Mr. P. Decker for implementing the nu-
merical solution of the waiting time distribution of the discrete
SSMP/G/1 queue, Dr. C. Gérg for carefully reading this paper
and Professor F. Schreiber for his kind support which made this
work possible. Finally, the author would like to acknowledge the
helpful discussions with Professor M. Neuts and Dr. K. Meier-
Hellstern about the equivalence of two stochastic processes in
section 3.

References

[1] Ding, W., Schreiber, F. Local correlation properties of

random sequences generated by queueing system M/M/1.
AEU 44 (1990), 384-389.

[2] Ding, W., Decker, P. Waiting time distribution of a discrete
SSMP/G/1 queue and its implications in ATM-sysiems.
7th ITC Seminar, Morristown, New Jersey, USA, October
9-11, 1990, Session 9.

[3] Fontana, B., Guerrero A., Packet traffic characterization.
Arrival laws and waiting times. Proc. 12th Int. Teletraffic

Congress, June 1988, Torino, paper 4.2A 4.

[4] Heffes, H., A class of data traffic processes-covariance func-
tion characterization and related queueing results. BSTJ 59

(1980), 897-929.

[5] Heffes, H., Lucantoni, D. M., A Markov-modulated char-
aclerization of packetized voice and data traffic and related
statistical multiplezer performance. IEEE J. Select. Areas

Commun. 4 (1986), 856-868.

[6] Jain, R., Routhier, S.A., Packet trains-measurements and
a new model for computer network traffic. IEEE J. Select.
Areas Commun. 4 (1986), 986-995.

(7] Liao K.-Q., Mason, L., A discrete-time single server queue
with a two-level modulated input and 1ts applications. Proc.

GLOBECOM 89, Nov.1989, Dallas, paper 26.1.

[8] Liu, D., Neuts, M. F., Counter-ezamples involving Marko-
vian arrival processes. In preparing for publication.

[9] Maglaris, B., Anastassiou, D., Sen, P., Karlsson, G., Rob-
bins, J.D., Performance models of statistical multiplezing
in packet video communications. IEEE Trans. Commun. 36

(1988), 834-844.

[10] Meier-Hellstern, K. S., A fitting algorithm for Markov-
modulated Poisson processes having two arrival rates. Eur.

J. Oper. Res. 29 [1987], 370-377.

[11] Meier-Hellstern, K. S., The analysis of a queue arising in
overflow models. IEEE Trans. Commun. 37 (1989), 367-

372.

[12] Nomura, M., Fujii., M., Ohta, N., Basic characterisiics of
variable rate video coding in ATM Environment. IEEE J.
Select. Areas Commun. 7 (1989), 752-760.

[13] Pyke, R., Markov renewal processes with finilely many
states. Ann. Math. Stat. 32 (1961), 1243-1259.

[14] Ramaswami, V., Latouche, G., Modeling packet arrival
from asynchronous input lines. Proc. 12th Int. Teletraffic

Congress, June 1988, Torino, paper 4.1A.5.

[15] Rossiter, M. H., A swiiched Poisson model for data iraffic.
Aust. Telecomm. Res. 21 (1987), 53-57.

[16] Schreiber, F., Effective conirol of simulation runs by a new

evaluation algorithm for correlaied random sequences. 12th

Int. Teletraffic Congress (ITC), Torino, June 1988, paper
4.3B.1 and AEU 42 (1988), 347-354.

[17] Tran-Gia, P., Rathgeb, E., Performance analysis of semi-
dynamic scheduling strategies in discrete-time domain.
Proc. INFOCOM ’87, San Francisco, March/April 1987,
IEEE Computer Society Press 1987, 962-970.



