
1

Open Traffic Systems - An Extensible Middleware for

Distributed Traffic Management Systems

Daniel Bültmann, Reinhold Gebhardt, Communication Networks (ComNets), RWTH Aachen

University, Faculty 6, Aachen, Germany, {dbn|geb}@comnets.rwth-aachen.de

Hanfried Albrecht, AlbrechtConsult, Aachen, Hanfried.Albrecht@AlbrechtConsult.com

Thilo Schön, GEVAS software, Munich, thilo.schoen@gevas.de

ABSTRACT

Public bodies in the role of buyers and operators of traffic management systems are bound to

public tendering laws stipulating a competition for the system procurement to benefit from

cost reduction and new features. This situation results in manufacturer-mixed systems and

distributed system architectures. Communication protocols are one of the key enablers for

successful deployment of such systems. Traffic management systems with their long life-

cycles impose special demand on extensibility and adaptability of communication protocols.

In this paper a middleware as one essential element of such distributed communication

architectures will be described. The overall concept is called Open Traffic Systems (OTS).

INTRODUCTION

City traffic control and management systems are migrated increasingly from monolithic to

distributed systems. Subsystems as parts of such distributed systems accomplish independent

tasks and cooperate with other subsystems to accomplish overall tasks in the functional

sharing. To meet the increasing functional and qualitative requirements of operators of such

systems, framework conditions must be created so that suppliers of specific functions or

subsystems can integrate their products into existing systems. Integration and cooperation of

subsystems requires corresponding mechanisms. This can often be satisfied by the provision

of supporting communication protocols. These must meet the requirements of open standards,

so that manufacturers can develop and offer products independently of any other supplier.

A second, not less important requirement on protocol standards is not to restrict further

growing of the range of functions or of the functions complexity. Therefore, a protocol

architecture is needed which can be adapted to changed requirements flexibly and which

supports compatibility to existing realizations in the context of a quality assured process.

In the context of the R&D initiative “Traffic Management 2010” of the German Federal

Ministry of Economics and Technology (BMWi) the project Dmotion [2][3] aims to realise a

coordinated strategy for traffic guidance and control in Greater Düsseldorf between the city of

Düsseldorf and the state North Rhine-Westphalia which is responsible for the motorway

system. In addition, private traffic information provider shall be able to request information

on the general traffic conditions. Communication related tasks within this project are to

acquire, analyse and assess all requirements on communication by subsystems and to use the

results for the definition of a communication architecture. In this paper a middleware as one

essential element of such a communication architecture will be described. The overall concept

is called Open Traffic Systems (OTS). Necessary steps to meet the general requirements for

an open specification, adaptability and extensibility will be discussed.

2

 RELATED WORK

The need for communication standards in traffic management systems gets visible by the

activities of the respective standardization groups. DATEX II [4] represents a European

standardization initiative which also integrates predecessor activities like OTAP (Open Travel

data Access Protocol). It aims to improve the exchange of traffic and travel information

between traffic management and traffic information centres. The primary focus of this

standardization activity is on data models, rather than on communication protocols.

Pilot projects for the integration of traffic data sources are in progress or planned in the

European room. The Netherlands National Datawarehouse (NDW) project [5] of the Ministry

Rijkswaterstaat was started in 2005. It shall collect and make available information on traffic

densities and traffic flows in provinces and city areas. The efforts are quite similar to the

upcoming German meta data platform project of the Federal Ministry of Traffic.

With its primary focus on a general purpose and light-weight communication protocol suite

OTS complements DATEX II very well. In a communication layer view OTS protocols are to

be placed beneath the data model and data access layer of DATEX II. In fact, a proposal for

combining OTS and DATEX II within the meta data platform project is currently being

prepared. OTS will provide a communication platform for realizing high level communication

concepts like DATEX II in heterogeneous manufacturer mixed system networks.

OPEN TRAFFIC SYSTEMS

The OTS (Open Traffic Systems) concept can trace its origins to the 2002 founded Open

Traffic Systems City Association (OCA, see [6]). This is an association of purely public

bodies and operators that currently has 35 members from Germany, Austria and Switzerland.

As clients for the creation and/or expansion of traffic management systems, the pertinent

public authorities are almost always confronted with the necessity of having to mix

manufacturers. This normally entails problems on both the client and contractor sides since

the manufacturers involved are in competition with each other and act accordingly.

The necessity of having to mix manufacturers on the one hand results in public tendering laws

stipulating a competition for the procurement of new system components, even if these have

to be integrated into existing system landscapes. On the other hand, systems from different

public authorities (e.g. municipality, county, private) have to be functionally combined with –

historically developed - systems from different manufacturers since this is the only way to

provide the desired traffic management services.

The OTS concept is aimed at precisely this initial situation and the uncomplicated realisation

of a mixture of manufacturers. Firstly, it offers a process model that has been especially

aligned to the specifications, public tendering process, test and approval of mixed-

manufacturer systems, and secondly it contains a reference model for the design of an open,

distributed system architecture for a traffic management system. One integral element is the

OTS-interface concept with corresponding OTS-interface specification for cooperation

between subsystems involved in a mixed-manufacturer overall system.

3

SYSTEM ARCHITECTURE

The OTS protocol specification consists of concepts from communication protocols up to data

models. The application oriented data model covers control data, status data and measured or

computed data within the field of traffic management. Extensions are always possible and can

be processed compatibly. A special branch is concerned with configuration information,

especially for traffic signalling and control systems. The data model specifies an addressing

scheme for the identification of objects to which the transmitted data refer. Extensions of the

data model and its addressing scheme are planned in the context of integration with Datex II.

Adequate application centric communication patterns and their protocols for establishing

communication, retrieving configuration data, subscription to traffic management data and its

distribution as well as delivery of control commands are defined. These application centric

protocols are built upon the functionality offered by the OTS-Transport and OTS-Session

layer, described in the further sections. It is envisaged that OTS-Transport and OTS-Session

build a framework that allows for rapid development and consistent deployment of future

communication patterns and their application-centric protocols.

Figure 1 shows an exemplary scenario for the application of OTS to traffic management

systems. It shows a traffic information application (middle node) that receives traffic

measurements from road sensors via the server of the traffic signalling and control system and

is able to control information displays based on this input data. The data elements that are

used here are traffic measurements and information messages.

Each node within this scenario takes a specific role with respect to the applied communication

pattern. The traffic information server behaves as a data subscriber for traffic measurements,

subscriptions are managed by the traffic signalling server. The sensors behave as data

publishers that forward data to the server of the traffic signalling and control system which

distributes this data to the respective subscribers. Together, the three nodes use the publish-

subscribe communication pattern [1]. The command pattern is formed by three nodes that act

as commander, command forwarder and command consumer. Respective protocols are

provided by OTS entities within the application-centric communication pattern layer.

All OTS applications are based on OTS-Transport and OTS-Session. These protocol building

blocks are the main focus of this paper and will be described in the next sections. The key

functionality these blocks provide with respect to system integration is the provision of

abstract transport channels (based on different host protocols, e.g. TCP/IP and SOAP) and the

flexible operation of these within a single session.

SOAP

Sensors

TCP/IP

OTS-Transport

OTS-Session

Data Publishing

Traffic Measurements

Traffic Jam!

Information
Displays

Server of the Traffic Signalling
and Control System

TCP/IP

OTS-Transport

OTS-Session

Data Distributor

TCP/IP

Traffic Information
Controller

SOAP

OTS-Transport

OTS-Session

Command Forwarder

TCP/IP

OTS-Transport

OTS-Session

Command Consumer

SOAP

Traffic Information
Server

OTS-Transport

OTS-Session

Data
Subscriber

Traffic
Measurements

Commander

Information
Messages

Traffic Information ApplicationMeasurement Generation

Information Messages

Traffic Information Display

Application Data Models Communication Pattern Session Transport Hostprotocol

Publish-Subscribe-Pattern Command-Pattern

Figure 1: Exemplary Scenario

4

OTS PROTOCOL SUITE

OVERVIEW

Figure 2 shows the OTS protocol architecture. The central paradigms of this architecture are

1. Build small hermetic protocol layers with clearly defined functionality. Build protocol

blocks.

2. Make these blocks generic. This promotes reusability and allows building a protocol

toolbox.

3. Build whole protocol stacks by selecting and stacking appropriate blocks from the

toolbox. Since blocks are small you only pick functionality that you really need for

your application.

4. Don’t extend blocks by modifying them. Extend by defining new extension blocks

following item 1.

The key protocol block of OTS described within this paper is the OTS-Transport layer. The

OTS-Transport layer manages access to different host protocols while offering one unified

Service Access Point (SAP) to upper layers. Upper layers make use of OTS-Transport

Channels which offer unified asynchronous and synchronous messaging services no matter

what host protocol is used. For the time being OTS protocols are based on either the Simple

Object Access Protocol (SOAP) or directly on TCP/IP. Only this allows for extending the

application level protocol blocks independently of the supported host protocols.

Application Application

SOAP

HTTP

TCP/IP

Host built-in

ProtocolStack
SOAP

HTTP

TCP/IP

User Data Exchange

Well defined versioned
service access points

Protocol Building Blocks

OTS-Session OTS-Session

OTS-Transport OTS-Transport

Multi-Client/Multi-Session

Abstract Synchronous and
Asynchronous Messaging

Data Model Extension

Application Protocol Extension

Host Protocol Extension

In
d

e
p

e
n

d
e

n
tly

e
xte

n
s
ib

le

Host A Host B

Figure 2: OTS Approach - Toolbox of reusable Protocol Functions

OTS-Session is based on OTS-Transport. It realises a session service that allows applications

to be multi-client and multi-session capable. This capability is so important to distributed

systems that an independent protocol function was established. It allows for dynamic

exchange of transport channels during the lifetime of a session. This is useful to trade

implementation complexity against bandwidth requirements. If an application level protocol

has high bandwidth requirements it can choose to send its bulk data using an efficient binary

encoding on a TCP/IP based OTS-Transport channel. Low bandwidth applications will make

5

use of OTS-Transport channels on top of SOAP to leave data encoding and stub generation to

the SOAP framework.

Application level protocols for traffic management systems will primarily need to realise

Publish-Subscribe [1] measurement distribution services and support for Request/Commit

transactions to securely configure remote devices.

The next section will give a detailed view on how the abstraction of different host protocols is

realised within OTS-Transport. It will be shown how establishment and release of OTS-

Transport channels is implemented both with TCP/IP (built-in connections) and with SOAP

(no connection concept). The OTS-Session layer will not be described here in further detail

due to the limited space. Yet, it is important to note that a prototype for the OTS Protocol

Suite has been developed at ComNets which provides all the aforementioned functionality.

Continuous automated protocol testing has been used to guarantee the correctness of this

prototype. The prototype and testing framework have been developed in Python and with

support of the Twisted [7] networking engine and runs both on Windows and Linux.

OTS TRANSPORT LAYER

 The key to manufacturer diversity and independence of technology is a common

communication basis. OTS Transport is designed for this purpose. It is a minimalist

abstraction layer for different host protocols, yet powerful enough to support a plethora of

higher level communication protocols. It offers an asynchronous, symmetric message transfer

service that supports a connection concept. Symmetric means there is no distinction such as

client or server once a transport channel has been established. Messages may be sent by each

communication partner at any time. It will be shown here that it is possible to realise this

service both on TCP/IP (connection-oriented, asynchronous, symmetric, and stream-based)

and on SOAP (connection-less, synchronous, asymmetric, and message-based). Claiming that

integration of further host protocols is not a problem, thereby seems plausible.

Figure 3 shows a sequence diagram of a typical communication sequence. OTS-Transport has

five generic functions that are used during such a communication sequence:

1. Passive Open: OTS-Transport users that offer a service to other OTS-Transport users

must indicate to the OTS-Transport layer that they are willing to accept incoming

channel requests.

2. Active Open: OTS-Transport users that want to contact the service offered by another

OTS-Transport user can initiate the channel establishment through this function. After

this function is executed a transport channel is established and both client and server

can refer to this channel by using the negotiated TransportID.

3. Asynchronous Message Transfer: After a channel has been established both the client

and server may send messages to each other at any time in any direction. The transport

channel that is to be used for message transfer is identified by the TransportID.

Synchronous message transfer can be realised simply by blocking the application

locally on TData calls. This does not affect the protocol and is neglected herein.

4. Disconnect: Both communication partners may close an OTS-Transport channel at any

time. The TransportID becomes invalid.

5. Passive Close: If a service is no longer offered the server may stop to accept incoming

OTS-Transport channels.

6

Figure 3: OTS-Transport Protocol Functions

Realisation

OTS-Transport users are addressed by using the well known Uniform Resource Identifier

(URI) [8]. Table 1 shows the general structure. URI addressing is only used during the

Passive Open and Active Open phases.

 Schema Username Password Hostname Port Path Query Fragment

otssoap: // daniel : mypassword @ comnets.de : 80 /dbn ? a=b # example

Table 1: Structure of the Uniform Resource Identifier (URI)

OTS-Transport determines the channel type by interpretation of the URI’s Schema field

which can be either ‘otssoap’ or ‘otstcp’. Username and password are used by OTS-Session

for authentication. Hostname, port and path are used by OTS-Transport as will be described in

the following. Query and fragment fields are not used by now.

Once a transport channel has been established communication partners can refer to the

channel by using the TransportID which is negotiated between client and server during the

Active Open phase. The TransportID is composed by a ClientPart and a ServerPart (e.g.,

integers) to ensure that it is unique both in client and server. This approach is similar to the

source and destination port concept of TCP and UDP.

7

Protocol Binding for TCP/IP

The OTS-Transport service can be realised very easily with a connection-based host protocol

like TCP/IP. The Passive Open function is simply realised by binding to the port and IP

address associated with the hostname and listening to the created socket. OTS-Transport may

use the blocking function accept() of TCP/IP to wait for incoming connections. The

Active Open function uses connect() to establish a TCP connection to the peer host. After

the underlying TCP connection is established negotiation of the TransportID is started.

Suppose we use a XML encoding on the TCP connection the client would send

“<channelSetup>ClientPart</channelSetup>” to the server. It will respond

with “<channelSetupResponse>TransportID</channelSetupResponse>”.

Please note that ClientPart will contain a unique number chosen by the client while the server

responses with the complete TransportID, i.e. the ClientPart concatenated with the

ServerPart chosen by the server. Message transfer is simply done by writing data to the

associated sockets. Messages are separated by encapsulating the payload within message tags.

The Passive Close and Disconnect functions both use TCP/IP’s close() method.

Associated TransportIDs will be marked invalid when a TCP connection closes.

Protocol Binding for SOAP

The SOAP protocol is a connectionless protocol. Therefore OTS-Transport needs to realise

connection management when binding to the SOAP protocol. SOAP implements the remote

procedure call (RPC) communication pattern. A SOAP Service is a collection of several

procedures. A Service is made available by deploying it at a given URI, i.e. a SOAP server

will accept incoming TCP connection on a given port. Multiple Services may be deployed on

the same TCP port. SOAP servers dispatch calls to different service by the path element of the

URI. SOAP request may either be made by using HTTP’s GET or POST method.

To realise connection management the service dispatching capability by URI path element of

SOAP servers is exploited. The protocol functions Active Open and Disconnect build the

connection management service of OTS-Transport which is always deployed at a fixed path

of the URI (e.g. otssoap://ots.comnets.de:5678/OTS/Transport/ConnectionManagement).

OTS-Transport will deploy this service within the Passive Open function.

Clients that want to connect to a SOAP server do this by activating the Active Open function.

OTS-Transport calls the connect method of the connection management service available at

the given host and port combination. It generates the ClientPart of the TransportID and

passes it along. The server receiving that call will construct the TransportID by generating

and appending the ServerPart. The complete TransportID is then returned to the client.

Additionally the server deploys a new messaging service solely responsible for this transport

channel at an URI that includes this TransportID. (e.g. otssoap://ots.comnets.de:5678

/OTS/Transport/Channels/TransportID). When the client receives the response of the connect

call it knows that a messaging service has been deployed by the server at that URI.

Subsequent activations of the Asynchronous Message Transfer function within the client

function are then simply mapped on the respective SOAP method of the transport channel’s

messaging service.

The Asynchronous Message Transfer function within the server can be realised in two ways:

1. Pull-style realisation: The server offers methods that allow the client to poll for new

messages. The server must buffer messages until the client actively pulls them. Polling

is solely handled within OTS-Transport. Its behaviour towards upper layers remains

8

asynchronous, though users might experience increased message delays. This

approach allows for slim clients that do not need to deploy a SOAP server of their own

but it is not truly asynchronous.

2. Push-style realisation: Clients deploy a messaging service of their own after

completing the Active Open function. The server can immediately deliver messages by

calling the respective method within the client. This approach is symmetrical and

implements truly asynchronous messaging, circumvents message buffering within

servers, but results in higher client complexity.

The Disconnect and Passive Close functions are simply realised by removing the respective

messaging service or connection management service.

CONCLUSIONS & OUTLOOK

The work presented within this paper is a result of the German Dmotion project. The

presented extensible middleware solves the following key problems. First, it gives clear

extension points to allow for system composition with equipment from different vendors.

Second, it allows for independent extensions both on application level and on the host

transport protocol. And third, it encourages reusability by building up a protocol toolbox of

common communication patterns. By decoupling extensions in host protocols and in

application protocols, it enables evolving systems.

ACKNOWLEDGEMENT

This work has been funded by the German BMWi and was carried out as part of the German

Dmotion project [2][3].

REFERENCES

[1] P.T. Eugster et al., “The Many Faces of Publish–Subscribe,” ACM Computing Surveys,

vol. 35, no. 2, 2003, pp. 114–131.

[2] Düsseldorf in Motion (Dmotion), “Integrated Strategy Management for Enhanced

Mobility”, http://www.dmotion.info/download/dmotion_flyer_englisch.pdf

[3] "Forschungsinitiative VM 2010 - Dmotion Gesamtvorhabensbeschreibung"; Düsseldorf,

Dezember 2004; Landeshauptstadt Düsseldorf, Amt für Verkehrsmanagement et al.

[4] Datex II project web page. http://www.datex2.eu

[5] Nationaal Datawarehouse web page, http://www.nationaaldatawarehouse.nl/

[6] Open Traffic Systems City Association (OCA) webpage, http://www.oca-ev.org

[7] Twisted Matrix Labs, “A framework for networked applications”,

http://twistedmatrix.com

[8] IETF, RFC 3986 “Uniform Resource Identifier (URI) : Generic Syntax”, January 2005

