
 Generic Protocol Functions for Design and Simulative
Performance Evaluation of the Link-Layer for

Re-configurable Wireless Systems

Lars Berlemann, Arnaud Cassaigne, Bernhard Walke
Chair of Communication Networks, Aachen University (RWTH),

Kopernikusstraße 16, D-52074 Aachen, Germany,
e-mail: {ber|adc|walke}@comnets.rwth-aachen.de

Abstract— This paper discusses first steps towards the
realization and application of a generic protocol stack as part of the
software for re-configurable wireless communication systems. This
focus on the protocol software extends the field of software defined
radios with its origin in the physical layer. The generic protocol
stack compromises common protocol functionality and behavior
which is extended through specific parts of the targeted radio
access network technology. Following a bottom-up approach this
paper considers parameterizable modules of basic protocol
functions corresponding to the data link layer of the ISO/OSI
reference model. System specific aspects of the protocol software
are realized through adequate parameterization of the modules.
Further functionality and behavior can be added through the
insertion of system specific modules or inheritance. The generic
protocol stack enables an efficient realization of re-configurable
protocol software as part of a completely re-configurable wireless
communication system. The presented modules of the generic
protocol stack can also be regarded as tool-box for the accelerated
development of future communication protocols.

Keywords— Generic Protocol Stack, Link Layer Functions,

Modular Layer Composition, Re-configurability, Software Defined
Radio

I. INTRODUCTION
The evolution of the digital cellular mobile radio networks

originated in the GSM toward systems of the third generation,
as e.g. the UMTS, has shown that in their standardization it is
fallen back on well-proved functions and mechanisms that are
adopted to the specific requirements of their application.
Looking at recent developments, terminals tend to integrate
GSM as fallback for uncovered areas on the one hand and
additionally integrate WLANs for high capacity needs on the
other hand. In this context it is obvious that re-configurability is
the one of the key issues for future wireless communication
systems beyond 3G. Consequently a completely re-configurable
mobile terminal in a re-configuration supporting radio network
is demanded.

Software Defined Radios (SDRs) [1] and [2] are a promising
approach towards this re-configurability. For a long term, the
hardware has been the key issue of research in the field of SDR.
But the recent technical progress enabled an expanding of
research efforts on the complete communication chain with the
communication software and the protocol stack as essential part
of it [3] and [4].

This paper focuses on protocol functions of the Data Link
Layer (DLL), the layer two corresponding to the ISO/OSI
reference model [5]. Related work considering the network
layer, the layer three, has been published in [6]. The data link
layer consists of (1.) the Medium Access Control (MAC) layer
for the coordinated access to the medium as well as (2.) a layer
for the error protection and error free transfer of data, often

referred to as Logical Link Control (LLC) layer, as for instance
in GSM. Alternatively or as part of it, the corresponding layer
may be also referred to as Radio Link Control (RLC) layer, as
for example in UMTS.

This paper is outlined as follows: The idea of a generic
protocol stack on the basis of fundamental, parameterizable
functional modules of the DLL in the context of protocol re-
configurability is introduced in Section II. The necessary
additional elements to realize a fully functional specific
protocol layer are outlined thereafter. Section III introduces the
composition of system specific layers at the example of the
UMTS RLC, the Transmission Control Protocol (TCP) and the
IEEE 802.11 MAC layer, which differ in their development
history as well as in their layer classification corresponding to
the ISO/OSI reference model. The latter two layers are
validated and evaluated analytically and simulative in
Section IV.

II. THE GENERIC PROTOCOL STACK
The primary idea of the generic protocol stack is that all

communication protocols share a lot of functional
communalities that should be exploited to build an efficient re-
configurable wireless system [7]. The aim is to gather these
common parts in a single generic stack and specialize this
generic part following the particular requirement of the targeted
Radio Access Technology (RAT), as depicted in Fig. 1. The
targeted advantages of this concept are: runtime re-
configurability and maintainability, code/resource sharing and
protocol development acceleration through reusability.

The initial step towards a generic stack is a detailed, stepwise
analysis of communication protocols to identify their
similarities. Their elaborated realization of the generic parts is
crucial for the success of the proposed concept in the face of a
tradeoff between genericity, i.e. general usability, and

RAT 1 RAT x

system specific
protocol stack

reconfigurable
protocol stack

reconfiguration
functions/management

same property

(classic) single
protocol stack

generic
protocol stack

specific parts

common functionalityspecific functionality

RAT 2 protocol
functions

protocol
framework

data
structures

different

Fig. 1: UML diagram of the generic protocol stack in the context of
protocol re-configurablility.

implementation effort. From the software engineering
perspective, there are in general two possibilities for
approaching the generic protocol stack: Parameterizable
functional modules and/or inheritance, depending on the
abstraction level of the identified protocol commonalities. As
introduced above, this paper focuses more on the modular
approach while the inheritance based approach is considered in
[6] and [8].

As depicted in Fig. 1, the generic protocol stack comprises
fundamental protocol functions, data structures and an
architectural framework which form, together with RAT
specific parts, a system specific protocol stack. An efficient re-
configurable stack is realized in adding re-configuration related
functions and management, as further outlined in the next but
one section.

A. Generic Protocol Functions of the Data Link Layer
As the architecture of modern communication protocols can

not be forced into the classical layered architecture of the
ISO/OSI reference model it is rather difficult to identify
similarities and attribute these to specific layers. Therefore this
paper deepens the level of examination in the search for
similarities and considers fundamental protocol functions,
contrary to [6] and [8] where complete protocols are analyzed
for genericity. Though these protocol functions mainly
correspond to the DLL as specified in the ISO/OSI reference
model, they can be found in multiple layers of today’s protocol
stacks as shown below. The following functions are considered
for the generic protocol stack:
• Error handling with the help of Forward Error Correction

(FEC) or Automatic Repeated reQuest (ARQ) protocols as
for instance Send-and-Wait ARQ, Go-back-N ARQ* or
Selective-Reject ARQ

• Flow control*

• Segmentation, concatenation and padding of Protocol Data
Units (PDUs)

• Discarding of several times received segments*

• Reordering of PDUs*

• Multiplexing/De-Multiplexing of the data flow, as for
instance the mapping of different channels*

• Dynamic scheduling

• Ciphering

• Header compression

The with a star* marked functions are considered in the
following section while the other functions are considered
in [9].

B. Enabling Re-configurability
The generic protocol stack, with its pool of generic functions

as introduced above, enables an efficient as well as flexible
realization of re-configurable protocol stack. Full, end-to-end
re-configurability from the modem part up to the applications
requires a layer overlapping management and re-configuration
functions. Therefore, as this paper considers communication
protocols implemented in software, a protocol re-configuration
manager is introduced in Fig. 2, which accomplishes all re-
configurability related tasks of the PHYsical layer (PHY),
MAC, RLC/LLC and transport layer. These system specific
layers are based on the pool of generic protocol functions and

mechanisms. The protocol re-configuration manager has
thereby the following tasks:
• Management of the (permanently or temporally) parallel

existing protocols and protocol stacks
• Creation, destruction and/or re-configuration of a single

protocol or complete protocol stack
• Administration of the user data flow during the re-

configuration process, as for instance the redirection of the
user data from the old to the re-configured protocol stack

• Cross layer optimization, as for instance the transfer of
protocol or user data within the old stack to the new one [9]

• Support and enabling of re-configuration functions of the
network, as for instance a network initiated re-configuration
or an update of the network information about the status of
the terminal

The re-configuration of the protocol stack or single protocol,
administrated through the protocol re-configuration manager,
has two characteristics: (1.) the creation of a new stack/layer
consisting of adequate parameterized modules of the generic
stack and destruction of the existing one and (2.) the re-
configuration of the existing protocol implementation in
exchanging the parameterization of the corresponding modules.

C. Modular Approach – the Generic Protocol Stack as Library
of Protocol Functions

The generic protocol stack is the realization of the common
parts, as illustrated in Fig. 1, and implements its common
functions on the basis of modules. These common protocol
functions get their system specific behavior on the basis of
parameterization. Once specified, these modules can be
repeatedly used with a different set of parameters
corresponding to the specific communication system. The
modules of generic protocol functions form together with
system specific modules a complete protocol layer, as depicted
in Fig. 3. The communication inside said layer is done on the
basis of generic service primitives and generic PDUs which are
also considered as being a part of the generic stack, see
again Fig. 1.

A unique manager as well as interfaces for the Service
Access Points (SAP) to the adjacent layers complete the fully
functional protocol layer as depicted in Fig. 3. In detail, the
mentioned components have the following tasks:
• Functional Module (generic or RAT specific): Realizes a

certain fundamental functionality as black-box. In case of a
generic module a list of parameters for characterizing the
functionality is given and the underlying functionality is

PHY

PHY

PHY

PHY

TCP/IP

RLC, LLC

MAC

applications

PHY

channel (modem)

protocol
reconfi-
guration
manager

data

data

based on
generic
protocol

stack

full
reconfigurability

Fig. 2: A re-configurable protocol stack based on generic functional
modules in the context of a completely re-configurable terminal.

hidden. The comprehensiveness of the fulfilled function is
limited to fit straightforward into a single module.

• Manager: Composes and administrates the layer during
runtime. This implies the composition, rearrangement,
parameterization and data questioning of the functional
modules. Additionally, the manager administrates the layer
internal communication, as for instance the connection of
the layer’s modules through generic service primitives. The
manager is the layer’s counterpart of the protocol re-
configuration manager as introduced above in Fig. 2. The
manager realizes the re-configurability of the layer.

• Generic interface: Translates the generic service
primitives with specific protocol information as payload to
system specific ones and enables thus the vertical as well as
horizontal integration of the system specific parts of the
layer.

• Service Access Point (SAP): Here, services of the layer are
performed for the adjacent layers. The layer may
communicate via generic primitives without a translation
interface to an adjacent layer if said layer has the same
modular composition. The interface is needed if it is
demanded that the layer appears as a classic layer fitting
into an ordinary protocol stack.

• PDU factory (as functional module, later depicted in
Fig. 4-6): Composes layer specific protocol frames and
places them as payload in generic PDUs.

This approach enables the simulation and performance
evaluation on several levels: A single (sub-)layer as well as a
complete protocol stack can be composed out of the introduced
modules. To facilitate understanding the parameterization itself
is introduced in the following.

D. Parameterization of Functional Modules
In this context parameterization implies not only specific

values, as for instance the datagram size of a segmentation
module, but also a configuration of behavior and characteristics
of a module, as for example the concretion of an ARQ module
as a Go-back-N ARQ protocol with specified window sizes for
transmission and reception. This implies as well a configuration
of the modules’ interface to the outside. The parameterization
of functional modules may imply (i.) a specification of certain
variables, (ii.) the switching on/off of certain
functionality/behavior and (iii.) an extension of the module’s
interface to the outside.

At the example of the ARQ module, the parameterization
may imply among other things:

• ARQ protocol characteristic, for instance Go-Back-N ARQ
or Selective-Reject ARQ

• Transmitter or/and receiver role

• Receive and transmission window size

• Fixed, variable (TCP) window length or open/shut
mechanism (LLC)

• Timer value, after a packet is assumed to be lost

Functional
Modul

Functional
Modul

functional
module

functional
module

functional
module

layer or
sublayer

interface

manager

service access point

service access point

data

control

system-
specifc

generic

interface

interface

Fig. 3: Composition of a protocol specific layer or sublayer on the

basis of generic and system-specific functional modules.

manager

multiplexer

interface

multiplexer

PDU factory

segmentation unit

PDU factory

ARQ unit

segmentation unit
transparent

mode
to RRC

to RRC/PDCP/BMC (radio bearers)

to MAC (logical channels)

interface

interface

unacknow-
ledged
mode

acknow-
ledged
mode

SAP

SAP

SAP

Fig. 4: UMTS RLC layer based on the functional modules of the

generic protocol stack.

multiplexer
TCP port

TCP PDU factory

ARQ

IP PDU factory

segmentation unit

multiplexer
UDP port

UDP PDU factory

multiplexer

multiplexer

to data link layer

to higher layer

interface

manager

interface

ARQARQARQ

IP address

Fig. 5: TCP, IP and UDP layer based on the functional modules of

the generic protocol stack. The TCP layer (gray dash-dotted line) is
considered here.

manager

interface

PDU factory

ARQ unit

segmentation unit

to STA
MGMT

layer

to LLC

to PHY

interface

interface

SAP

SAP

SAP

multiplexer
mobility/data

mobility unit

Fig. 6: 802.11 MAC layer based on the functional modules of the

generic protocol stack.

• Connection Service: inexistent (UMTS RLC), separated for
each direction (802.11 - CSMA/CA with RTS/CTS), 2-way
handshake (GSM LLC) or 3-way handshake (TCP)

• Use of Negative ACKnowledgments (NACKs)

III. COMPOSITION OF SYSTEM SPECIFIC LAYERS
As introduced above the link layer functions are not limited

in their appearance to the DLL. To illustrate the applicability of
the modular approach, a composition of three exemplary
protocol layers, all differently localized in a protocol stack
corresponding to the ISO/OSI reference model, is introduced in
the following: (1.) A UMTS RLC layer in Fig. 4, (2.) a TCP, IP
and UDP layer in Fig. 5 and (3.) a IEEE 802.11 MAC layer in
Fig. 6. The consideration of Fig. 5 is limited in the following to
the TCP layer, marked through the gray dash-dotted rectangle.
The medium access of the Distributed Coordination Function
(DCF) of 802.11 may be regarded as a Send-and-Wait ARQ,
simply realized in the ARQ module by a Go-Back-N ARQ with
a window length of 1.

IV. SIMULATIVE EVALUATION AND VALIDATION OF THE
FUNCTIONAL MODULES

The parameterizable modules are implemented in the
Specification and Description Language (SDL), and evaluated
with the help of a Modular Object-oriented Software and
Environment for Protocol Simulation (MOSEPS) that provides
basic traffic generators, an erroneous channel model and
statistical evaluation methods. This section introduces the
modular approach to protocol functions with a focus on the
ARQ module at the example of TCP and 802.11.

A. Transmission Control Protocol Layer
As introduced above in Fig. 5 a TCP layer can be composed

out of the functional modules of the link layer as being part of
the generic protocol stack. To validate the Go-Back-N
mechanisms of the TCP layer’s ARQ module we measure the
protocol overhead in dependency on the payload packet size in
the case of an erroneous channel. The focus is thereby on the
influence of two effects: The bit error ratio ber of the radio
channel, i.e. the wireless medium, and the size of the send and
receive window w.

With a packet length of
packet header payload

l = l + l , where TCP has
fixed header length of 40=

header
l Bytes , can the packet error

ratio per be calculated to

8

1 1
⋅packetl

per = - (- ber) . (1)
Based hereon the overhead to payload quotient for the Go-
Back-N ARQ can be derived and approximated [10] to

1

1

2

2

2

(1) (1) −

=

− + ⋅ − ⋅

+ ⋅
∑

packetheader

payload payload

i

i

w

w

w

overhead

payload

i per per
ll

=
l l

,(2)

where w is the length of the transmission window leading to
the analytical results as depicted in Fig. 7. This figure illustrates
the overhead to payload ratio in dependency of the frame length
of the payload data for on the one hand (a) a bit error ratio of
10-5 and 10-6 and on the other hand (b) window length of 8 and
64. Fig. 7 (a) shows the expected performance corresponding to
the Go-Back-N ARQ: The overhead to payload ratio increases
with increasing bit error ratio and an optimal frame length for
the payload data to minimize said ratio can be determined.
From the cross protocol optimization perspective, this frame
length may be used as dimensioning rule for segmentation. The
same stands for Fig. 7 (b): There the overhead to payload ratio
increases with increasing window length, as the amount of data
which has to be retransmitted, in the case of an error
corresponding to the Go-Back-N ARQ, increases. In summary,
the ARQ module of the generic protocol stack fulfills
adequately its intended purpose.

B. IEEE 802.11 Medium Access Control Layer
In this section the modular composition of an IEEE 802.11

MAC layer as illustrated in Fig. 6 is validated and evaluated.
Therefore, the average throughput of the Carrier Sensing
Multiple Access with Collision Avoidance (CSMA/CA)-based
decentralized medium access by the DCF with and without
Request To Send/Clear To Send (RTS/CTS) is analyzed and
simulated.

The channel capacity is mainly wasted by two effects: MAC
header sending and collisions. One way to an analytical
approach for determination of the throughput is to calculate the
collision probability p and the access probability τ with the
help of a two-dimensional Markov chain for the modeling of
the backoff window of the DCF [11] and [12] resulting into

 ()0 0

8 1
1 (2)1

1 21 (1) , 2 1τ τ
−

−−
−= − − = ⋅ + + pn

pp W pW , (3)

where n is the number of stations and
0

W the minimum backoff
window size, here we chose

0
8=W . With the help of the

average time slot length averageT on the basis of Tab. 1 can the
average total system throughput saturationt be calculated to

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

window length w = 8, bit error ratio ber = 10−5 or 10−6

payload data frame length [byte]

ov
er

he
ad

 to
 p

ay
lo

ad

sim.: ber = 10−5

sim.: ber = 10−6

analyt.: ber = 10−5

analyt.: ber = 10−6

0 1000 2000 3000 4000 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
window length w = 8 or 64, bit error ratio ber = 10−6

size of data per packet [byte]

ov
er

he
ad

 to
 p

ay
lo

ad

sim.: w = 8
sim.: w = 64
analyt.: w = 8
analyt.: w = 64

(a) varied bit error ratio ber (b) varied window length w

Fig. 7: TCP layer Go-back-N ARQ validation and evaluation. The protocol overhead to payload ratio in dependency on the frame length of the payload
data is depicted. The lines are analytic results corresponding to (2), while the markers indicate simulative evaluation.

 ,= = + +
s payload

saturation average e e s s c c

average

P L
t T PT PT PT

T
. (4)

We assume a channel rate of 1 Mbps, slot length, SIFS and
DIFS are 1, 6 and 10 µs resulting into the analytical as well as
simulative results of Fig. 8. There, the overall system
throughput, with and without RTS/CTS, in dependency on the
number of stations is depicted. For small packets,

payloadL = 128 Bytes Fig. 8 (a), the headers are the main cause
for an inefficient use of the medium. For larger frames,

payloadL = 4096 Bytes Fig. 8 (b), a collision wastes more time, as
a transmitting station is only able to notice an interfered frame
after its ending. Therefore, the RTS/CTS mechanism is
introduced, to have just a small RTS frame lost in case of a
collision. The simulation agrees mainly with the analytic
determination of the throughput of (4) and illustrates the
superiority of the RTS/CTS based solution. As the ARQ
module of the generic protocol stack reflects the expected
behavior of RTS/CTS mechanism [12], this module can be
legitimately used in an 802.11 MAC layer.

V. CONCLUSION
The generic protocol stack, as a collection of modular

protocol functions, takes up the usual advance of software
engineering in the field of protocol development and
evaluation: It is fallen back on well-proven and known protocol
functions and behavior from the portfolio of the engineers’
experience. A generic realization of these functions in the form
of independent modules results in a library of protocol
functions as construction kit for protocol development. In
taking the tradeoff of genericity into account these thoughtful
realized modules stimulate efficiency through reusability and
maintainability as well as accelerate the development process
itself. The efficiency of protocol re-configurability benefits
from the introduced generic approach and implies a clearly

limited additional effort of protocol management. Thus the
introduced approach is a first step to an efficient end-to-end re-
configurable wireless system.

ACKNOWLEDGMENT
The authors would like to thank the German Research

Foundation (DFG) for funding the work contributed to this
paper in the form of a Research College (Graduiertenkolleg).

REFERENCES
[1] http://www.sdrforum.org/.
[2] J. Mitola, “The Software Radio Architecture,” IEEE

Communications Magazine, vol. 33, no. 5, pp. 26-38, May 1995.
[3] W. Tuttlebee, “Software Defined Radio: Enabling Technologies,”

Wiley Series in Software Radio, ISBN 0470843187, May 2002.
[4] End-to-End Re-configurability (E²R), IST-2003-507995 E²R,

http://www.e2r.motlabs.com.
[5] ITU. “Information Technology - Open Systems Interconnection -

Basic Reference Model: The Basic Model,” ITU-T
Recommendation X.200, International Telecommuncation Union
(ITU), Geneva, 1994.

[6] M. Siebert, B. Walke, “Design of Generic and Adaptive Protocol
Software (DGAPS),” in Proc. of Third Generation Wireless and
Beyond (3Gwireless '01), San Francisco USA, June 2001,
http://www.comnets.rwth-aachen.de.

[7] M. Siebert, “Design of a Generic Protocol Stack for an Adaptive
Terminal,” in Proc. of 1st Karlsruhe Workshop on Software
Radios, pp. 31-34, Karlsruhe Germany, March 2000,
http://www.comnets.rwth-aachen.de.

[8] L. Berlemann, M. Siebert, B. Walke, “Software Defined Protocols
Based on Generic Protocol Functions for Wired and Wireless
Networks,” in Proc. of Software Defined Radio Technical
Conference, Orlando USA, November 2003,
http://www.comnets.rwth-aachen.de.

[9] L. Berlemann, A. Cassaigne, B. Walke, “Modular Link Layer
Functions of a Generic Protocol Stack for Future Wireless
Networks”, to appear in Proc. of Software Defined Radio
Technical Conference, Phoenix USA, November 2004.

[10] A. Cassaigne, “Design and Evaluation of Protocol Functions for
the Data Link Layer of a Generic Protocol Stack,” Diploma
Thesis, ComNets, Aachen University (RWTH), 2004.

[11] G. Bianchi, “Throughput Evaluation of the IEEE 802.11
Distributed Coordination Function,” in Proc. of 5th Workshop on
Mobile Multimedia Communications, Berlin Germany, October
1998.

[12] A. Hettich, „Leistungsbewertung der Standards HIPERLAN/2
und IEEE 802.11 für drahtlose lokale Netze,“ Ph. D. Dissertation,
Aachen University (RWTH), ABMT 23, ISBN:3-86073-824-0,
http://www.comnets.rwth-aachen.de.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
throughput evaluation − channel capacity = 1 Mbps, packet size = 128 Byte

number of stations

th
ro

ug
hp

ut
 [M

bp
s]

sim.: without RTS/CTS
sim.: with RTS/CTS
analyt.: without RTS/CTS
analyt.: with RTS/CTS

10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
throughput evaluation − channel capacity = 1 Mbps, packet size = 4096 Byte

number of stations

th
ro

ug
hp

ut
 [M

bp
s]

sim.: without RTS/CTS
sim.: with RTS/CTS
analyt.: without RTS/CTS
analyt.: with RTS/CTS

(a) packet size = 128 Byte (b) packet size = 4096 Byte

Fig. 8: 802.11 MAC layer evaluation of the DCF-based medium access under utilization of the ARQ module. The total system throughput depending
on the number of transmitting stations is depicted. The lines are analytic results corresponding to (4), while the markers indicate the simulative evaluation.

Tab. 1: Time slot durations in µs and probabilities that the medium is
empty (e), successfully (s) allocated or a collision (c) occurs [11] and [12].

The fixed values result from the time length of a RTS/CTS sequence.

probability duration
with RTS/CTS

duration
without RTS/CTS

(1)τ= − n

e
P 1=

e
T 1=

e
T

1(1)τ τ −= − n

s
P n 636 8= +

s payload
T l 636 8= +

e payload
T l

1= − −
c e s

P P P 170=
e

T 234 8= +
s payload

T l

