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Effective Control of Simulation Runs
by a New Evaluation Algorithm
for Correlated Random Sequences *

by Friedrich Schreiber**

Report from the Lehrstuhl fiir Aligemeine Elektrotechnik und Datenfernverarbeitung
Aachen University of Technology

A new algorithm is presented which allows the analysis of correlated random sequences in order
to gain the stationary distribution function F,(x). This algorithm being based on recent statisti-
cal investigations of Markov chains can be used to control systematically the required number
of trials n of a computer simulation run by a formula which depends on the desired minimum value
Fnin Of F,(x). on the prescribed upper limit d,_,, of relative error and also on the measured mean
value of the correlation coefficient (x). As shown by selected examples the algorithm can process
any correlated x-sequence of discrete and/or continuous type. detects rare event details of F, (x) and
may replace therefore the conventional batch means evaluation method and other methods.

Effektive Steuerung von Simulationsldufen durch einen neuen Auswertealgorithmus
fir korrelierte Zufallssequenzen

Es wird ein neuer Algorithmus vorgestellt, der die Analyse von korrelierten Zufallssequenzen
zwecks Gewinnung der stationdren Verteilungsfunktion F,(x) durchfiihrt. Dieser Algorithmus be-
ruht auf neueren statistischen Untersuchungen an Markov-Ketten und eignet sich zur systemati-
schen Kontrolle der bei einer Rechnersimulation erforderlichen Versuchszahl n mittels einer Formel,
die von dem gewiinschten Minimalwert F_, der Funktion F,(x), von der oberen Grenze d,, des
relativen Fehlers und auch von dem gemessenen mittleren Korrelationskoeffizienten g (x) abhingt.
Anhand ausgesuchter Beispiele wird gezeigt, daB dieser Algorithmus beliebige korrelierte x-
Sequenzen vom diskreten und/oder kontinuierlichen Typ verarbeiten kann, seltene Ereignisse von
F, (x) aufdeckt und daher die konventionelle Batch-Means-Methode und andere Methoden ersetzen

kann. -

1. Introduction

Since the work of Kosten [4] discrete event simula-
tion on large computers has become the major tool for
analyzing the performance of complex teletraffic and
data processing installations. Essentially a simulation
system deals with three tasks [3]:

1) Generation of random numbers of several pre-
scribed distribution types.

2) Organization of task scheduling, list processing etc.
representing the main body of the system.

3) Statistical evaluation of the output random se-
quence yielding the desired information about the
performance of the simulated object: e.g. the mean
and variance or if possible the complete stationary
distribution function of a delay time.

Task (3) is often carried out by the batch means
method [3], [9]; several other methods are known but
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it can be said that the statistical evaluation is up to
now one of the weak points of simulation, see discus-
sion on page 101 in [1]. This is an unsatisfactory situa-
tion because the evaluation results should be reliable
in a well specified manner such that the engineer may
take responsibility for any decisions based on the sim-
ulated results. For this purpose a trustworthy, always
applicable evaluation method is necessary in order to
control the length and also the cost of a simulation
run which may become excessive considering typical
run times on large computers of several hours. The
new method to be described here is an extension of the
Limited Relative Error (LRE) algorithm for indepen-
dent x-sequences [5] to the correlated case and is based
on the fundament of the Bayes-Laplace-statistics [6].

2. Statistic for Markovian Random Sequences

The essential result of recent statistical investiga-
tions of Markov chains can be summarized as follows.
Consider a chronological x-sequence represented by
the vector x, =(x,, X,,..., X, +,) With unknown corre-
lation between neighbours' and with an unknown

! In the present context it is not necessary to use the term
“autocorrelation™.
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a) F-evaluation: left end sorting

b} G-evaluation: right end sorting ]
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Fig.1. Two modes for partial sorting of n +1 measured x-values.

stationary d.f. F(x) resp. complementary distribution
function (c.d.f) G(x)=1— F(x). This vector can be
sorted as shown in Fig. 1 in two different ways: for
gaining the empirical stationary d.f. F,(x)} r values
form the ordered vector x, = (X;,X3,..., X,), X; £ X4 3
at the left end resp. for gaining the c.d.f. G, (x) v values
form the ordered vector x, = (X,,---, X2, X1), Xj41 = X;
at the right end of the observed x-range. The rest of
measured x-values beyond each ordered vector forms
a “global range” x > x, resp. x < x, which for the pres-
ent we may consider to remain unordered. The essen-
tial point of the new statistical method is that not only
the number of ordered x-values r resp. v but also the
number of transitions a resp. ¢ from each ordered
range to the range x > x, resp. x < x, will be measured
and evaluated in order to deal with correlation.

Then on basis of the BL-statistics for the 2-node
Markov chain [7], [8] and observing the large sample
conditions

3. The Empirical Stationary Distribution Function
3.1. Evaluation method with prescribed F-levels

In many conventional methods the measured x-
range must be divided into 2 number of x-intervals
having a constant width Ax. This is 2 problematical
task because only a posteriori ie. after the bulk of
measured x-values is known an adequate choise of Ax
can be attempted. Looking out for another solution
we find that it is principally better to gain intervals by
dividing the vertical F-axis with its known range
0< F <1 as shown in Fig. 2.

Here we are able to prescribe a priori the desired
range of investigation F_, < F < F_, and also the
desired number of intervals k which determines the
local resolution. Assuming as usually a logarithmical
ordinate? we may compute a multiplier m and the
F-levels F;

m=(Fmim‘(me]”k; m<1;

n210% (r,0)210% (ar—a,cv—c)210 (1) Fioy=mFEmmFy; j=1,2...k (3)
the following posterior statements can be made [9]: Fy=Foui Fisy=Foin.
F-evaluation, x,Sx<x,., | G-evaluation, x,.,<x=ZXx,
empirical stationary distribution function
F.(x)=r(n; (2a) | G,(x)=uvin; (2b)
mean correlation coefficient (—1<g<1)
ajr clv
=, 3 5 =1—-— 3b
er(x) 1—r/n 08) ec(x) 1—uv/n Co
relative error concerning the staiements eq. (2a,b)
T—rin 1+ 3p(x)]"? 1—uvfn 14g.(x)]""
dp(x) = ks i - | doge ] = e (4b)
r 1 —0r(x) t 1—p0g6(x)

Eq.(2a.b) represents simply the measured relative
frequency as it should be for the large sample case.
The control of the evaluation procedure will be per-
formed by the error formula eq.(4a,b) which takes
Into account the measured correlation effect. All fur-
ther deductions will be restricted to the case “F-eval-
uation” since the treatment of the case “G-evaluation™
is completely analogue, see also Section 4.1.

Fig. 2 shows that this procedure leads to x-intervals
I;in the range® X;_, < x £ X; whose variable widths

* For the case “linear ordinate” a linear incrementation of
the type F;., = F;— 4F = F, — j AF would have to be imple-
mented instead of eq.(5).

3 For avoiding an additional index the interval endpoints
are expressed by capiral letters: X ete.
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Fig. 2. “F-level” method: prescribed levels F; on the ordinate lead to variable

x-intervals ;.

Adx;=X; = X;.,j=1,2,....k are adapted to the lo-
cal shape of the F-curve. The F-level method is also
well suited to detect discrete points, see Section 3.2.2.

3.2. The LRE-algorithm II

The LRE-algorithm II extracts automatically from
a given stationary random x-sequence with unknown
properties the empirical stationary d.f. F, (x) whereby
the relative error dg(x) eq.(4a) is always kept smaller
than the prescribed error limit d,,.. This algorithm is
typically performed by a statistical software module as
part of a simulation system. A first fully operable ver-
sion labeled “EDF 14 b” has been written in PASCAL.
In the following only the principal procedure steps are
explained thereby omitting the initialization phase.

3.2.1. The main iteration cycle. In Fig. 3 it is assumed
that the algorithm is in processing state j i.e. that
x-interval [; Fig. 2 has to be established next. In this
state the limits X;, X;_,,...,X;, X, of the already
established x- mtervals I i -j —1,...,2,1 together
with the measured values Ii, r; and g, are stored in the
F-result memory FR, where r; and g, are defined by
Fig.1 and [; is the number how often the x-value X;
has occurred: [, >1 resp. |;=1 means that X, is a
discrete point resp. a continuous point belonging to a
continuous part of the F-curve.

The F-sorting memory FS contains in state j the left
end ordered vector (x,, x,,..., X, )wrth X, = X ; being
the right limit of interval /; and contains also to each
sorted value x; its chronological follower x}*

During the main iteration cycle the next x value X
s sorted into FS provided that x, < X ; if not then x,
belongs to an interval X, ., < x, £ X, somewhere in

memory FR. This means that we can state always a
right insertion limit X, of x,, h=j,j—1,...,0 with
X, = oo including the case h = j, when X, is sorted into
FS. Let X, be the insertion limit of the predecessor

s then in case x,>X;i.e h<j the procedure “in-
crement FR” in FIg 3 works as follows:

a) increment the r;-counters:
FOR i=1,2_..,h DO (ri:=r;+1);
b) increment the a;-counters:
IF X,< X, THEN FOR i=p,p
(a;:=a;+1);
c) increment the [,-counter:
IF x,=X, THEN [,:=1, + 1.

The cycle with either “sort into FS” or “increment
FR”* is repeated until the relative error check
d;<d,,, is fulfilled with d;=dp(x), X;.;<x=X;
eq. (4a). Then the values [, r; and q; are stored in FR
whereby a; is computed dependmg on the locations of
the followers x¥ in FS and [, is computed as the length
of the x, -section in FS:

d) compute aj: a;=0; FOR i=1,2...,r;
DO (IF xf >X; THEN g;i=a; + 1)

e) ccmputef f-l h=r;
WHILEx,, 1—x DO{! =L+1; hi=h-1).

-1,...,h—1 DO

3.2.2. Finding the next sorting limit; detection of a
discrete point. Since the stationary d.f. F (x) of a gener-

* The feature “increment FR™ which has not been used in
the former LRE-algorithm [5] improves a vast range of the
F, (x)-curve by decreasing the relative error dp(x) eq.(4a) far
below its limit d_,,  at the expcnse of a somewhat higher
evaluation CPU-time.
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Fig. 4. LRE-algorithm II: Sorted x-values in sorting memory

FS in case that the next sorting limit x,,., belongs to a
discrete section.

al random process could have discrete points (this
possibility is not shown in Fig. 2) the ordered vector in
FS may contain “discrete sections™ being character-
ized by a length [ > 1 of equal x-values. When comput-
ing the next sorting limit x, _ the algorithm detects
also such a discrete section and deals with it as follows
(Fig. 4}:
) check for “end of evaluation™: IF (rjim) <F_;
GOTO Section 3.2.3 ELSE GOTO g);
a) find the left end of x, ,-section in FS:
ri=r,— (0 —1);
h) ﬁnd \ _, in FS by cornputmrr
Fis1= = INTEGER (m )’ store X;_ | =X, -, inFR;

* This is due 10 eq.(5) with F;xr,m and F,_, rieqin.

cycle Section 3.2.1 with sorting limit Xp, oy =Xjs

3.2.3. Plotr of F,(x)-curve. After the stop-condition
(r;/n) £ F;, has been met the evaluation results stored
in result memory FR can be used to plot the desired
F, (x)-curve from right to left. For any interval I; with
the range X; ., <x £ X; we can compute the upper
and lower level F; =r;/nand F; 1= Tiva/n, Fioy < F,
see eqg. (2a). The interval /; contains a dlscre:te point at
X; if 1;>1, see Section 3.2.2. Then applying linear
interpolation between continuous points of the inter-
val it can be plotted as follows:

J) pure continuous interval due to [;= 1: connect the
~ coordinates (X, F;) and (X;.,, F;. ) by a straight
line, see Fig. 5a;
d:screze point a X; due to [;>1: draw at X a
vertical line between F; and FJ* =(r;=1)in; con-
nect the coordinates {A F*)and (X,.,, F;_,) by
a straight line.

This construction leads either to a partial discrete
and partial continuous representation of the in-
terval if I;<(r;—r;.,). see Fig. 5b, or in case
l;=(rj—r;.,)ie. F;*=F, , to a pure discrete rep-

J <t sy
resentation, see Fig. 5c.

k

—

Since the number of intervals k can be chosen rela-

tively high compared to the batch means method (e.g.
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Fig. 6. (a) Required number of trials 7(0) in the uncorrelated case and (b) correlation factor

cf (), see eq.(6).

k =140 in Fig. 8) and since the relative error limit d,,,
might be prescribed as low as it seems desirable the
algorithm described here may trace the empirical
F,(x)-curve in a very fine manner according to the
measured data.

In much the same way the curves for gr(x) eq.(32a)
and dg(x) eq.(4a) can be plotted and the whole proce-
dure described here for the case “F-evaluation” can be
easily transcribed to the case “G-evaluation” which
has been used for the experimental results in Sec-
tion 3.4.

3.3. Control of simulation run length

From eq.(4a,b) and eq. (2a,b) we obtain the re-
quired number of trials 7(9) for a given simulation
problem

1+20
i(0)=(0) - cf(@); of(@)= —y

1—o
~ 1-— 'Fmin I Gmin
w0

see Fig. 6. In this product formula the term 7 (0) ex-
presses the uncorrelated case § = 0 in accordance with
eq.(5a, b) [5] which depends on prescribed parameters
only, namely F,;, resp. G, and d,,,,; the term 7(0) is
multiplied by the correlation factor cf(g) where g is
the mean correlation coefficient eq.(3a,b) at level
F,(x)=F,;, resp. G,(x) = Gn,.° The simulation run
length under control of the LRE-algorithm II follows
exactly eq. (6), see the examples in Section 3.4. Under
the real conditions of practical simulation g is always
positive and may well be in the range 0.8 <g <1.
Therefore the correlation factor cf (¢) may attain e.g.
value of 10 ... 20 which means that the simulation run
time will be substantially increased by this factor com-
pared to the case §=0. Since a simulation expert
knows very soon the approximate value of g resp.
cf (g) for a certain field of investigation he may for-
caste realistically the length and cost of further simu-

% Eg.(6) can be generalized by omitting the fixation to the
lowest level F_ ;. resp. G-
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lation runs by means of eq.(6). All calculations with
this formula confirm the experience that indeed only
a powerful computer is adequate for simulation in the
teletraffic field and in other fields like e.g. physics of
elementary particles.

3.4 Experimental evidence

Several simulation experiments with various ran-
dom processes have shown that the LRE-algorithm II
can be universally applied. Its adaptability and perfor-
mance will be demonstrated by evaluating the corre-
lated x-sequences of a continuous, a discrete and of a
mixed continuous/discrete random process.

e The cases of a continuous and of a discrete process
are represented by the normalized delay time
x = p 1, resp. the occupancy x of queueing system
M/M/1 whose stationary c.d.f. G(x) and correla-
tion coefficient o (x) [2] are given by the equations:

delay time
Glx) = A% M
., @—A)t—e 0oy 7

A e R e
occupancy

Gx)=4% ([(—D<x=i i=1,2 .5

. 24
e Aih0—a) == @

A verification of the simulation result curves F,(x)
and g(x) Fig.(7a,b) by means of eq.(7) resp. eq.(8)

o/ delay time
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In both simulation experiments Fig. 7a,b the pre-
scribed number of desired intervals has been k = 40
but in Fig. 7b due to the discrete nature of the occu-
pancy process only 12 intervals have been actually
established as it must be under the circumstances
given here. The ability of the algorithm to adapt
itself to discrete points rests on the F-level method
Section 3.1 and on the procedure steps Section 3.2.2.

e The example of 2 mixed continuous/discrete ran-

dom process is described by a constant correlation
coefficient” o(x) = 0.5 and by a stationary density
f(x) with three continuous sections and two dis-
crete points as defined in Figs.8a. An interesting
feature of this density is the “weak peak™ with
weight p; = 0.05 at the very right in Fig. 8a which
must be detected and traced by the evaluation algo-
rithm.
An inspection of the simulation result curves
Fig. 8 b shows that here too the empirical stationary
c.d.f. G,(x) including its discrete points and the
“rare event detail” and also the associated mean
correlation coefficient g(x) have been established
very closely to the theoretical functions.

The numbers of trials n needed for the experiments
Fig. 7 and Fig. 8 confirm the formula for 7(2) eq.(6).
The number of sorted events g in sorting memory GS
(corresponding to memory FS in Fig. 3) is found to be
much smaller than n which means that the CPU-time
for sorting is greatly reduced compared to the case
that all n measured values of the x-sequence would
have to be sorted, see Section 5 [3].

b} occupancy

! - - - : 1
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Fig. 7. Elementary queueing system M/M/1, load A = 0.7: empirical stationary c.d.[. G, (x) and
associated empirical functions for (a) delay time and (b) occupancy.

makes clear that these empirical curves have been
established by the LRE-algorithm II very closely to
the theoretical functions. The same is true for all
other result curves traced by the algorithm up to
now, though in principle a certain amount of statis-
tical fluctuation may always occur especially in the
vicinity of F_, resp. G, Where the relative error

dp(x) resp. dg (x) comes close to its limit d,,, .

Due to the feature “increment FR™ explained in
Section 3.2.1 the relative error d;(x) eq.(4b) is far
below its prescribed limit d_,; in a vast range of the

" According to a proposal by W. Ding, Aachen the here
applied new principle for generating correlated random se-
quences with the property “p(x) = const.” allows any pre-
scribed stationary density f(x).
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G, (x)-curve and only toward its right tail at G-levels
close to G, it will approach the limit d_,, = 0.05.

min

4. Further Remarks

1) In the teletraffic and queueing network field it is
often necessary to investigate primarily the right tail of
the distributions involved which means that the G-
evaluation eg.(2b)—(4b) has to be applied. In other
cases of course the F-evaluation eq.(2a)—(42) for in-
vestigating the left rail might be preferred. Therefore in
a general version of the LRE-Algorithm II the pro-
cessing mode can be switched to either the F- or G-
evaluation alone or to both evaluation types at the
same time. In the latter case we may set F_,, =
Gox =1/2 and the memories FS and FR in Fig.3
are operated simultaneously with the corresponding
memories GS and GR: now each generated value x,
will be handled according to the alternative “sort into
FS” of “increment FR” as described by Fig. 3 and also
independently from this according to the alternative
“sort into GS” or “increment GR™.

2) The LRE-algorithm II can be developed further
to include a modified version of the window mechanism
Section 6.2 [5]: given the parameters F, .., Foins drax

and k we might be interested to observe the details of
a certain segment F, to F, (F;, £ F, < F, £ F_,,,) of the
F, (x)-curve with higher local resolution i.e. with a
reduced relative error limit d¥, <d,_,, and with k*
F-levels in this segment. To achieve this the window is
opened at F, by switching d_,, to d¥,, and the multi-
plier m eq. (5) to m* = (F,/F,)**" and is closed at F, by
switching back to d,,, and m. This concept can be
generalized to allow for several windows along F, (x).

3) When simulating the number of trials i.e. of avail-
able x-values n can be usually raised under control of
the algorithm and is limited only by the duration resp.
cost of the computer experiment. In other fields of
statistical investigations the number »n might be
limited from the beginning. Then the evaluation pa-
rameters has to be adapted to the given facts, and
especially the relative error limit d,,,, must be raised
appropriately.

In cases where the large sample conditions eq.(1)
can not be met ie. where a small sample evaluation
is necessary it is recommended to sort all measured
x-values and to apply then the exact formula for
the moments M, {Q} eq.(10) [8] with F,(x)= M, and
dp(x) = (M,/M? —1)"? and also for ¢ (x) the exact for-
mula eq.(17a) [7], x, < x < x,,,. Here the relative er-



354 F. SCHREIBER: EFFECTIVE CONTROL OF SIMULATION RUNS

ror dp(x) could turn out to be relatively high but this
would be in full accordance with the objectiveness of
the posterior statements provided by the Bayes-
Laplace statistics [6].

4) The x-values to be evaluated by the algorithm
can be selected in a certain distance x = 1, 2,... within
the given chronological sequence. For increasing val-
ues of » this leads normally to reduced correlation and
might therefore lead to a reduced resp. minimized
simulation run time, see Section 6.2 [9]. A thorough
discussion of this interesting point must be postponed.

5) The correlation coefficient g (x) of the “F(x)-
equivalent” 2-node Markov chain as defined in [9] is
not a mere matter of statistics but is an important; well
defined property of such correlated random variables
like occupancy, waiting and delay time etc. which oc-
cur in queueing systems, but are usually described
only by their stationary properties. A first investiga-
tion has yielded among others the formulae egs. (7), (8)
of the M/M/1 queue [2], but it seems desirable to
devote more work to the g (x)-function.
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