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SIC — A SYSTEM FOR STOCHASTIC SIMULATION IN C++
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Introduction

Object oriented programming provides an ideal method for de-
scribing the structure of a model as a simulation program. Pre-
vious examples of such systems, e.g. SIMULA or SMALLTALK,
were cither not sufliciently widespread or not cflicient cuiough.
Simulations of high speed communication systems, however,
tend to require high event-counts, thus making elliciency a cru-
cial requirement. C++, on the other hand, combines cllicient ex-
ecution with the object oriented programming paradigm. The
language, therefore, is well suited to be used as the basis of a
simulation system. TFurthermore, establishing an appropriate
modelling concept on top of C++ can oller additional conve-
nience to the user. The system described in this paper is called
SIC2. Based on a portable simulation kernel it offers additional
support by a modelling toolkit and a (lexible facility for graph-
ical model specification and representation of results. The sim-
ulation itsell is supported by optlions for animation, debugging,
and functional parallelization. The benefits of this modelling
concepl established on top of C++ arc demonstrated based upon
examples of quecucing models and communication systeims.

Simulation system SIC

The simulation system SIC [1] is written entirely in C++. A
portable kernel enabling process oriented simulation is at its
core. On top of that, SIC contains a sct of building blocks for
specilying queuecing network models in a well structured way.
For portabilily rcasons, process oriented simulation is imple-
mented in SIC without using the task library supplied with the
AT&T C++ version. SIC is implemented on various UNIX ma-
chines, the graphics editor with the program gencration system
as well as the animation system run on a workstation under the
X window syslem. The system is also being used for a student
simulation lab on personal computers with MS-DOS®.

SIC process and program structure

Processes are defined in SIC as C++ classes. In this way, only the
struclure of a process is defined, thus allowing several process
incarnations to be created from one template. As it is possible
to parameterize a process in SIC, cach of these process incarna-
tions may be set up individually, e.g. concerning its stochastic
characteristics and the use ol model-resources. In this man-
ner, scls of similar, though slightly dillering processes may be
mainlained efliciently in SIC.

The execution of the model’s processes is controlled by a sched-
uler class which maintains process activations. A process defini-
tion in SIC cousists of three distinct and clearly distinguishable
parts, which naturally match the modeler’s view: persislenl
data: as members in the class definition, initializalion: via the
parameterized constructor, algorithmic behavior: in a specilic
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2G1C: Simulation in C++ or Right this way, thal's it (Latin).

3The system can be obtained for UNIX or MS-DOS at the address given above
(e-mnil: cg@dlv.rwih-anchen.de),
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Resulting from this process structure, the first part of a typical
SIC program consists of a collection of process defintlions. It
is not till the subsequent main program that process incarna-
tions are crealed and parameterized. In the context of queucing
models, both the model’s topology and sclection of parameters
focus here, allowing for easy maintenance by the user.

A modelling toolkit

The structure defined offers an clegant way to establish alibrary
with components of simulation models. Their use reduces the
effort of writing a simulation program considerably, while si-

multancously advancing its clearness.

Bascd on the SIC program structure, a toolkit of modelling
components for queucing network models was cstablished. It
contains definitions of several predefined process types. DBe-
sides that, il contains components for modelling the nterac-
tion of processes in a simulation program such as queues and
semaphores. Employing these blocks in his own simulation pro-
gram enables a user to quickly develop well-structured models.
A generalization of queues in the class concept additionally al-
lows for model components and thus program parts to be reused
in different models.

As another example, a library with modules {or the simulation
of computer networks using a token protocol is available. With
this library a simulation program can casily be written for the
token ring and for the FFDDI access protocols.

Graphical program generator

Based on the SIC modeclling toolkit described, the creation of
simulation models may further be facilitated by program gen-
crators. A uscr-configurable system for the graphical gener-
ation of queucing network simulation programs was developed
for SIC. Based upon a structured graphics editor writlten in C++
and running under the X window syslcm, it scrves Lo generale
a SIC program from a schematic drawing (see IMig. 1) that the
user enters by sclecting predcfined model components [rom a
menu. New model components can be added to the menu. Al-
Ler parameters have been added, a simulation program may be
generated, translated and run without leaving the editor.

A module for animated simulation

To give the user better control and understanding of his simu-
lation, an animation module based on Motif and the X window
syslem was developed, that allows the control of a running sim-
ulation while showing its actual state on a graphic display.

The user can interact with the running program, requcst in-
termediate results from the statistical evaluation, ask {for some
system spccific lists, e.g. a list of queues, or just look at the
dynamic behavior of the simulated system.

The graphic display shows the individual components of the



modcl and their actual states. State descriptions depend on the
type of a component. A queue, for instance, is characterized by
ilLs name, type, maximum capacity, actual count and average
count. The count as a dynamic value is represented as a level
meler. I1ig. 2 shows a snapshot of the animation window. A
possible result of such a simulation run is shown in Fig. 3 in form
of a distribution function obtained by the new LRE-algorithm
2] for the evaluation of corrclated random sequences.

Parallelization

Besides the case and security ol modelling, the ¢fficiency of
simulations is still an issue. Parallel processing offers a way to
speed up simulations. The SIC system was extended to cnable
simulations to be executed as parallel programs. Parallelized

according to the functional parallelizalion approach, the same
siinulation program source can cither be translated Lo a se-
quential simulation program or a parallel one. Using the object
oricnted features of C++, this is accomplished mainly by chang-
ing the implementation of some internal classes inside SIC and
by use of a preprocessor, which serves to create the additional
processes nceded.

[1] B. Kluth. Multiprocessor archileclures witl functional par-
allelization for stochastic simulation. Ph. D. Thesis, Aachen
University of Technology, 1990.

[2] F. Schreiber. Effective control of simulation runs by a new

cvalualion algorithm for corrclaled random scquences. AEU,
Vol. 42, pp. 347-354, 1988.
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Figure 3 : Distribution function of the total delay time obtained by the LRE-algorithm.



