
A Rule based Data Monitoring Middleware for
Mobile Applications

Guido Gehlen, Georgios Mavromatis
RWTH Aachen University
Communication Networks

Kopernikusstr. 16, 52074 Aachen
guge@comnets.rwth-aachen.de

Abstract— In this article we look at the scenario of mobile
nodes, e.g. cars, which are connected to a back-end system and
an application running on the mobile back-end system which
wants to monitor data of the mobile nodes, e.g. the position data
of the cars. There are many options to realize such an application,
but we have to take care of the costs and performance of the
application, since a cost-intensive mobile link is used.

We will present a middleware architecture solving the problem
described, and an implementation of this rule based data moni-
toring middleware by minimizing the communication frequency
over the mobile link. The implementation is based on the Service
Oriented Architecture (SOA), a middleware framework which
tries to simplify as much as possible the software architecture
of distributed applications. The realization of our middleware
and exemplary application uses Web Service technologies to
be platform and vendor independent. Finally, the rule based
middleware is evaluated in respect of the application delay and
the application communication costs.

I. INTRODUCTION

It is considered the scenario, that a backend-system wants
to observe data of a remote mobile node, e.g. the observation
of the car position (GPS data). Certain variations of the data
on the mobile node should activate events in the application
of the backend-system. If the evaluation logic is running on a
server application, there is the possibility to periodically poll
the data from the mobile node (car) or periodically access the
data of the mobile node, as depicted in figure 1. But both
solutions are cost intensive, since data has to be transmitted
over the mobile link even if the transmitted data is useless for
the backend application.

To minimize the communication frequency over the mobile
link, a middleware is presented which displaces the evaluation
logic to the mobile node. Thus, the data will be filtered on the
mobile system before transmitting it to the backend-system.

The middleware has been motivated by the German re-
search project Traffic Management in Transport and Logistics1

(VMTL) in cooperation with Ericsson Research Germany. It
has been evolved from an application which supports the work
of a postman. The overall aim of the project is to optimize the
packet delivery chain in respect of reducing the volume of
transportation traffic.

1Information available at http://www.invent-online.de

The postman is equipped with a Personal Digital Assistant
(PDA) and a General Positioning System (GPS) receiver.
The PDA reads the data from the GPS receiver for further
processing. In the first phase of the project, the PDA syn-
chronizes via Bluetooth with an On Board Unit (OBU) of
the delivery vehicle. The OBU enables the connection and
interoperation with the backend-system. In the second phase
the project addresses also private couriers using their private
vehicle without any OBU. Thus, the PDA has to take all
of the OBU functions, like connection establishment to the
backend-system via the General Packet Radio Service (GPRS),
provision of GPS location information, and management of the
tour data.

In VMTL different systems from various partners have to
work together, thus, it was a common agreement in the project
to use platform independent and open standards as well as
open source software. These requirements have been satisfied
by the use of Web Services, [1]. Consequently, the application
running on the PDA has to use Web Services as middleware
framework, as well. From this a general Web Service based
middleware for arbitrary mobile distributed applications has
been evolved.

One of the challenges in the research project VMTL was
to track the location of the postman efficiently. The PDA
of the postman continuously reads the GPS data from the
receiver. The backend-system is somehow interested in this
data. Thus, the problem is to transmit the GPS data as fast as
the application delay admits this. A simple polling of the GPS
data may is expensive, since the application has to periodically
poll the data with that frequency to achieve the application
requirements.

II. GENERALIZED CHALLENGE

For further discussions this scenario will be generalized and
simplified to a scenario of one mobile node, providing arbitrary
data, and the backend system which is interested in the data
of the mobile node. This scenario is depicted in figure 1.

Certain variations of the data on the mobile node should
activate events in the application of the backend system. If the
evaluation logic is running on the backend-system, we have the
possibility to periodically poll the data from the mobile node
(PDA) or periodically access the data of the mobile node, as

data

Mobile System Backend System

Data forwarding

(periodically)

Logic

Mobile System Backend System

Logic

Data access

(periodically)

Mobile System Backend System

Logic

Subscription

Notification

Mobile System Backend System

Data forwarding

(periodically)

Logic

Mobile System Backend System

Logic

Data access

(periodically)

Mobile System Backend System

Logic

Subscription

Notification

data

data

a)

b)

c)

Fig. 1. High level communication possibilities for context-awareness
a) Periodically forwarding of the context data
b) Periodically access of the context data
c) Rule based data monitoring

depicted in figure 1. But both solutions are cost intensive, since
we have to transmit information over the mobile link even if
the transmitted data is useless for the backend application.

To minimize the communication frequency over the mobile
link, a possibility to displace the evaluation logic to the mobile
node is presented. Thus, the data will be locally monitored and
evaluated on the mobile node, and only relevant data variations
cause a notification over the mobile link to the backend system.
In other words, the data could be filtered by arbitrary rules,
before forwarding it to the backend-system.

Assuming that the logic is based on a rule based decision,
the rule can be transmitted once from the backend to the
mobile system via a subscription. Then the evaluation of the
rule starts at the mobile node until a unsubscribe method stops
the rule evaluation. Every time the rule applies, the backend
system will be notified. For example, an application on the
backend system wants to be informed, if a car is in a certain
area, see section III-B and figure 5 . The backend application
has to transmit this rule to the mobile node. Every time the
car enters this area, a notification to the backend system is
generated.

III. WEB SERVICE BASED MIDDLEWARE ARCHITECTURE

The overall Web Service based middleware architecture is
shown in 2. The middleware is bordered upwards by the
application and downwards by communication layers. The
middleware is capable of coupling either to a session layer
protocol, like HTTP, BEEP [2], or WSP [3], or to a transport
layer protocol, like TCP or UDP.

The middleware itself is structured in a protocol part and a
service part. The protocol part is based on the Simple Object
Access Protocol (SOAP) [4], including the bindings to the un-
derlying protocols and security mechanisms. The service part
of the middleware is once again divided into a static part within
the U-shaped block and a dynamic part. The static part acts for
base middleware functions, like Service Publishing/Discovery
and Object Monitoring and Eventing. The Monitor-Service,

Notification Service, and the Rule Engine are described in
section III-A. The dynamic part depends on the application
and adapts on compile or runtime.

In addition, all elements in the service part of the mid-
dleware can be distinguished in services and service proxies.
A service-proxy is a representative of a remote service and
offers the application an interface to this remote service.
The service-proxies and the services will map the platform
dependent method calls and data objects into platform inde-
pendent SOAP-calls and vice versa. This architecture bridges
the native messaging inside the device environment to the
platform independent messaging in the SOA environment [5].

The realization of the middleware has been done for Java
enabled mobile devices, compliant to the Java2 Micro Edition
(J2ME) standardization. The SOAP part is based on the
Open Source libraries kSOAP [6] and kXML [7] and has
been extended by additional SOAP-Bindings to alternative
underlying protocols and by server capabilities.

The server capabilities are realized by developing a light-
weight HTTP-server and a server binding to SOAP. The
server accepts incoming HTTP requests and passes the SOAP
envelope to the mobile SOAP-Server [8] [9]. After validating
the content the corresponding methods will be invoked.

A. Remote Rule Based Object Monitoring

Based on the mobile SOAP-Server, a Rule Based Monitor
service has been developed. The Monitor Service, Notification
Proxy, and Rule Engine have to run on the same client as well
as the Notification Service and the Monitor Proxy.

The high level communications between the devices are
divided into two phases separated in time, see figure 3. In
the first phase the back-end system will subscribe with a rule
to the mobile device. The rule is related to the data published
by the mobile device and defines which data changes cause a
notification of the back-end system. The second phase is the
notification itself. A notification, specified in the rule, is send
from the mobile device to the back-end if the rule is fulfilled.

SOAP

Application

SOAP

Application

SOAP

Application

SOAP

Application

M
o
n
it
o
r-

S
e
rv
ic
e

M
o
n
it
o
r-

P
ro
x
y

N
o
t-

P
ro
x
y

M
o
n
it
o
r-

S
e
rv
ic
e Subscription

Notification

Fig. 3. Subscription to the Rule based Data Monitoring Middleware and
notification

To realize this concept, a rule parser, a rule evaluator,
the subscribe and un-subscribe methods, and a notifier are
necessary. The subscribe and un-subscribe methods will add
or delete a new rule on the mobile device application. The rule
parser will transform the serialized rule into a processable data
object, which can be evaluated.

The mobile node offers and publishes a rule based object
monitor service with two public methods Subscribe(Rule) and

SOAP

HTTP-

Binding

Session Layer

Transport Layer

Network Layer

TCP-

Binding

UDP-

Binding

WSP-

Binding

BEEP-

Binding

HTTP

TCP

IP

WSP

UDP

BEEP

Application

M
o
n
it
o
r
P
ro
x
y

N
o
ti
fi
c
a
ti
o
n

P
ro
x
y

M
o
n
it
o
r

S
e
rv
ic
e

N
o
ti
fi
c
a
ti
o
n
S
e
rv
ic
e

Service

Discovery

Service

Publishing

t compile time

SOAP-

Security

SOAP-

Security

D
y
n
a
m
ic
S
e
rv
ic
e

D
is
c
o
v
e
ry

D
y
n
a
m
ic
S
e
rv
ic
e

P
u
b
li
s
h
in
g

S
e
rv
ic
e
P
ro
x
y

S
e
rv
ic
e
P
ro
x
y

S
e
rv
ic
e
P
ro
x
y

S
e
rv
ic
e
P
ro
x
y

Rule

Engine

S
e
rv
ic
e

S
e
rv
ic
e

S
e
rv
ic
e

S
e
rv
ic
e

eb Service

iddleware

eb Service

iddleware

Fig. 2. Mobile Web Service based Middleware Architecture

Un-subscribe(RuleID). The subscription method contains the
Rule and starts at the mobile node the evaluation of this rule.
The un-subscription method stops the evaluation of the rule
with the corresponding RuleID, see figure 4. The RuleID is
assigned by the mobile node after verifying the rule and is
returned back to the backend system.

Application

Rule 0

Rule 1

Rule n

Rule 0Rule 0

Rule 1Rule 1

Rule nRule n

RuleParser

Data Base

Rule-EvaluatorRule-Evaluator

V
e
ri
fy
R
u
le
()

F
ir
e
e
v
e
n
t

M
o
n
it
o
r
P
ro
x
y

M
o
n
it
o
r
S
e
rv
ic
e

-
S
u
b
s
c
ri
b
e
()

-
U
n
s
u
b
s
c
ri
b
e
()

N
o
ti
fi
c
a
ti
o
n
S
e
rv
ic
e

N
o
ti
fi
c
a
ti
o
n
P
ro
x
y

P
u
t/
R
e
m
o
v
e
R
u
le

SOAP

sensors

� Subscription(Rule)

� Notification(Event)

�

�

�

�

�

RuleID

Fig. 4. Architecture of the Rule based Data Monitoring part within the
overall Middleware

After the subscription, see (1) in figure 4, each incoming
rule is parsed and verified, (2). If the rule syntax is valid, the
subscribe method returns a acknowledgment message to the

back-end containing a unique Rule ID, else an error message.
A valid rule will be saved into an list of rules, (3). In a parallel
process this list is sequently evaluated by a RuleEvaluator, (4).
Each time the rule applies, a notification service of the back-
end system will be invoked with the event as parameter, (7),
by invoking the Notification Proxy, (6).

The rules are defined in RuleML. It is a Extensible Markup
Language (XML) based meta language, which defines rules
in a platform independent syntax. The RuleML hierarchy of
general rules branches into the two direct categories of reaction
rules and transformation rules. On the next level, transforma-
tion rules are specialized to the subcategory of derivation rules.
Then, derivation rules have further subcategories, namely
facts and queries. Finally, queries are specialized to integrity
constraints [10].

Within this article we solely consider derivation rules. They
state a sort of if-then-statements building a filter for the logic-
component on the mobile device.

The root element of each rule is the <rulebase>-element.
Among others, child elements like <Query>, <Fact> or
<Imp> are possible. As mentioned before, the main focus in
this work lies on implication rules (<Imp>) and their structure
in order to come up with the demands. The <Imp> element
consists of a <head> and a <body> element. Inside the
<head> element the implication is stated, e.g., send an event
to this URL. The condition is nested in the <body> element,
which is processed recursively. Many conditions are possible,
where each condition is declared in an <Atom> element.
These are coupled by <And> or <Or> relations, resulting in
a complex tree structure. See in the following a example rule
description in RuleML.

<Imp>
<head>

<Atom>
<opr><Rel>send</Rel></opr>
<Ind>Event</Ind>
</Atom>
<Atom>
<opr><Rel>URL</Rel></opr>
<Ind>137.226.4.133:8080</Ind>
</Atom>

</head>
<body>

<And>
<Atom>

<opr><Rel>lower</Rel></opr>
<Var>Lat</Var>
<Ind>5040.0000</Ind>

</Atom>
......

<Atom>
<opr><Rel>greater</Rel></opr>
<Var>Lon</Var>
<Ind>10020.0000</Ind>

</Atom>
</And>

</body>
</Imp>

OR

AND

Long

>

long1

Lat

<

lat2

AND

AND

Driving

=

true

Long

<

long2

Lat

>

lat1
….

OR

AND

Long

>

long1

Lat

<

lat2

AND

AND

Driving

=

true

Long

<

long2

Lat

>

lat1
….

Fig. 5. RuleML Document Object Model tree

B. Application costs and reaction time

In this section the performance and the costs of applications
using this Rule Based Monitoring instead of periodical data
polling is estimated. We are considering a mobile cellular and
packed switched network, like GPRS or the Universal Mo-
bile Telecommunications System (UMTS) with data volume
oriented charging. Thus, the costs (C) are proportional to the
transmitted data volume (V).

In the case of forwarding the data from the mobile system
to the backend-system, figure 1 a), or accessing the data from
the backend system, figure 1 b), the mobile link is periodi-
cally occupied with the volume Vpoll. Using the Rule based
Monitoring Middleware, figure 1 c), at first a subscription is
sent and in unsteady time intervals a notification message, see
figure 6.

It is assumed that the mobile system permanently observes
the data (context value in figure 7), like e.g. the GPS infor-
mation. The application delay is defined as the time interval
between the measurement of the data at the mobile system

Tuse

Tsub

Vpoll

Vsub Vnot Vsub

t

t

a,b)

c)

1/fpoll

Fig. 6. Communication amount and frequeny

and the reception at the backend-system. In figure 7 the data
changes are polled every 1/fpoll times and received delayed
by the processing time τproc and the network delay τnet.

In the case that the rule evaluation logic is running on the
back-end side and the poll frequency is fpoll, the maximum
application delay, see figure 7, is

τpoll,max = 1/fpoll + τnet + τproc (1)

The runtime costs of the application within the time period
of Tuse are proportional to fpoll. In addition the costs are
independent of the probability density that a rule is true
(pevent). Thus, the costs Cpoll can be calculated from the data
volume Vpoll, the communication costs per data volume rv ,
and the application running time Tuse to

Cpoll = Vpoll · rv · fpoll · Tuse (2)

C
o
n
te
x
t
v
a
lu
e

t1/fpoll

τnet+τproc

C
o
n
te
x
t
v
a
lu
e

t1/fpoll

τnet+τproc

Fig. 7. Delay of polling data from the mobile to the backend

In the case that the logic is running at the mobile side, as in
the Rule based Data Monitoring, the application delay depends
only on the network delay (τnet), the processing time of each
rule, and the number of rules running on the mobile node

τrule,max = Nrule · τproc + τnet (3)

The costs are now depending on the event probability

density pevent referring to time ([pevent] = 1/s).

Crule = VNot · rV · pevent · Tuse +
⌈

Tuse

Tsub

⌉
· VSub · rV (4)

Vnot and Vsub are the data volumes of one notification resp.
subscription message and nsub =

⌈
Tuse

Tsub

⌉
is the number of

subscriptions within the runtime Tuse.
Comparing the application delay of option a), b) with option

c) by disregarding the processing time and network delay
(τproc, τnet → 0), the application delay of option c) is 0 and
τpoll = 1/fpoll. Thus, the application delay depends only on
the polling frequency.

The cost ratio of the runtime application costs in case c)
compared to a), b) is

Crule

Cpoll
=

Vnot

Vpoll
· pevent

fpoll
+

nsubVsub

VpollfpollTuse
(5)

Assuming that Vpoll ≈ Vnot, the cost ratio is

Crule

Cpoll
≈ pevent

fpoll
+

nsubVsub

VpollfpollTuse
(6)

The main and time independent portion of the cost ratio
is the factor pevent/fpoll. Thus, the decision which solution
should be implemented in a concrete application is dependent
on the application demands concerning the application delay
(Treact,poll ∝ 1/fpoll) and the estimated probability density of
an event. For example, if an application demands a reaction
time of 1 minute and the estimated event probability density
is 1 per hour, the Rule based Monitoring solution is approxi-
mately by the factor 60 cheaper.

IV. CONCLUSION

The paper has presented a rule based data monitoring
service within a mobile middleware based on Web Services.
The overall architecture and processes have been described as
well as the Rule based Data Monitoring in detail. The mid-
dleware provides basic functionalities to integrate and provide
Web Services and to reduce the communication frequency by
applying a subscription mechanism.

The Rule based Data Monitoring enables in many use
cases of vehicular application a tremendous communication
cost reduction. The application delay is independent of the
communication frequency, thus, the costs depend only on the
event probability and the subscription update frequency.

ACKNOWLEDGMENT

The work presented has been motivated by a cooperation
with Ericsson Research Germany within the German BMBF
project INVENT-VMTL2. The authors would like to thank
Prof. B. Walke and L. Pham of ComNets for their help and
support, as well as T. Dinsing and M. Gerdes of Ericsson
Research.

2Information available at http://www.invent-online.de

REFERENCES

[1] R. Wolter, “Xml web services basics,” Published on the internet. Avail-
able at URL http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dnwebsrv/html/webservbasics.asp, Dec. 2001.

[2] U. Kefali, “Development and performance evaluation of a simple object
access protocol (soap) profile for block extensible exchange protocol
(beep),” Master’s thesis, 2004.

[3] G. Gehlen and R. Bergs, “Performance of mobile web service access
using the wireless application protocol (wap),” in Proceedings of World
Wireless Congress 2004. San Francisco, USA: University Aachen,
Communication Networks, 05 2004, pp. 427–432.

[4] N. Mitra, “Soap version 1.2 part 0: Primer,” Published on the internet.
Available at URL http://www.w3.org/TR/soap12-part0/, June 2003.

[5] “Web service architecture,” Published on the internet. Available at http:
//www.w3c.org, 2004.

[6] “Enhydra’s j2me soap implementation ksoap,” Published on the internet.
Available at URL http://enhydra.org.

[7] “kxml javadoc,” Published on the internet. Available at URL http://kxml.
enhydra.org/software/documentation/apidocs/, Feb. 2002.

[8] G. Gehlen and L. Pham, “Mobile web services for peer-to-peer appli-
cations,” Jan 2005.

[9] L. Pham, “Concept and implementation of web services deployed
on mobile devices,” Diplomarbeit, Communication Networks, RWTH
Aachen University, Jan 2004.

[10] H. Boley, S. Tabet, and G. Wagner, “Design rationale of RuleML: A
markup language for semantic web rules,” 2001. [Online]. Available:
citeseer.ist.psu.edu/boley01design.html

