Tutorial 802.15.5 High-Rate Mesh WPANs

Presenter: S. Max*

Contributors: S. Max*, M. Sim**, Y. Liu***

*Philips Research

**Panasonic

***Samsung Advanced Institute of Technology

This version has been edited for publication as PDF file at ComNets, RWTH Aachen University.

The full tutorial (including the introduction and the Low-Rate part) is available at http://www.ieee802.org/802_tutorials/index.htm

Some animations may not be displayed correctly in PDF format. If you are interested at the ppt-format of this presentation, please contact

smx@comnets.rwth-aachen.de

Usage Scenario - Analysis

Challenges in WPAN Mesh Scenarios

Medium Access Control

- Mobility
- Hidden and Exposed nodes
- Interference
- → Unnecessary capacity decrease

Path selection

- Self organizing
- Redundant links
- Loop prevention
- Broadcast data

• (Security)

- Ad hoc deployment
- Access Control
- Secure distribution of path selection info

Hidden entities – Threat to WMN communication

- C cannot sense A's transmission
- C cannot sense neither A's nor B's medium reservation
- C detects wireless medium as idle
- C transmits to D
- B' reception of A is interfered by C's transmission → collision

November 2006

Exposed entities – Limiting capacity of WMNs

- A sends data to B
- B & C separated by wall
 - B cannot be interfered by C
 - → Opportunity for spatial frequency reuse (concurrent transmission)
 - C could transmit to
- C blocked by reservation from A

IEEE 802.15.5-HR Recommended Practice

Entities, Architecture, Extensions

Single-Hop WPANs

• Layer architecture

- Network architecture
- Superframe architecture

Mesh WPANs

• Layer architecture

• Network architecture

• Superframe architecture

802.15.5 Tutorial High Rate MAC Extensions

- Every Mesh Piconet Controller (MPNC) transmits beacon
- Beacon carries
 - ID
 - Synchronization information
 - Neighborhood information
 - Neighbor's neighbors
 - Medium Access Information

- New MPNC is switched on
 - Scan for beacons
 - Select idle space for beacon transmission, incorporating
 - Channel sensing
 - Information from neighbors
 - Provide local viewpoint of occupancy to neighbors
 - → Increase their knowledge
- Hidden node problem
 - Information of occupancy is disseminated over three hops

- Beacons send at most robust PHY mode
 - Reception close to interference range
- MPNCs store neighborhood information
- → Neighborhood table

interference range

- Distributed Reservation Protocol (DRP)
 - Scheduled transmissions
 - Medium is reserved by transmitter and receiver
 - Occupation is announced in beacon
 - Neighbors are aware of transmissions
 - Support for different reservation categories
 - Broadcast
 - MPNC to DEVs
 - MPNS to MPNC

- → Hidden node problem solved by information dissemination
- → Exposed node problem remains
 - Medium is blocked in large area
 - around transmitter and receiver
 - Capacity degrades

Interference Prediction

Tx Device

- 1. Search table for tx opportunity
- 2. Indicate proposed time to rx device in beacon
- 7. Wait for rx respond
- 8. Accept rx respond or decline

Rx Device

- 3. Evaluate proposed time
- 4. Search local occupancy map
- 5. Estimated expected interference using Neighborhood map
- 6. Accept or propose different time
- \rightarrow Hooks to solve the exposed node problem are available

→ Capacity increase possible

802.15.5 Tutorial High Rate Mesh Service Support

Network Setup

- Mesh Coordinator (MC) initializes the mesh network
 - Regularly announces mesh capability in its beacon
- New MPNCs scan for beacons
- MPNCs choose free time to send beacons

Network Setup

- Mesh Coordinator (MC) initializes the mesh network
 - Regularly announces mesh capability in its beacon
- New MPNCs scan for beacons
- MPNCs choose free time to send beacons
- MPNCs join the network by sending a tree association request
- MPNCs / MC repsonds with a tree association response
- → Tree structure based on local knowledge
 - One parent (None for MC)
 - Children (Zero to max. children)

Tree Topology Discovery

- Each Mesh Piconet Controller (MPNC) belonging to the tree
 - Waits for descendant report(s) from its children
 - Estimates the number of own descendants
 - Reports number of descendants to parent
- Process is repeated upon
 - Topology discovery request from MC
 - Association of new descendants

ID Assignment

- After receiving topology update frames from all children:
 - MC reserves a block of IDs
 - Assigns intervals of IDs to children
 - Size of interval is proportional to reported number of children
- MPNC receives an ID block
 - Division and assignment is repeated for children

ID Assignment

- After receiving topology update frames from all children:
 - MC reserves a block of IDs
 - Assigns intervals of IDs to children
 - Size of interval is proportional to reported number of children
- MPNC receives an ID block
 - Division and assignment is repeated for children
- MPNC assigns ID to himself and its DEVs

Neighborhood-based Wireless Path Selection

- Each MPNC keeps
 Neighborhood Map
 - Result from beaconing
 - Consists of neighbors and neighbors' neighbors
- Routing in 2-hop neighborhood is trivial

Tree-based Wireless Path Selection

- DEV sends to MPNC
- MPNC
 - Destination in ID block?
 - NO: Forward to parent
 - YES: Deliver to DEV or appropriate child

Centralized Wireless Path Selection

- One or more MPNCs act as topology server
 - MPNCs register link states
- Centralized WPS
 - MPNC 0 is topology server
 - Route discovery via Tree-based WPS
 - Calculation of route at topology server
 - Route notification via Tree-based WPS
 - Route formation

- Route discovery
- Route notification
- Route formation

Conclusion

- Architecture for High-Rate Mesh WPANs
 - Based on Single-Hop MAC & PHY
 - Extensions for MAC
 - Multiple Beacon operation
 - Distributed Reservations
 - Optional frequency reuse to increase the capacity
 - Mesh Service Support
 - ID assignment
 - Wireless Path Selection
 - Neighborhood
 - Tree
 - Centralized