
Towards Peer-to-Peer Long-Lived Mobile Web Services

Fahad Aijaz, Bilal Hameed, Bernhard Walke
RWTH Aachen University, Faculty 6

Communication Networks
Kopernikusstr. 16, 52074 Aachen

{fah, bhd}@comnets.rwth-aachen.de

Abstract

Mobile phones in today’s era are not just small de-
vices that provide the means of communication, rather,
they are equipped with more processing power, storage
capacity and battery performance. Now, the hand held
devices are not only service consumers but are also ca-
pable of hosting and providing services to their peers.
These services deployed on mobile devices bring in the
idea of Mobile Web Services (Mob-WS) to the research
community.

This paper concentrates on a middleware for long-
lived Mob-WS that are accessible asynchronously over
the network. Since the synchronous Mob-WS are not
feasible for long durational tasks, therefore a concept
and architecture of controllable and monitor able asyn-
chronous Mob-WS middleware is presented. The ser-
vice interaction techniques are discussed followed by the
middleware subsystem and high-level architecture and
control flow.

The presented middleware is a potential basis for
innovative mobile applications, therefore, a proof-of-
concept prototype of asynchronous Mob-WS applica-
tion is developed and presented with a special focus
on network optimization for Wireless Sensor Networks
(WSN).

1 Introduction

Mobile phones in today’s era are not just small de-
vices that provide the means of communication, rather,
they are equipped with more processing power, stor-
age capacity and battery performance. The continuous
growth in mobile technology has introduced variety of
research domains that strongly focus on developing in-
novative mobile applications and services that are hu-
man centric and closer to the user’s personal needs. In

such a dynamic and rapidly growing ubiquitous mo-
bile environment, hand held devices are not only ser-
vice consumers over the Internet, wireless network or
within the operators’ network, but are also capable of
hosting and providing services to their peers. Such ser-
vices, when hosted on mobile devices are often termed
as Mob-WS.

In this paper, a concept and architecture of a mid-
dleware for asynchronous Mob-WS is introduced to
perform long-lived operations. The work is based on
the existing Mob-WS framework first presented in [4].
Since synchronous Mob-WS are not a feasible choice
for long durational tasks, therefore a need for asyn-
chronously accessible Mob-WS arises. These Mob-WS
demand mechanisms for control and monitoring at run-
time, since the requirements of service consumer may
change dynamically. In this manuscript, we propose
a mobile middleware to develop and deploy such con-
trollable and monitor able asynchronous Mob-WS and
further present a proof-of-concept prototype for net-
work optimization.

2 Mobile Web Services

The concept of Mob-WS involves two basic roles,
termed as Web Service Consumer (WS-C) and Web
Service Provider (WS-P). The interaction between
these roles can be classified in three distinct ways that
are illustrated in figure 1. Within the context of this
work, we will focus on Peer-to-Peer (P2P) interaction,
where both the WS-C and WS-P are mobile nodes.

The general web services based communication is
transparent to the interaction strategy and therefore
does not care if the WS-C and WS-P are fixed or mo-
bile nodes. In most of the cases, the published web ser-
vices are developed to be synchronous in nature, that
is, a web service client is blocked until a response is re-
ceived from the service provider or the connection time-
out occurs. This approach is feasible for time critical

978-1-4244-1841-1/08/$25.00 ©2008 IEEE

Figure 1. Classification of Mobile Web Ser-
vices

and short-lived services, whereas for complex long-lived
services that take some time to complete, synchronous
Mob-WS are not the right choice as they block other
operations that could be performed during the waiting
time (see figure 2). Furthermore, there is no mecha-
nism in synchronous way of interaction that enables
the dynamic control and monitoring of Mob-WS at
runtime. For such long-lived Mob-WS, asynchronous
interaction strategy becomes a natural choice.

Figure 2. Service Access Mechanisms

Within the context of this work, a middleware has
been proposed that enables the development and de-
ployment of long-lived asynchronous Mob-WS on mo-
bile devices. In addition, the middleware provide mech-
anisms for management, control and monitoring of
these long-lived Mob-WS at runtime. In order to con-
form to web service standards, the middleware utilizes
the Asynchronous Service Access Protocol (ASAP) [3]
which is currently a proposed draft from OASIS. The
asynchronous Mob-WS middleware reduces the devel-
opment effort and cost for applications that require
time independent communication strategy by provid-
ing underlying communication architecture.

3 Service Interaction

For services to communicate asynchronously, inter-
action techniques like “Callback” and “Polling” are
usually adapted. Each of these techniques have their
own benefits depending upon the scenarios they are
used in.

In case of “Callback”, an asynchronous interaction
based on the principle of Don’t call us, we will call
you back is used. In such scenarios a client applica-
tion sends a request and waits for the response with-
out blocking its state. The response is send back to the
client when it is available. Callback results in increased
processing efficiency since the service solely performs
its tasks and is not bogged down in processing and re-
sponding to status updates. This also results in less
network traffic which in turn requires less amount of
resources. However callback may result in delayed re-
trieval of response at the client end, specially when the
service has to inform a lot of clients about the status
of the service.

Where as in “Polling” the client application repeat-
edly asks for the status of an external service that it
has invoked. In this technique, there is no way for
external service to notify the client about its status.
Polling results in increased traffic over the network,
which decreases the processing efficiency of the service
since it has to process and respond to status update
requests. It also requires high resource allocation such
as more powerful processors and more network band-
width. However polling results in an immediate re-
trieval of response, or retrieval of response within an
acceptable time frame which is determined by the time
spacing between two polling requests.

The proposed asynchronous Mob-WS middleware
provides support for both Polling and Callback mech-
anisms and leaves the choice to ignore one and rely
solely on the other technique on the service and appli-
cation developers. Services that need instant response
notifications could implement polling whereas services
that need to be deployed on resource critical devices
could rely on callbacks alone.

4 P2P Asynchronous Mobile Web Ser-
vices Middleware

The asynchronous Mob-WS middleware provides a
foundation to develop and deploy asynchronous long-
lived services, not asynchronous messaging. This is
because asynchronous messaging does not necessarily
imply that the deployed services are asynchronous in
nature. Since asynchronous services start and con-
tinue to perform their tasks over a longer duration

2

of time, therefore, the need to be able to monitor
and control such services becomes essential. This sec-
tion presents the architectural details of the proposed
asynchronous Mob-WS middleware, their control and
monitoring mechanisms and service interactions tech-
niques. The high-level architecture is presented in this
manuscript since the focus is solely on the concept and
architecture. The implementation and further techni-
cal details are planned to be published in a separate
paper.

4.1 Middleware Subsystem

In order to build a system of asynchronous Mob-WS
three different types of endpoints are defined to cater
for the three distinct roles. These are the Instance,
Factory, and Observer components which form a sub-
system within the middleware architecture. Figure 3
illustrates the interaction between these three compo-
nents.

Figure 3. Middleware Subsystem

4.1.1 Instance

Instance resource is the actual performance of work
[3]. Instance embodies the contextual information that
distinguishes one execution of an asynchronous service
from another. On each invocation of an asynchronous
Mob-WS, a new instance is created having its own
unique Endpoint Reference (EPR) and context data.
It is this service instance that is used by observers to
send messages to monitor and control the status of an
asynchronous Mob-WS. A service instance could be
created, paused, resumed or terminated, which in turn
controls the Mob-WS according to the corresponding
control message. Under normal conditions, the asyn-
chronous Mob-WS eventually completes its task and
the service instance thereby notifies all the clients.

4.1.2 Factory

Factory provides a way of doing some work and the po-
tential for getting that work done [3]. Factory is a focal
point in the entire asynchronous system and could be
seen as a manager. It creates instance resources that
carries out the actual tasks, maintains a list of all ser-
vice instances, and could be used to search for specific
service instances. Factory has a fixed and unique EPR.
Although Factory embodies the knowledge of how the
work is performed, it does not do the work itself. It acts
as a manager and not as a worker, the service instance
is the worker that does all the work.

4.1.3 Observer

Observer provides client application a way to communi-
cate with service instance, and a way to the service in-
stance to communicate with the client application reac-
tively. Observer might query the current status of the
service instance or receive notifications from it, there-
fore, observer subscribes to service instance by utilizing
Web Service Addressing [2] properties.

4.2 System Architecture

Figure 4 provides a general overview of the core ar-
chitecture of the asynchronous Mob-WS middleware.
The HTTP and UDP interfaces waits for incoming
HTTP/UDP requests from the clients. The Mob-
WS client could send a request either over Hypertext
Transfer Protocol (HTTP) or User Datagram Protocol
(UDP) since the Mob-WS invocation is independent
of the transport protocol. The client’s request, when
reached at the server, is delegated to the Request Han-
dler that determines the request type, that is, asyn-
chronous or synchronous. In case the requested mes-
sage is directed toward a synchronous service, the con-
trol flow continues as described in [1]. Else, the Re-
quest Handler passes the message to the ASAP Handler
which decides if the message is meant for the Factory or
the Instance. After determining the proper recipient of
the requested message it is passed to the specific Fac-
tory or Instance for further processing. The Factory or
Instance performs the requested task and sends the re-
sult back to the ASAP Handler which further passes it
to the Response Handler. The Response Handler after
receiving the response data from the ASAP Handler,
sends it back to the client over any transport protocol
preferred by the client. The Mob-WS that are initi-
ated at the time of start-up communicate with the De-
ployment Interface to serve the client request. This is
however vital to note that as soon as the asynchronous

3

Mob-WS is invoked, the client is notified about the sta-
tus of the service. This releases the service client from
blocked state whereas the service continues to perform
its tasks at the server.

Figure 4. System Architecture

4.3 Dynamic Service Management

As highlighted earlier in section 4, that, for an asyn-
chronous long-lived Mob-WS it is essential to be con-
trollable and provide mechanisms for monitoring its
state. This is because during the execution of such ser-
vices, the service consumer might be interested in re-
ceiving status updates or the requirements of the client
might change. For instance, in a sensor based envi-
ronment where the real-time information is constantly
changing, an asynchronous Mob-WS client might want
a service to utilize the updated context information
that it has just received from its environment and dis-
card the one that was previously sent at the time of
service creation. In order to meet such dynamic change
in requirements, a client should be able to send control
messages to the service instance and on the other hand,
the service instance should be capable of updating itself
at runtime.

The asynchronous Mob-WS middleware incorpo-
rates the control and monitoring mechanisms within
its architecture that makes the deployed services capa-
ble of adapting to dynamic changes. In order to elab-
orate the control and monitoring message flow, some
implementation level details have to be considered.

4.3.1 Service Monitoring

Consider an example in which a service client wishes
to receive the properties of the service that is currently
in execution phase. Once the status information is re-
ceived by the client, it can then analyze and act ac-
cordingly. The client might wish to control the service
based on its current state. Such monitoring requests
can be send as Simple Object Access Protocol (SOAP)

envelopes from the peer Observer for either the Ser-
vice Instance or Factory (refer to section 4.1). In order
to get the properties of the service, a corresponding
SOAP envelope is constructed and send to the middle-
ware. This request message once received by the ASAP
Handler is analyzed and passed on to the respective
resource sought by the Observer. The example SOAP
envelopes for request (GetPropertiesRq) and response
(GetPropertiesRs) are shown in figure 5 and 6 respec-
tively.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

<SOAP-ENV:Header>
<!-- WS-Addressing request headers -->

</SOAP-ENV:Header>
<SOAP-ENV:Body>

<computePerf xmlns="urn:Services" id="o0"
SOAP-ENC:root="1">

<getPropertiesRq xsi:type=":getPropertiesRq"/>
</computePer f>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 5. Service Monitoring Request

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

<SOAP-ENV:Header>
<!-- WS-Addressing response headers -->

</SOAP-ENV:Header>
<SOAP-ENV:Body>
<computePerfResponse xmlns="urn:Services" id="o0"
SOAP-ENC:root="1">

<getPropertiesRs xsi:type=":getPropertiesRs">
<EPR xsi:type="xsd:string">

http://www.comnets.rwth-aachen.de/instanceEPR
</EPR>
<Name xsi:type="xsd:string">

Performance Computation Service
</Name>
<Description xsi:type="xsd:string">

Computes the network performance
</Description>
<ContextData xsi:type=":ContextData">

<!-- Extensible Element -->
</ContextData>
<ResultData xsi:type="xsd:string">

Status: Computation under process.
<!-- Extensible Element -->

</ResultData>
</getPropertiesRs>

</computePerfResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 6. Service Monitoring Response

4.3.2 Service Control

Now for controlling a service, consider a scenario in
which a service client wishes to change the state of the
running service, that is, service control. Such control

4

message could involve activities from setting various
properties of the service to pausing or terminating the
service. In such case, a control request as a SOAP
envelope from the client is received by the ASAP Han-
dler that describes to which state the service should
be changed. An asynchronous Mob-WS at any given
time could be in the states [3]; open.notrunning,
open.notrunning.suspended, open.running,
closed.completed, closed.abnormalCompleted or
closed.abnormalCompleted.terminated.

After changing the state of the asynchronous web
service the current state of the asynchronous Mob-WS
is passed back to the ASAP Handler which delegates it
to the Response Handler to be sent to the client that
triggered this control message sequence.

Any change in state of the service triggers a Call-
back StateChanged message to be sent to all the clients
that have subscribed to this particular asynchronous
Mob-WS. A change in state could be caused by some
internal event such as occurrence of an exception dur-
ing processing, or could be triggered externally by a
client. As soon as the service instance changes the
state of the asynchronous Mob-WS, the notification is
send to all the clients. The clients acknowledge the
reception of this message to the service instance. Fig-
ure 7 shows a sample changeStateRq SOAP messages.
The response SOAP message follows exactly the same
structure except that the message name is changed to
changeStateRs.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

<SOAP-ENV:Header>
<!-- WS-Addressing request headers -->

</SOAP-ENV:Header>
<SOAP-ENV:Body>

<computePerf xmlns="urn:Services" id="o0"
SOAP-ENC:root="1">

<changeStateRq xsi:type=":changeStateRq">
<State xsi:type="xsd:string">

closed.completed
</State>

</changeStateRq>
</computePerf>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 7. Service Control Request

5 Prototype

The asynchronous Mob-WS middleware could be
a potential foundation for network performance opti-
mization based on in-network computations. As a spe-
cial case, we will focus on the WSN. WSN are no
longer limited to being data networks where sensors

merely act as a source of data. Instead, these networks
are increasingly being developed and deployed to fulfill
application specific tasks.

A proof-of-concept prototype has been developed
to perform collaborative in-network computations with
WSN as its special case. It has been assumed that
the asynchronous Mob-WS middleware is deployed on
the collaborative computation nodes within the WSN
which are better equipped in terms of processing power
and battery consumption than the ordinary sensors.
The middleware is used to monitor the state of compu-
tations. In case new sensor data is available, the com-
putation node is updated by sending control messages.
Once the service ends, the analyzed result could be
send to some higher hierarchy as result data to further
evaluate network performance. The prototype does not
have a GUI as it functions as a background process.

6 Conclusion

In this paper, a concept and architecture of an asyn-
chronous Mob-WS middleware is introduced that dis-
cusses the idea of deploying long-lived complex asyn-
chronous Mob-WS on mobile devices. The asyn-
chronous Mob-WS interaction techniques are also pre-
sented and briefly compared. Furthermore, the middle-
ware architecture is elaborated and control flow within
the major components is described. The presented
middleware enables control and monitoring of P2P
long-lived asynchronous Mob-WS and therefore forms
potential basis for innovative mobile applications cov-
ering variety of domains and reduces development cost.
A prototype has been developed with WSN as a spe-
cial case. Performance evaluation of the middleware is
planned.

References

[1] G. Gehlen, F. Aijaz, and B. Walke. An enhanced
udp soap-binding for a mobile web service based mid-
dleware. In Proceedings of IST Mobile Summit 06,
page 8, Myconos, Greece, Jun 2006. ComNets, Faculty
6, RWTH Aachen University, Germany.

[2] M. Gudgin, M. Hadley, and T. Rogers. Web Services
Addressing 1.0 - Core. Published on the internet, May
2006. W3C Recommendation.

[3] K. S. John Fuller, Mayilraj Krishnan and J. Ricker.
Oasis asynchronous service access protocol (asap).

[4] L. Pham and G. Gehlen. Realization and Performance
Analysis of a SOAP Server for Mobile Devices. In Pro-
ceedings of the 11th European Wireless Confernce 2005,
volume 2, pages 791–797, Nicosia, Cyprus, Apr 2005.
VDE Verlag.

5

