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Effective Control of Simulation Runs

by a New Evaluation Algorithm
for Correlated Random Sequences *

by Friedrich Schreiber**

Rcpon from the Lehrstuhl für Allgemeine Elektrotechnik und Datenfernverarbeitung
Aachen University of Technology

A new algorithm is presented which allows the analy~is of correlated random sequences in order
to gain the stationary distribution function Fn (x). This algorithm being based on recent statisti-
cal investigations of Markov chains can be used to contral systematically the required number
of trials n of a computer simulation run by a formula which depends on the desired minimum value
F, of F (x). on the prescribed upper limit d of relative' error and also on the measured mean
v;i~e of ;he correlation coefficient g(x). As sh';;"~n by selected examples the algorithm can pracess
any correlated x-sequence of discrete and/or continuous type, detects rare event details of Fn(x) and
may replace therefore the conventional batch means evaluation method and other methods.
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Effektive Steuerung von Simulationsläufen durch einen neuen Auswertealgorithmus
für korrelierte Zufallssequenzen

Es wird ein neuer Algorithmus vorgestellt, der die Analyse von korrelierten Zufallssequenzen
zwecks Gewinnung der stationären Verteilungsfunktion Fn(x) durchführt. Dieser Algorithmus be-
ruht auf neue ren statistischen Untersuchungen an Markov-Ketten und eignet sich zur systemati-
schen Kontrolle der bei einer Rechnersimulation erforderlichen Versuchszahl n mittels einer Formel,
die von dem gewünschten Minimalwert Fminder Funktion Fn (x), von der oberen Grenze dmaxdes
relativen Fehlers und auch von dem gemessenen mittleren Korrelationskoeffizienten e(x) abhängt.
Anband ausgesuchter Beispiele wird gezeigt, daß dieser Algorithmus beliebige korrelierte x-
Sequenzen vom diskreten und/oder kontinuierlichen Typ verarbeiten kann, seltene Ereignisse von
Fn(x) aufdeckt und daher die konventionelle Batch-Means-Methode und andere Methoden ersetzen
ka=. .

1. lntroduction

r

Since the work of Kosten [4] discrete event simula-
tion on large computers has become the major tool for
analyzing the performance of complex teletrafiic and
data pracessing 'installations. Essentially a simulation
system deals with three tasks [3]:

1) Generation of random numbers of several pre-
scribed distribution types.

2). Organization oftask scheduIing, list processing etc.
repr~senting the main body of the system.

3) Statistical evaluation of the output random se-
quence yielding the desired information about the
performance of the simulated object: e.g. the mean
and variance or if possible the complete stationary
distribution function of a delay time.

Task (3) is often carried out by the batch means
method [3], [9]; several other methods are known but

. " /
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it can be said that the statistical evaluation is up to
now one of the weak points of simulation, see discus-
sion on page 101 in [1].This is an unsatisfactory situa-
tion because the evaluation resuIts should be reliable
in a well specified manner such that the engineer may
take responsibility for any decisions based on the sim-
ulated results. For this purpose a trustworthy, always
appIicable evaluation method is necessary in order to
control the length and also the cost of a simulation
run which may become excessive considering typical
run times on large computers of several hours. The
new method to be described here is an extension of the
Limited Relative Erraf (LRE) algorithm for indepen-
dent x-sequences [5]to the correlated case and is based
on the fundament of the Bayes-Laplace-statistics [6].

2. Statistic for Markovian Random Sequences

The essential resuIt of recent statistical investiga-
tions of Markov chains can be summarized as folio ws.
Consider a chronological x-sequence represented by
the vector Xr= (Xl' X2"'" Xn+1) with unknown,corre-
lation between neighbours 1 and with an unknown

1 In the presertt context it is not necessary to use the term
~autocorrelation ".



;

't
':

",

r.
"--"

,

348 F. SCHREIBER: EFFECTIVE CONTROL OF SIMULATION RUNS AEO. Band 42
(1988). Hcft 6

i
I

I.
I

I
j

Fig.1. Two modes for partial sorting of n + 1 measured x-values.

stationary d.f. F (x) resp. eomplementary distribution
funetion (e.d.f.) G(x)=l-F(x). This veetor ean be
sorted as shown in Fig.l in two different ways: for
gaining the empirieal stationary d.f. Fn(x) r values
form the ordered veetor Xr = (Xl,X2' ..., xr), Xi ~ Xi+ 1

at the left end resp. for gaining the e.d.f. Gn (x) v values
form the ordered veetor xv=(xv,...,X2'X1), Xi+l~Xi
at the right end of the observed x-range. The rest of
measured x-values beyond eaeh ordered veetor forms
a "global range" x > Xr resp. x < Xvwhieh for the pres-
ent we may eonsider to remain unordered. The essen-
tial point of the new statistieal method is that not only
the number of ordered x-values r resp. v but also the
number of transitions a resp. c from eaeh ordered
range to the range x > Xr resp. x < x. will be measured
and evaluated in order to deal with eorrelation.

Then on basis of the BL-statisties for the 2-node
Markov ehain [7], [8] and observing the large sample
conditions
,

n ~ 103; (r, v) ~ 102.- , (a,r - a,c,v - c) ~ 10

the following posterior statements can be made [9]:

F-evaluation, xr ~ x< xr+ 1

empirical stationary distribution function

(2b)(2a) I Gn(x) = vJn;

mean correlation coefficient (-1< ii < 1)

- cJv
QG(x)=l--

1- v/n

Fn(x) = rJn;

ilF(X)= 1- air
1- r/n

(3a)

3. The Empirical Stationary Distribution Function

3.1. Evaluation method with prescribed F-levels

(1)

In many eonventional methods the measured x-
range must be divided into a number of x-intervals
having a eonstant width Llx. This is a problematica1
task because only aposteriori i.e. after the bulk of
measured x-va1ues is known an adequate ehoise of Llx
can be attempted. Looking out for another solution
we find that it is principally better to gain intervals by
dividing the vertical F-axis with its known range
0 ~ F ~ 1 as shown in Fig. 2.

Here we are able to prescribe apriori the desired
range of investigation Fmax ~ F ~ Fmin and also the
desired number of intervals k whieh determines the
loeal resolution. Assuming as usually a logarithmieal
ordinate 2 we may eompute a multiplier m and the
F -levels Fj

m=(FminJFmax)l/\ m<l;

)
Fj+l :m Fj.= mj Fl;- j = 1,2, ..., k;

F1 - Fmax, Fk+ 1 - Fmin'

(5)

G-evaluation, xv+ 1 < X ~ xI'

(3 b)

relative error concerning the statements eq. (2 a, b)

dF(x) =[1 - r/n . 1 + ilF(X)
J

I/2

r 1 - ilF(x)
(4a)

Eq.(2a, b) represents simply the measured relative
frequency as it should be for the large sam pie ease.
The contro! of the evaluation procedure will be per-
formed by the error formula eq. (4a, b) which takes
into aceount the measured correlation effect. All fur-
ther deductions will be restricted to the case "F-eval-
uation" sinee the treatment of the case "G-evaluation"
is completely analogue, see also Section 4.1.

dG (x) = [1 - v/n . 1 + iiG(X)
J

I/2

l' 1-iiG(X)
(4b)

Fig. 2 shows that this procedure leads to x-intervals
Ij in the range 3 Xj~ I< X ~ Xj whose variable widths

2 For lhe case "linear ordinale" a linear incrernentation of
lhe lype Fj~ 1= Fj - LJF = FJ - j LJF would have to be imple-
mented inslead of eq.(5).

3 For avoiding an additional index lhe interval endpoints
are expressed by capiralleners: Xj elC.

a) F-f'valuation: If'ft f'nd sorting b) G-f'valuation: right f'nd sorting

a transitions c transitions

I -I
x" x2"'" x, I x,." x"2"'" xn.' xn-""" xv.2' xv.1 I xv' ''', x2' x,

- I. -' - I -
I n-r n-v I v sortf'd voluf'sr sortf'd values I unsorted values unsorted values II

I. < }

I

x. <x , }
I x, < x,., - X,.'.i

x .<x <x}

I

xi.' xi }i 2::..,r-1
: i =1,2,...,n-r

. - I-, - v., - v 1 .- v-I1 - 1,2,...,n v I 1- 2....,
.

xr X < xr.I xV.1 < X - Xv
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Fig. 2. "F-Ievel" method: prescribed levels Fj on the ordinate lead to variable
x-intervals I j.

L1Xj = Xj - Xj-+l' j = 1,2,..., kare adapted to the 10-
cal shape of the F-curve. The F-level method is also
well suited to detect discrete points, see Section 3.2.2.

~

3.2. The LRE-algorithm 11

The LRE-algorithm II extracts automatically from
a given stationary random x-sequence with unknown
properties the empirical stationary eLf.Fn(x) whereby
the relative error dF(x) eq. (4a) is always kept smaller
than the prescribed error limit dmax.This algorithm is
typically performed by a statistical software module as
part of a simulation system. A first fully operable ver-
sion labeled "EDF 14 b" has been written in PASCAL.
In the following only the principal procedure steps are
explained thereby omitting the initialization phase.

'''-./
3.2.1. The main iterationcycle. In Fig. 3 it is assumed
that tqe algorithm is in processing state j i.e. that
x-interval Ij Fig. 2 has to be established next. In this
state the limits Xj, Xj-1"",X2,X1 of the already
established x-intervals Ii, i = j - 1,...,2, 1 together
(with the measured values li, ri and ai are stored in the
F-result memory FR, where ri and ai are defined by
Fig.1 and li is the number how often the x-value Xi
has occurred: li > 1 resp. li = 1 means that Xi is a
discrete point resp. a continuous point belonging to a
continuous part of the F-curve.

The F-sorting memory FS contains in statej the left
end ordered vector (Xl' X2""'Xr.) with Xr = Xj being
the right limit of interval Ij and Sontains ~lso to each
sorted value Xi its chronological follower x7.

During the main iteration cyde the next x-value Xr
is sorted into FS provided that xr:;;:;Xj; if not then Xr
belongs to an interval X h -+1 < Xr :;;:; X h somewhere in

memory FR. This means that we can state always a
right insertion limit Xh of x" h=j,j-1,...,0 with
X 0 = 00 induding the case h = j, when xr is sorted into
FS. Let Xp be the insertion limit of the predecessor
Xr- 1; then in case Xr> Xj i. e. h < j the procedure "in-
crement FR" in Fig. 3 works as follows:

a) increment the ri-counters:
FOR i = 1,2,...,h DO (Ti:=Ti+ 1);

b) increment the ai-counters:
IF Xp<Xh THEN FOR i=p,p-1,...,h-1 DO
(ai:= ai + 1);

c) increment the lh-counter:
IF xr = Xh THEN lh:= lh + 1.

The cyde with either "sort into FS" or "increment
FR,,4 is repeated until the relative error check
dj:;;:;dmax is fulfilled with dj = dF (x), Xj+ 1< X :;;:;Xj

eq. (4a). Then the values lj, Tj and aj are stored in FR
whereby aj is computed depending on the locations of
the followers x7 in FS and li is computed as the length
of the xr}-~ecti01l in FS:

d) compute aj: aj = 0; FOR i = 1,2,: H, Tj
DO (IF x7 > Xj THEN a;: = aj + 1)

e) compute lj: lj = 1; h = Tj;
WHILE Xh-1 = xr} DO (Ej:= lj + 1; h: = h -1).

3.2.2. Finding the next sOTtinglimit.. detection of a
discretepoint. Since the stationary d.f. F (x) of a gener-

.. The feature "increment FR" which has not been used in
the former LRE-algorithm [5] improves a vast range of the
F. (x)-curve by decreasing the relative error dF(x) eq. (4a) far
below its limit dmaxat the expense of a somewhat high er
evaluation CPU-time. .
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F-Sorting Memory ~<
x; = x;+,

ordered
vector:

i}

folio wer :

Tel. error check:
no yes

sort Xt into FS;--
store folIower Xt+,;

f:,:

'--'"

-------
!j :: rj+l

Xt-':: Xt: Xt:: Xt+,:

F -Result Memory @
X; < X;-,

compute &

transfer Ij- !j.aj

Xj IXj-" -- -I X; IX, ,Xo=00 t
!
j

j
I

--.Ij-d---I/; I,

- - -. r; I r,

a; Ia,

~
transition counts

yes
increment FR

no

genera te next x- value xI+'; n:: n+ 1

Fig. 3. LRE-algorithm Ir: Structure of F-memories and of the "main iteration cycle".

next sorting limit X'j+'
I,

previous

sorting limit

I,
X"X2"'" Xh' Xh., , Xh-'P"",Xh.(, Xh.(."'''' \

discrete section of length I:

Xh < Xh.': xh.'P = Xh.(: Xh.( < Xh.(.'

"="2,...,1

".,.

' J
Fig. 4. LRE-algorithm Ir: Sorted x-values in sorting memory
FS in case that the next sorting limit X'j' I belongs to a
discrete section.

al random process could have discrete points (this
possibility is not shown in Fig. 2) the ordered vector in
FS may contain "discrete sections" being character-
ized by a length I> 1 of equal x-values. When comput-
ing the next sorting limit Xrj. 1 the algorithm detects
also such a discrete section and deals with it as follows
(Fig.4): .

f) check for "end of evaluation": IF (rj/l1) < Fmin
GOTO Section 3.2.3 ELSE GOTO g);

g) find the leji end of xr-section in FS:
r.' = /'. - (I - 1) . J

j' j J .
h) find Xrj., in FS by computing:

/'j+ J =INTEGER (m rj);5 store Xj-I =Xrr 1in FR;

5 This is duc to eq. (5) with Fj::::: TJ'n and Fjo, :::::ri- IIn.

i) find the right end of Xrj_,-section in FS:
h - <p= rj+ J;

WHILE Xh+tp-I =xrj., DO (<p:= <p+1);
rj+l=h+<p.

Then the algorithm returns to the main iteration

cyc1e Section 3.2.1 with sorting limit Xrj~1=Xj-l'

3.2.3. Plot of Fn(x)-cun'e. After the stop-condition
(r)n) ~ Fminhas been met the evaluation results stored
in result memory FR can be used to plot the desired
Fn(x)-curve from right to left. For any interval Ij with
the range Xj+ J < X~ Xj we can compute the upper
and lower level Fj= r)n and Fj+l = rj+dn, Fj-l < Fj.
see eg. (2a). The intervallj contains a discrete point at
Xj if Ij> 1, see Section 3.2.2. Tben applying linear
interpolation between continuous points of the inter-
val it can be plotted as folIows:

j) pure continuous interval due to Ij= 1: connect the
coordinates (Xj, Fj) and (Xj+ l' Fj~ d by a straight
line, see Fig. 5 a;

k) discrete point a Xj due to lj > 1: draw at Xj a
vertical line between Fj and F/ = (rj -l;)/n; con-
nect the coordinates (Xj' F/) and (Xj~ l' Fj-l) by
a straight line.
This construction leads either to a partial discrete
and partial cominuous represeminion' of the in-
terval if Ij«rj-rj-I)'see Fig.5b, or in case
Ij = (rj - rj+ I) i.e. F/ = Fj- J to a pure discrete rep-
resemation, see Fig. 5 c.

Since the number of intervals k can be chosen rela-
tiveJy high compared to the batch means method (e.g.

x, x; - - -- \ =Xj!

" .. "

I

x, x; - - -- x.j
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Interval:

a} pure continuous c} pure discreteb} discrete/continuous

IXj' ~.}

[G
I~., ~.) IXj' ~.}

I 7< E.< Ir. - r. ) I
J J J .1

IXj." ~"'} {Xj." f}+I}

I Ej =(j-S',,) I

IX., F."}J J

"
I~,~. = '5.,)

IX. , F. }
.1+ 1 J +,

Fig. 5. LRE-algorithm II: Plot of interval Ij of Fn(x)-curve depending on thenumber Ij of equal
Xrvalues.

a)
7

70

filOl t ,0'
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703

10-3 70-2 10-1 ..
F",;n resp. Gm;n

L-

b) 702

"191 t
70

-0.5 0 0.5-
9

Fig. 6. (a) Required number oftrials neO)in the uncorrelated case and (b) correlation factor
cf (Q),see eq. (6).

k= 140 in Fig. 8) and since the relative error limit dmax
might be prescribed as low as it seems desirable the
algorithm described here may trace the empirical
Fn(x)-curve in a very fine manner according to the
measured data.

In much t-he same way the curves for QF(X)eq.(3a)
and dF(x) eq. (4a) can be plotted and the whoie proce-
dure described here for the case "F-evaluation" can be
easily transcribed to the case "G-evaluation" which
has been used for the experimental results in Sec-
tion 3.4.

3.3. Control 01 simulation run length

From eq. (4a, b) and eq. (2a, b) we obtain the re-
quired number of trials n(Q) far a given simulation
problem

Ii@ = Ii (0) . cf(Q);

1-F.
Ii(0) = ~tn

Fmin dmax

1 +12.
cf(Q) = 1 - (/

1 - Gmin

2 '
Gmin dmax

resp.

see Fig. 6. In this product formula the term neO) ex-
presses the uncorrelated case 12= 0 in accordance with
eq. (5 a, b) [5] which depends on prescribed parameters
only, namely Fminresp. Gminand dmax;the term neO) is
multiplied by the correlation factor cf(Q) where 12is
the mean correlation coefficient eq. (3 a, b) at level
Fn(x) = Fmin resp. Gn(x) = Gmin.6The simulation run
length under control of the LRE-algorithm II follows
exactly eq. (6), see the examples in Section 3.4. Under
the real conditions of practical simulation 12is always
positive and may weIl be in the range 0.8 < 12< 1.
Therefore the correlation factor cf (12)may attain e.g.
value of 10.'.. 20 which means that the simulation run
time will be substantially increased by this factor com-
pared to the case 12 =O.Since a simulation expert
knows very soon the approximate value of ii resp.
cf (12)for a certain field of investigation he may for-
caste realistically the length and cast of further simu-

(6) 6 Eq. (6) can be generalized by omitting the fixation to the
lowest level Fmin resp. G min'

8
6 I,

'\ "

d1r-

I

2 '\ '\.
max'-

g =

'''\ '\ 1.10.005
2

f"\ '\
f?:.°7, 1\

8 0.02
6 '" I,

'\
1\..0.05 '\

2 '\
0.1'\. '\

h- ---'0.2
,

N-J. '\ \.
2

1'\
2 '681 2 '68 2 '68

8
6

,

I
2'

/
I

8 /6
/,

/

2 /

/
8 /'

6/:

./

,,



"r

..
~

352

" "'" . .. .. '-~"'~',

F. SCHREIBER: EFFECTIVE CONTROL OF SIMULATION RUNS AEU. Band 42
(1988). Heft 6

lation runs by means of eq. (6). All ca1culations with
this fonnula confinn the experience that indeed only
a powerful computer is adequate for simulation in the
teletraffic field and in other fields like e.g. physics of
elementary partic1es.

3.4 Experimental evidence

Several simulation experiments with various ran-
dom processes have shown that the LRE-algorithm II
can be universally applied. Its adaptability and perfor-
mance will be demonstrated by evaluating the corre-
lated x-sequences of a continuous, a Cliscreteand of a
mixed continuousJdiscrete random process.

r.,

. The cases of a continuous and of a discrete process
are represented by the nonnaIized delay time
-x = J17:D resp. the occupancy x of queueing system
MJMJ1 whose stationary c.d.f. G(x) and correla-
tion coefficient (1(x) [2] are given by the equations:

delay time

G(x) = e-(l-A)X;

(l-A)(l- e-(l+A)x)
(1(x) = 1 - u . "u -t1 - AlT';

occupancy

"-"

(7)
2A

(1(00) = 1 +A"

G(x)=Ai; (i-1)<x~i; i=1,2,...;
1-A 2A

n (x ) = 1- . n(oo) =-
'" ,. . ",. .;,' '" 1+ A .

A verification of the simulation result curves Fn(x)
and Q(x) Fig. (7 a, b) by means of eq. (7) resp. eq. (8)

aJ delay time

F~
.' / .,

10

10'2

0 5 10 15-
x =JlTD

In both simulation experiments Fig. 7 a, b the pre-
scribed number of desired intervals has been k =40
but in Fig. 7b due to the discrete nature of the occu-
pancy process only 12 intervals have been actually
established as it must be under the circumstances
given here. The ability of the algorithm to adapt
itself to discrete points rests on the F-level method
Section 3.1 and on the procedure steps Section 3.2.2.

.. The example of a mixed continuousJdiscrete ran-
dom process is described by a constant correlation
coefficient7(1(x) = 0.5and by a stationary density
f (x) with three continuous sections and two dis-
crete points as defined in Figs. 8a. An interesting
feature of this density is the "weak peak" with
weight P3 = 0.05 at the very right in fig. 8a which
must be detected and traced by the evaluation algo-
rithm.
An inspection of the simulation result curves
Fig. 8b shows that here too the empirical stationary
c.d.f. Gn(x) inc1udingits discrete points and the
"rare event detail" and also the associated mean
correlation coefficient Q(x) 'have been established
very dosely to the theoretical functions.

(8)

The numbers of trials n needed for the experiments
Fig. 7 and Fig. 8 confirm the formula for fi@ eq. (6).
The number of sorted events g in sorting memory GS
(corresponding to memory FS in Fig. 3) is found to be
much smaller than n which means that the CPU-time
for sorting is greatly reduced compared to the case
that all n measured values of the x-sequence would
have to be sorted, see Section 5 [5].

bJ occupancy

0 5 10-x =0.01

Fig. 7. Elementary queueing system M/M/i, load A = 0.7: empiricaJ stationary c.d.f. Gn(x) and
associated empirical functions for (a) delay time and (b) occupancy.

makes c1ear that these empirical curves have been
established by the LRE-algorithm II very c10sely to
the theoretical functions. The same is true for all

other result curves traced by the algorithm up to
now, though in principle a certain amount of statis-
tical iluctuation may always occur especially in the
vicinity of Fmin resp. Gm;nwhere the relative error
dF(x) resp. dG(x) comes dose to its limit dmax.

Due to the feature "increment FR" explained in
Section 3.2.1 the relative error dG(x) eq. (4 b) is far
below its prescribed limit dmaxin a vast range of the

7 According 10 a proposal by W. Ding. Aachen the here
applied new principlc for generating correlated random sc-
quences with thc propeny "(2(x) = const.~ allows any pre-
scribed stationary density .r(x).
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0.1.

t
J 2

f(xl = \ p .t.(xl+\p, o(x-5.l; f.(xl = ~'5in (7r X-ai )L ' , L' " 2b; b;
;=I ;=,

0.3

0.2
0.2

0.1

0

0 a, 5, 52

bl I

b, = b2 = bJ = 2;

0.15 0.05

02 aJ -X 10

\
9a(xl

-9 =0.5

t-d =0.05

}

rare event max
detection

~-G.=O.OI
I mrn- 10

X

Fig.8. Mixed randorn process: (a) stationary density f (x) with three continuous
sinus-sections and two poles; (b) ernpirical stationary c.d.f. Gn (x) and associated
functions.

Ga (x)-curve and only toward its right tai! at G-levels
, dose to Gmin it will approach the limit dmax= 0.05.

4. Furtber Remarks

1) In the teletraffic and queueing network field it is
often necessary to investigate primarily the right tail of
the distributions involved whicn means that the G-
evaluation eq. (2 b)-(4 b) has to be applied. In other
cases of course the F -evaluation eq. (2 a)-( 4 a) for in-
vestigating the left tail might be prefeITed. Therefore in
a general version of the LRE-Algorithm II the pro-
cessing mode can be switched to either the F- or G-
evaluation alone or to both evaluation types at the
same time. In the latter case we may set Fmax =
Gmax= 1/2 and the memories FS and FR in Fig.3
are operated simultaneously with the corresponding
memo ries GS and GR: now each generated value X,
will be handled according to the alternative "sort into
FS~ of"increment FR" as described by Fig. 3 and also
independently from this according to the alternative
"sort into GS" or "increment GR".

2) The LRE-algorithm II can be developed further
to include a modified version ofthe window mechanism

Seetion 6.2 [5]: given the parameters Fmax,Fmin, dmax

i.,

and k we might be interested to observe the details of
a certain segment Fato Fb(Fmin~ Fa< Fb~ Fmax) of the
Fa(x)-curve with higher local resolution i.e. with a
reduced relative eITor limit d:ax < dmaxand with k*
F-levels in this segment. To achieve this the window is
opened at Fb by switching dmaxto d:ax and the multi-
plier m eq. (5) to m* = (Fa/Fb)1/k'and is closed at Faby
switching back to dmaxand m. This concept can be
generalized to allow for several windows along Fa(X).

3) When simulating the number of trials i.e. of avail-
able x-values n can be usually raised under control of
the algorithm and is limited only by the duration resp.
cost of the computer experiment. In other fields of
statistical investigations the number n might be
limited from the beginning. Then the evaluation pa-
rameters has to be adapted to the given facts, and
especially the relative eITor limit dmaxmust be raised
appropriately.

In cases where the large sampie conditions eq. (1)
can not be met i.e. where a small sampIe evaluation
is necessary it is recommended to sort all melli!ured
x-values and to apply then the exact formula for
the moments MI {Q} eq. (10) [8] with Fa(X) = M 1 and
dF(x) = (M2/Mi -1)1/2 and also for e(x) the exact for-
mula eq. (17 a) [7], xr ~ x< Xr+l' Here the relative er-

2----------
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ror dF (xl could turn out to be relatively high but this
would be in full accordance with the objectiveness of
the posterior statements provided by the Bayes-
Laplace statistics [6J.

4) The x-values to be evaluated by the algorithm
can be selected in a certain distance x = 1,2,... within
the given chronological sequence. For increasing val-
ues of x this leads normally to reduced correlation and
might therefore lead to a reduced resp~ minimized
simulation run time, see Section 6.2 [9J. A thorough
discussion of this interesting point must be postponed.

5) The correlation coefficient (}(x) of the "F (x)-
equivalent" 2-node Markov chain as defined in [9J is
not a mere matter of statistics but is an important; well
defined property of such correlated random variables
like occupancy, waiting and delay time etc. which oc-
cur in queueing systems, but are usually described
only by their stationary properties. A first investiga-
tion has yielded among others the formulae eqs. (7), (8)
of the MjMj1 queue [2J, but it seems desirable to
devote more work to the (}(x)-function.
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