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Abstract— This paper discusses first steps towards the 
realization and application of a generic protocol stack as part of the 
software for re-configurable wireless communication systems. This 
focus on the protocol software extends the field of software defined 
radios with its origin in the physical layer. The generic protocol 
stack compromises common protocol functionality and behavior 
which is extended through specific parts of the targeted radio 
access network technology. Following a bottom-up approach this 
paper considers parameterizable modules of basic protocol 
functions corresponding to the data link layer of the ISO/OSI 
reference model. System specific aspects of the protocol software 
are realized through adequate parameterization of the modules. 
Further functionality and behavior can be added through the 
insertion of system specific modules or inheritance. The generic 
protocol stack enables an efficient realization of re-configurable 
protocol software as part of a completely re-configurable wireless 
communication system. The presented modules of the generic 
protocol stack can also be regarded as tool-box for the accelerated 
development of future communication protocols. 
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I. INTRODUCTION 
The evolution of the digital cellular mobile radio networks 

originated in the GSM toward systems of the third generation, 
as e.g. the UMTS, has shown that in their standardization it is 
fallen back on well-proved functions and mechanisms that are 
adopted to the specific requirements of their application. 
Looking at recent developments, terminals tend to integrate 
GSM as fallback for uncovered areas on the one hand and 
additionally integrate WLANs for high capacity needs on the 
other hand. In this context it is obvious that re-configurability is 
the one of the key issues for future wireless communication 
systems beyond 3G. Consequently a completely re-configurable 
mobile terminal in a re-configuration supporting radio network 
is demanded.  

Software Defined Radios (SDRs) [1] and [2] are a promising 
approach towards this re-configurability. For a long term, the 
hardware has been the key issue of research in the field of SDR. 
But the recent technical progress enabled an expanding of 
research efforts on the complete communication chain with the 
communication software and the protocol stack as essential part 
of it [3] and [4].  

This paper focuses on protocol functions of the Data Link 
Layer (DLL), the layer two corresponding to the ISO/OSI 
reference model [5]. Related work considering the network 
layer, the layer three, has been published in [6].  The data link 
layer consists of (1.) the Medium Access Control (MAC) layer 
for the coordinated access to the medium as well as (2.) a layer 
for the error protection and error free transfer of data, often 

referred to as Logical Link Control (LLC) layer, as for instance 
in GSM. Alternatively or as part of it, the corresponding layer 
may be also referred to as Radio Link Control (RLC) layer, as 
for example in UMTS. 

This paper is outlined as follows: The idea of a generic 
protocol stack on the basis of fundamental, parameterizable 
functional modules of the DLL in the context of protocol re-
configurability is introduced in Section II. The necessary 
additional elements to realize a fully functional specific 
protocol layer are outlined thereafter. Section III introduces the 
composition of system specific layers at the example of the 
UMTS RLC, the Transmission Control Protocol (TCP) and the 
IEEE 802.11 MAC layer, which differ in their development 
history as well as in their layer classification corresponding to 
the ISO/OSI reference model. The latter two layers are 
validated and evaluated analytically and simulative in 
Section IV. 

 

II. THE GENERIC PROTOCOL STACK 
The primary idea of the generic protocol stack is that all 

communication protocols share a lot of functional 
communalities that should be exploited to build an efficient re-
configurable wireless system [7]. The aim is to gather these 
common parts in a single generic stack and specialize this 
generic part following the particular requirement of the targeted 
Radio Access Technology (RAT), as depicted in Fig. 1. The 
targeted advantages of this concept are: runtime re-
configurability and maintainability, code/resource sharing and 
protocol development acceleration through reusability. 

The initial step towards a generic stack is a detailed, stepwise 
analysis of communication protocols to identify their 
similarities. Their elaborated realization of the generic parts is 
crucial for the success of the proposed concept in the face of a 
tradeoff between genericity, i.e. general usability, and 
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Fig. 1: UML diagram of the generic protocol stack in the context of 
protocol re-configurablility. 



implementation effort. From the software engineering 
perspective, there are in general two possibilities for 
approaching the generic protocol stack: Parameterizable 
functional modules and/or inheritance, depending on the 
abstraction level of the identified protocol commonalities. As 
introduced above, this paper focuses more on the modular 
approach while the inheritance based approach is considered in 
[6] and [8]. 

As depicted in Fig. 1, the generic protocol stack comprises 
fundamental protocol functions, data structures and an 
architectural framework which form, together with RAT 
specific parts, a system specific protocol stack. An efficient re-
configurable stack is realized in adding re-configuration related 
functions and management, as further outlined in the next but 
one section. 

A. Generic Protocol Functions of the Data Link Layer 
As the architecture of modern communication protocols can 

not be forced into the classical layered architecture of the 
ISO/OSI reference model it is rather difficult to identify 
similarities and attribute these to specific layers. Therefore this 
paper deepens the level of examination in the search for 
similarities and considers fundamental protocol functions, 
contrary to [6] and [8] where complete protocols are analyzed 
for genericity. Though these protocol functions mainly 
correspond to the DLL as specified in the ISO/OSI reference 
model, they can be found in multiple layers of today’s protocol 
stacks as shown below. The following functions are considered 
for the generic protocol stack: 
• Error handling with the help of Forward Error Correction 

(FEC) or Automatic Repeated reQuest (ARQ) protocols as 
for instance Send-and-Wait ARQ, Go-back-N ARQ* or 
Selective-Reject ARQ  

• Flow control* 

• Segmentation, concatenation and padding of Protocol Data 
Units (PDUs) 

• Discarding of several times received segments*  

• Reordering of PDUs* 

• Multiplexing/De-Multiplexing of the data flow, as for 
instance the mapping of different channels* 

• Dynamic scheduling 

• Ciphering 

• Header compression 

The with a star* marked functions are considered in the 
following section while the other functions are considered 
in [9].  

B. Enabling Re-configurability 
The generic protocol stack, with its pool of generic functions 

as introduced above, enables an efficient as well as flexible 
realization of re-configurable protocol stack. Full, end-to-end 
re-configurability from the modem part up to the applications 
requires a layer overlapping management and re-configuration 
functions. Therefore, as this paper considers communication 
protocols implemented in software, a protocol re-configuration 
manager is introduced in Fig. 2, which accomplishes all re-
configurability related tasks of the PHYsical layer (PHY), 
MAC, RLC/LLC and transport layer. These system specific 
layers are based on the pool of generic protocol functions and 

mechanisms. The protocol re-configuration manager has 
thereby the following tasks:  
• Management of the (permanently or temporally) parallel 

existing protocols and protocol stacks 
• Creation, destruction and/or re-configuration of a single 

protocol or complete protocol stack 
• Administration of the user data flow during the re-

configuration process, as for instance the redirection of the 
user data from the old to the re-configured protocol stack 

• Cross layer optimization, as for instance the transfer of 
protocol or user data within the old stack to the new one [9] 

• Support and enabling of re-configuration functions of the 
network, as for instance a network initiated re-configuration 
or an update of the network information about the status of 
the terminal 

The re-configuration of the protocol stack or single protocol, 
administrated through the protocol re-configuration manager, 
has two characteristics: (1.) the creation of a new stack/layer 
consisting of adequate parameterized modules of the generic 
stack and destruction of the existing one and (2.) the re-
configuration of the existing protocol implementation in 
exchanging the parameterization of the corresponding modules.  

C. Modular Approach – the Generic Protocol Stack as Library 
of Protocol Functions 

The generic protocol stack is the realization of the common 
parts, as illustrated in Fig. 1, and implements its common 
functions on the basis of modules. These common protocol 
functions get their system specific behavior on the basis of 
parameterization. Once specified, these modules can be 
repeatedly used with a different set of parameters 
corresponding to the specific communication system. The 
modules of generic protocol functions form together with 
system specific modules a complete protocol layer, as depicted 
in Fig. 3. The communication inside said layer is done on the 
basis of generic service primitives and generic PDUs which are 
also considered as being a part of the generic stack, see 
again Fig. 1.  

A unique manager as well as interfaces for the Service 
Access Points (SAP) to the adjacent layers complete the fully 
functional protocol layer as depicted in Fig. 3. In detail, the 
mentioned components have the following tasks: 
• Functional Module (generic or RAT specific): Realizes a 

certain fundamental functionality as black-box. In case of a 
generic module a list of parameters for characterizing the 
functionality is given and the underlying functionality is 
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Fig. 2: A re-configurable protocol stack based on generic functional 
modules in the context of a completely re-configurable terminal. 



hidden. The comprehensiveness of the fulfilled function is 
limited to fit straightforward into a single module. 

• Manager: Composes and administrates the layer during 
runtime. This implies the composition, rearrangement, 
parameterization and data questioning of the functional 
modules. Additionally, the manager administrates the layer 
internal communication, as for instance the connection of 
the layer’s modules through generic service primitives. The 
manager is the layer’s counterpart of the protocol re-
configuration manager as introduced above in Fig. 2. The 
manager realizes the re-configurability of the layer. 

• Generic interface: Translates the generic service 
primitives with specific protocol information as payload to 
system specific ones and enables thus the vertical as well as 
horizontal integration of the system specific parts of the 
layer. 

• Service Access Point (SAP): Here, services of the layer are 
performed for the adjacent layers. The layer may 
communicate via generic primitives without a translation 
interface to an adjacent layer if said layer has the same 
modular composition. The interface is needed if it is 
demanded that the layer appears as a classic layer fitting 
into an ordinary protocol stack. 

• PDU factory (as functional module, later depicted in 
Fig. 4-6): Composes layer specific protocol frames and 
places them as payload in generic PDUs. 

This approach enables the simulation and performance 
evaluation on several levels: A single (sub-)layer as well as a 
complete protocol stack can be composed out of the introduced 
modules. To facilitate understanding the parameterization itself 
is introduced in the following. 

D. Parameterization of Functional Modules 
In this context parameterization implies not only specific 

values, as for instance the datagram size of a segmentation 
module, but also a configuration of behavior and characteristics 
of a module, as for example the concretion of an ARQ module 
as a Go-back-N ARQ protocol with specified window sizes for 
transmission and reception. This implies as well a configuration 
of the modules’ interface to the outside. The parameterization 
of functional modules may imply (i.) a specification of certain 
variables, (ii.) the switching on/off of certain 
functionality/behavior and (iii.) an extension of the module’s 
interface to the outside. 

At the example of the ARQ module, the parameterization 
may imply among other things: 

• ARQ protocol characteristic, for instance Go-Back-N ARQ 
or Selective-Reject ARQ 

• Transmitter or/and receiver role 

• Receive and transmission window size 

• Fixed, variable (TCP) window length or open/shut 
mechanism (LLC) 

• Timer value, after a packet is assumed to be lost 
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Fig. 3: Composition of a protocol specific layer or sublayer on the 

basis of generic and system-specific functional modules. 
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Fig. 5: TCP, IP and UDP layer based on the functional modules of 

the generic protocol stack. The TCP layer (gray dash-dotted line) is 
considered here. 
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• Connection Service: inexistent (UMTS RLC), separated for 
each direction (802.11 - CSMA/CA with RTS/CTS), 2-way 
handshake (GSM LLC) or 3-way handshake (TCP) 

• Use of Negative ACKnowledgments (NACKs) 

 

III. COMPOSITION OF SYSTEM SPECIFIC LAYERS 
As introduced above the link layer functions are not limited 

in their appearance to the DLL. To illustrate the applicability of 
the modular approach, a composition of three exemplary 
protocol layers, all differently localized in a protocol stack 
corresponding to the ISO/OSI reference model, is introduced in 
the following: (1.) A UMTS RLC layer in Fig. 4, (2.) a TCP, IP 
and UDP layer in Fig. 5 and (3.) a IEEE 802.11 MAC layer in 
Fig. 6. The consideration of Fig. 5 is limited in the following to 
the TCP layer, marked through the gray dash-dotted rectangle. 
The medium access of the Distributed Coordination Function 
(DCF) of 802.11 may be regarded as a Send-and-Wait ARQ, 
simply realized in the ARQ module by a Go-Back-N ARQ with 
a window length of 1.  

 

IV. SIMULATIVE  EVALUATION AND VALIDATION OF THE 
FUNCTIONAL MODULES 

The parameterizable modules are implemented in the 
Specification and Description Language (SDL), and evaluated 
with the help of a Modular Object-oriented Software and 
Environment for Protocol Simulation (MOSEPS) that provides 
basic traffic generators, an erroneous channel model and 
statistical evaluation methods. This section introduces the 
modular approach to protocol functions with a focus on the 
ARQ module at the example of TCP and 802.11. 

A. Transmission Control Protocol Layer 
As introduced above in Fig. 5 a TCP layer can be composed 

out of the functional modules of the link layer as being part of 
the generic protocol stack. To validate the Go-Back-N 
mechanisms of the TCP layer’s ARQ module we measure the 
protocol overhead in dependency on the payload packet size in 
the case of an erroneous channel. The focus is thereby on the 
influence of two effects: The bit error ratio ber of the radio 
channel, i.e. the wireless medium, and the size of the send and 
receive window w. 

With a packet length of 
packet header payload

l  = l + l , where TCP has 
fixed header length of 40=

header
l Bytes , can the packet error 

ratio per be calculated to  
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where w  is the length of the transmission window leading to 
the analytical results as depicted in Fig. 7. This figure illustrates 
the overhead to payload ratio in dependency of the frame length 
of the payload data for on the one hand (a) a bit error ratio of 
10-5 and 10-6 and on the other hand (b) window length of 8 and 
64. Fig. 7 (a) shows the expected performance corresponding to 
the Go-Back-N ARQ: The overhead to payload ratio increases 
with increasing bit error ratio and an optimal frame length for 
the payload data to minimize said ratio can be determined. 
From the cross protocol optimization perspective, this frame 
length may be used as dimensioning rule for segmentation. The 
same stands for Fig. 7 (b): There the overhead to payload ratio 
increases with increasing window length, as the amount of data 
which has to be retransmitted, in the case of an error 
corresponding to the Go-Back-N ARQ, increases. In summary, 
the ARQ module of the generic protocol stack fulfills 
adequately its intended purpose.  

B. IEEE 802.11 Medium Access Control Layer 
In this section the modular composition of an IEEE 802.11 

MAC layer as illustrated in Fig. 6 is validated and evaluated. 
Therefore, the average throughput of the Carrier Sensing 
Multiple Access with Collision Avoidance (CSMA/CA)-based 
decentralized medium access by the DCF with and without 
Request To Send/Clear To Send (RTS/CTS) is analyzed and 
simulated. 

The channel capacity is mainly wasted by two effects: MAC 
header sending and collisions. One way to an analytical 
approach for determination of the throughput is to calculate the 
collision probability p and the access probability τ  with the 
help of a two-dimensional Markov chain for the modeling of 
the backoff window of the DCF [11] and [12] resulting into 
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8 1
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where n is the number of stations and 
0

W  the minimum backoff 
window size,  here we chose 

0
8=W . With the help of the 

average time slot length averageT  on the basis of Tab. 1 can the 
average total system throughput  saturationt be calculated to  
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Fig. 7: TCP layer Go-back-N ARQ validation and evaluation. The protocol overhead to payload ratio in dependency on the frame length of the payload 
data is depicted. The lines are analytic results corresponding to (2), while the markers indicate simulative evaluation. 
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We assume a channel rate of 1 Mbps, slot length, SIFS and 
DIFS are 1, 6 and 10 µs resulting into the analytical as well as 
simulative results of Fig. 8. There, the overall system 
throughput, with and without RTS/CTS, in dependency on the 
number of stations is depicted. For small packets, 

payloadL = 128 Bytes Fig. 8 (a), the headers are the main cause 
for an inefficient use of the medium. For larger frames, 

payloadL = 4096 Bytes Fig. 8 (b), a collision wastes more time, as 
a transmitting station is only able to notice an interfered frame 
after its ending. Therefore, the RTS/CTS mechanism is 
introduced, to have just a small RTS frame lost in case of a 
collision. The simulation agrees mainly with the analytic 
determination of the throughput of (4) and illustrates the 
superiority of the RTS/CTS based solution. As the ARQ 
module of the generic protocol stack reflects the expected 
behavior of RTS/CTS mechanism [12], this module can be 
legitimately used in an 802.11 MAC layer.  

 

V. CONCLUSION 
The generic protocol stack, as a collection of modular 

protocol functions, takes up the usual advance of software 
engineering in the field of protocol development and 
evaluation: It is fallen back on well-proven and known protocol 
functions and behavior from the portfolio of the engineers’ 
experience. A generic realization of these functions in the form 
of independent modules results in a library of protocol 
functions as construction kit for protocol development. In 
taking the tradeoff of genericity into account these thoughtful 
realized modules stimulate efficiency through reusability and 
maintainability as well as accelerate the development process 
itself. The efficiency of protocol re-configurability benefits 
from the introduced generic approach and implies a clearly 

limited additional effort of protocol management. Thus the 
introduced approach is a first step to an efficient end-to-end re-
configurable wireless system. 

 

ACKNOWLEDGMENT 
The authors would like to thank the German Research 

Foundation (DFG) for funding the work contributed to this 
paper in the form of a Research College (Graduiertenkolleg). 

 

REFERENCES 
[1] http://www.sdrforum.org/. 
[2] J. Mitola, “The Software Radio Architecture,” IEEE 

Communications Magazine, vol. 33, no. 5, pp. 26-38, May 1995.  
[3] W. Tuttlebee, “Software Defined Radio: Enabling Technologies,” 

Wiley Series in Software Radio, ISBN 0470843187, May 2002. 
[4] End-to-End Re-configurability (E²R), IST-2003-507995 E²R, 

http://www.e2r.motlabs.com. 
[5] ITU. “Information Technology - Open Systems Interconnection - 

Basic Reference Model: The Basic Model,” ITU-T 
Recommendation X.200, International Telecommuncation Union 
(ITU), Geneva, 1994. 

[6] M. Siebert, B. Walke, “Design of Generic and Adaptive Protocol 
Software (DGAPS),” in Proc. of  Third Generation Wireless and 
Beyond (3Gwireless '01), San Francisco USA, June 2001, 
http://www.comnets.rwth-aachen.de. 

[7] M. Siebert, “Design of a Generic Protocol Stack for an Adaptive 
Terminal,” in Proc. of 1st Karlsruhe Workshop on Software 
Radios, pp. 31-34, Karlsruhe Germany, March 2000, 
http://www.comnets.rwth-aachen.de. 

[8] L. Berlemann, M. Siebert, B. Walke, “Software Defined Protocols 
Based on Generic Protocol Functions for Wired and Wireless 
Networks,” in Proc. of Software Defined Radio Technical 
Conference, Orlando USA, November 2003, 
http://www.comnets.rwth-aachen.de. 

[9] L. Berlemann, A. Cassaigne, B. Walke, “Modular Link Layer 
Functions of a Generic Protocol Stack for Future Wireless 
Networks”, to appear in Proc. of Software Defined Radio 
Technical Conference, Phoenix USA, November 2004. 

[10] A. Cassaigne, “Design and Evaluation of Protocol Functions for 
the Data Link Layer of a Generic Protocol Stack,” Diploma 
Thesis, ComNets, Aachen University (RWTH), 2004. 

[11] G. Bianchi, “Throughput Evaluation of the IEEE 802.11 
Distributed Coordination Function,” in Proc. of 5th Workshop on 
Mobile Multimedia Communications, Berlin Germany, October 
1998. 

[12] A. Hettich, „Leistungsbewertung der Standards HIPERLAN/2 
und IEEE 802.11 für drahtlose lokale Netze,“ Ph. D. Dissertation, 
Aachen University (RWTH), ABMT 23, ISBN:3-86073-824-0, 
http://www.comnets.rwth-aachen.de. 

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
throughput evaluation − channel capacity = 1 Mbps, packet size = 128 Byte

number of stations

th
ro

ug
hp

ut
 [M

bp
s]

sim.: without RTS/CTS
sim.: with RTS/CTS
analyt.: without RTS/CTS
analyt.: with RTS/CTS

              
10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
throughput evaluation − channel capacity = 1 Mbps, packet size = 4096 Byte

number of stations

th
ro

ug
hp

ut
 [M

bp
s]

sim.: without RTS/CTS
sim.: with RTS/CTS
analyt.: without RTS/CTS
analyt.: with RTS/CTS

 
(a) packet size = 128 Byte                                                    (b) packet size = 4096 Byte 

Fig. 8: 802.11 MAC layer evaluation of the DCF-based medium access under utilization of the ARQ module. The total system throughput depending 
on the number of transmitting stations is depicted. The lines are analytic results corresponding to (4), while the markers indicate the simulative evaluation.

Tab. 1:  Time slot durations in µs and probabilities that the medium is 
empty (e), successfully (s) allocated or a collision (c) occurs [11] and [12]. 

The fixed values result from the time length of a RTS/CTS sequence. 
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