
Mobile Web Services based Middleware for Context-Aware Applications

Guido Gehlen and Georgios Mavromatis
RWTH Aachen University, Chair of Communication Networks

Kopernikusstr. 16, 52074 Aachen, Germany
guge@comnets.rwth-aachen.de

Abstract: Mobile devices, communication systems and
applications increasingly become more complex. In order
to manage mobile distributed applications a middleware
is essential which simplifies and speeds up the application
development. A mobile environment with its heterogene-
ity and mobility has different requirements compared to a
fixed environment. Thus, new concepts and mechanisms
for a middleware have to be developed to cope with the
challenge of these heterogeneous distributed systems.

In this article, we introduce a Web Service based mid-
dleware for mobile devices, adapted to a mobile environ-
ment with special focus on context-awareness. The context-
awareness will be realized by a rule based data monitoring
in order to minimize the communication frequency over the
mobile links and, thus, to minimize the runtime costs of the
mobile application. Within this middleware mobile context
providers are able to publish their context-data. This data
can be remotely monitored by subscribing to a service of
the context-provider and receiving notifications from the
context provider.

The Web Service based mobile middleware will be de-
scribed in general, special focus is given to the rule based
data monitoring for context-aware applications. In addi-
tion a discussion of the expected application runtime costs
regarding the communication is given.

1. Introduction

Mobile systems, composed of mobile devices con-
nected by mobile communication systems, increasingly
gain in importance. Wireless bandwidth is continuously
increasing[13] as well as the processing power of mo-
bile devices and their capabilities. Today, mobile and
handheld devices are often more powerful than personal
computers of the ’90s. They provide features like digital
photography, speech recognition, personal information
management (PIM), and gaming.

The future challenge is to fluently integrate mobile
systems into distributed applications. But traditional
methods to build a distributed system with mobile de-
vices are not sufficient, since the mobile environment is
more heterogeneous and more dynamic than a fixed dis-
tributed system. Thus, a middleware, which is the glue in
distributed systems, differs in the case of a mobile sys-
tem compared to a fixed system. For example, a con-
servative middleware for fixed systems should hide all
context information of the distributed environment. In a
mobile environment this context information is useful to
enable novel and richer applications [11, 3]. In addition,
the restrictions of the mobile communication system has
to be taken into account to build high-performance and
cost reduced mobile applications.

To cope with the requirements of a mobile middle-
ware, the following design concepts and technologies are

used. The Service Oriented Architecture (SOA) is a de-
sign model for distributed applications simplifying the
development of heterogeneous distributed applications.
One realization of the SOA are Web Services [1] which
are used in our mobile middleware. The big advantage of
the Web Service technologies are that they are platform
independent and based on standard Internet protocols.
Devices supporting a mobile Web Service based middle-
ware have access to a rich number of existing Web Ser-
vices in the Internet (e.g. see the Web Service database at
www.xmethods.net). A compact introduction to the
SOA and Web Services is given in the following section
2..

The mobile communication link is still the bottleneck
of the whole distributed application/system and induces
most of the runtime costs. Thus, the reduction of the
communication amount is the main optimization crite-
ria for this middleware. Furthermore, protocols and the
bindings to the middleware are optimized to the mobile
conditions.

The essential use case of context-aware applications
will be discussed with the auxiliary condition of mini-
mizing the communication efforts. The realization uses a
rule based data monitoring which is smoothly integrated
in the SOA. This realization will be the main focus of
the paper, see section 3.3.. But first of all the SOA, Web
Service technologies, and the overall mobile middleware
structure will be introduced.

2. Services Oriented Architecture

Object oriented software architecture is hierarchically
structured to build complex and reusable software. On
the lowest level, functionalities are encapsulated in an
object. A set of interacting software objects is collected
into a component. The Service Oriented Architecture
(SOA) [1] consequently extends this hierarchical struc-
ture to distributed systems. The interaction of services
does not take places in one application on one device,
but services reside on different heterogeneous systems
and collaborate over communication systems. Services
have the following characteristics [8]:

• Services are self contained and modular

• Services are discoverable and dynamically bound

• Services stress interoperability

• Services are loosely coupled, reduction of artificial
dependencies to a minimum

• Services have a network-addressable interface

• Services have coarse-grained interfaces in compar-
ison to finer-grained interfaces of software compo-
nents and objects

www.xmethods.net

• Services are composable

These characteristics should make the distributed sys-
tem as simple as possible, but no simpler. In other words,
the SOA is an architectural style to achieve loose cou-
pling among interacting software agents and to minimize
their artificial dependencies.

The SOA defines three roles, a Service-Requestor (R),
Service-Provider (P), and a Service-Broker (B). A soft-
ware agent which interacts with other software agents
can play one or more roles, see figure 2. They commu-
nicate in the way as depicted in figure 1.

Service-
Requestor

(R)

Service-
Provider

(P)

Service-
Broker

(B)

Access
Service

Search &
Integrate
Service

Publish &
Cancel
Service

Service
Register

Replication

Service-
Requestor

(R)

Service-
Provider

(P)

Service-
Broker

(B)

Access
Service

Search &
Integrate
Service

Publish &
Cancel
Service

Service
Register

Replication

Figure 1: The Service Oriented Architecture (SOA) roles
and relations

Providers publish their services to a service registry
(service-broker). More than one service-broker within
the environment have to replicate their service registries
(dashed arrow). Requesters use the Broker to search
for services and integrate them by accessing the service
description (dashed-dotted arrow). This description in-
cludes all information needed to access the service and
is used to generate a service-proxy object. The service-
proxy represents the remote service, i.e. all published
remote service methods are methods of the local proxy
object. This architecture bridges the native messaging
inside the client environment to the platform indepen-
dent messaging in the SOA environment, see also sec-
tion 3.2. and figure 5. The process of proxy object gen-
eration maps the platform independent description into
a real software object for the client’s system environ-
ment. In our implementation a WSDL to Java2 Micro
Edition (J2ME) generator is used to create Java proxy
classes for a J2ME environment, see section 3.2..

To achieve high interoperability, all SOA entities have
to use a common language for service description, mes-
saging and service registration. The Extensible Markup
Language (XML) is such an appropriate common lan-
guage. On the basis of XML the World Wide Web
Consortium (W3C) has specified a middleware frame-
work, called Web Services, following the SOA. For
messaging the Simple Object Access Protocol (SOAP)
[12] is used. It is based on standard Internet protocols
like HTTP or other arbitrary protocols like the Wireless
Application Protocol (WAP) [7] or the Block Extensi-
ble Exchange Protocol (BEEP) [14]. The SOAP enve-
lope is structured in XML. Interfaces are described in

a XML subset, the so called Web Service Description
Language (WSDL) [6]. This description includes all the
information needed in order to invoke service methods
from other nodes.

In figure 2 a heterogeneous mobile environment is de-
picted, characterized by nodes with a big range of capa-
bilities and computation power. Some devices are only
consumer (requestor) of services, like e.g. remote con-
trols, terminals, tablet PC’s. Other devices are only ser-
vice provider, like e.g. light controller, media server.
Some devices are both service provider and requestor,
thus, they publish their own services and consume re-
mote services.

R P

R P

B

R

P
R P

BR PR P

R P

B

RR

PP
R P

B

Figure 2: Ad Hoc SOA Realization for mobile heteroge-
neous environments

We have to differentiate between two cases, networks
with one or more broker and networks without any bro-
ker. Networks without any broker have to use flooding or
index routing algorithms to publish or discover services,
as e.g. in Universal Plug and Play (UPnP) [9]. More
than one broker within the environment must synchro-
nize the service repository to ensure consistency (dashed
arrows). A possible solution to handle multiple redun-
dant brokers is to use on the middleware level a virtual
broker. The middleware requests this virtual broker re-
gardless of how many brokers are available. If there is
more than one broker, the virtual broker request has to
be routed to the best available broker node.

3. Middleware Architecture

Within the SOA, described in the previous section,
services play the main part. Each device can publish ser-
vices which will be provided by the device’s application.
Each published service (dark-colored squares in figure 4
and 3) will be placed in the middleware and will be used
as connection between the application and the middle-
ware. Other devices can use these services by integrating
a service-proxy (light-colored squares in figure 4 and 3)
inside their middleware. The service-proxy and service
pairs, thus, form a loosely coupled distributed applica-
tion, see figure 3. That means that the applications on
each device are independent of each other. The coupling
will be done on demand and on runtime.

The service-proxies and the services will map the de-
vice’s platform dependent method calls and data objects
into platform independent SOAP-calls and vis versa.
This architecture bridges the native messaging inside the

device environment to the platform independent messag-
ing in the SOA environment, see subsection 3.2..

SOAP

Application

SOAP

Application

SOAP

Application

SOAP

Applicationloosely coupled

se
rv

ic
e

se
rv

ic
e-

pr
ox

y

Figure 3: Coupling independent applications over the
network

Our Web Service based middleware architecture is
shown in 4. The middleware is bordered upwards by
the application and downwards by communication lay-
ers. The middleware is capable of coupling either to a
session layer protocol, like HTTP, BEEP, or WSP, or to
a transport layer protocol, like TCP or UDP.

The middleware itself is structured in a protocol part
and a service part. The protocol part is based on SOAP,
including the bindings to the underlying protocols and
security mechanisms. The service part of the middle-
ware is once again divided into a static part within, the
U-shaped block, and a dynamic part. The static part
acts for base middleware functions, like Service Pub-
lishing/Discovery and Object Monitoring and Eventing.
The Monitor-Service, Notification Service and the Rule
Engine are described in section 3.3.. The dynamic part
depends on the application and adapts on compile or run-
time.

In addition, all elements in the service part of the
middleware can be distinguished in services and service
proxies. As mentioned before, the service-proxy is a rep-
resentative of a remote service and offers the application
an interface to this remote service.

The realization of the middleware has been done for
Java enabled mobile devices, compliant to the J2ME
standardization. The SOAP part is based on the Open
Source libraries kSOAP and kXML and has been ex-
tended by additional SOAP-Bindings to alternative un-
derlying protocols and by server capabilities, see 3.1..

The following subsections will present each of this
middleware parts in detail. First, SOAP and our ex-
tensions in respect of a mobile environment will be ex-
plained. The next two subsections describe the static
middleware parts, the Publishing/Discovery and the Rule
based data monitor services. The last subsection will
introduce the use of these middleware functionalities to
build context-aware applications.
3.1. SOAP and Bindings

Within the Web Service framework the services and
service-proxies communicate via the Simple Object Ac-
cess Protocol (SOAP) [12]. It is based upon messages
encoded in XML, called SOAP-Envelopes, transmitted
by arbitrary transport protocols. The SOAP-Envelope
is divided in an optional SOAP-Header and the manda-
tory SOAP-Body. The body contains the message to be
transmitted, the header contains additional information
regarding this message, as e.g. message ID’s for the ses-
sion management or security related information.

As mentioned, SOAP can be coupled to an arbitrary
protocol by using a protocol specific SOAP-Binding.
The most common protocol used by SOAP is Hypertext
Transport Protocol (HTTP), since it is mostly used in
the Internet and easily allows Remote Procedure Calls
(RPCs). But HTTP on top of TCP has a bad perfor-
mance in mobile communication systems [7, 10]. Thus,
this middleware provides a set of alternative SOAP-
Bindings, like a binding to the Wireless Session Protocol
(WSP), User Datagram Protocol (UDP) or BEEP. The
WSP binding for SOAP has the advantage, that the pro-
tocols are adapted to the mobile communication system
[7]. The WSP header is more lightweight compared to
HTTP. In addition, the XML content can be encoded
binary [16]. Existing Internet Web Services which are
bound to HTTP can be accessed via WAP using a WAP
gateway.

The middleware realization is based on kSOAP, which
solely provides a HTTP client binding. Thus, kSOAP
enables by default only Web Service access, but no
Web Service provision. We extend the middleware by
a lightweight Web- and SOAP-Server. By using this
lightweight server, the middleware can publish arbitrary
service methods and make these services available via
HTTP. In addition, static web content, like HTML pages
could be accessed on the mobile device. The HTTP-
Server binding for SOAP runs on MIDP1.0/2.0, Personal
Java, and on any arbitrary standard Java platform. Ser-
vice classes which should be published by the server
have to implement one interface and have to declare their
exposed methods and objects to the server.

An additional extension which is not included in
kSOAP is the SOAP-Security. The package provides
functions to encrypt or sign SOAP messages or only
parts of these messages. SOAP-Security is a building
block of the Web Service Security specification [15] and
is based on XML-Encryption and XML-Signature. The
security implementation will be presented in a further
paper.

3.2. Service Publishing, Discovery and Integration

We have to differentiate two kind of services. Unique
services and well defined plural services. The first
kind of services are specialized services provided by
one unique service provider, like e.g. theamazonweb
or googleservice. The second ones are specified ser-
vices, which can be implemented by any arbitrary ser-
vice provider, like e.g. the Domain Name Service (DNS)
or UPnP services.

The unique services and service-proxies are published
and integrated on compile time. It makes in general no
sense to do these tasks at runtime, since the application
on top of the services and service-proxies is coupled with
them. Thus, the application developer has to do the pub-
lishing and integration process for unique services only,
see figure 5. From the service source code, written in an
arbitrary programming language, a WSDL description
is generated and published. A second application de-
veloper, which wants to use this service, automatically
generates source code for his target platform from the
WSDL description.

SOAP
HTTP-

Binding

Session Layer
Transport Layer
Network Layer

TCP-
Binding

UDP-
Binding

WSP-
Binding

BEEP-
Binding

HTTP
TCP

IP

WSP
UDP

BEEP

Application

M
on

ito
r P

ro
xy

N
ot

ifi
ca

tio
n

Pr
ox

y

M
on

ito
r

Se
rv

ic
e

N
ot

ifi
ca

tio
n

Se
rv

ic
e

Service
Discovery

Service
Publishing

At compile time

SOAP-
Security
SOAP-

Security
D

yn
am

ic
 S

er
vi

ce
D

is
co

ve
ry

D
yn

am
ic

 S
er

vi
ce

Pu
bl

is
hi

ng

Se
rv

ic
e

Pr
ox

y

Se
rv

ic
e

Pr
ox

y

Se
rv

ic
e

Pr
ox

y

Se
rv

ic
e

Pr
ox

y

Rule
Engine

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Mobile Web Service
based Middleware

Mobile Web Service
based Middleware

Figure 4: Mobile Web Service based Middleware Architecture

Se
rv

ic
e

Se
rv

ic
e

Pr
ox

y

WSDL

SOAP calls

Integration:
Automated

proxy generation
(e.g. WSDL2Java)

Publication:
Automated
WSDL generation
(e.g. C++2WSDL)

Native method
Invocations
(e.g. in Java)

Native method
Invocations
(e.g. in C++)Se

rv
ic

e

Se
rv

ic
e

Pr
ox

y

WSDLWSDL

SOAP calls

Integration:
Automated

proxy generation
(e.g. WSDL2Java)

Publication:
Automated
WSDL generation
(e.g. C++2WSDL)

Native method
Invocations
(e.g. in Java)

Native method
Invocations
(e.g. in C++)

Figure 5: Publication and Integration of Web Services
using the WSDL description

In contrast, well defined services can be published and
integrated on runtime, assumed that the middleware sup-
ports these services and that the application can use or
provide them. Upon entering a new service environment
with a device, its services are published and remote ser-
vices, which are of interest, will be integrated in the mid-
dleware. This dynamic service publishing and discovery
is e.g. applied in UPnP. Currently, it will be discussed to
align UPnP version 2 with the web service technologies.
Thus, our middleware will support in future both, Web
Services and UPnP services.
3.3. Rule Based Data Monitoring

Context-aware applications are often distributed,
since the context information provider are distributed
themselves. We will consider without loss of general-
ity one mobile context provider device and one back-end
system with the main application logic as depicted in fig-
ure 6. The context provider will be generalized as a set
of data, updated by persons or sensors. Thus, not only
context-aware applications are supported by this applica-
tion class, but also applications which provide data sets
on the the mobile device in general.

There are three different high level communication re-
lations between the mobile device and the back-end sys-
tem, see figure 6 a). The first possibility is to periodically
forward the relevant data to the back-end system. This is

simple to realize, but data will be transmitted even if the
data is not of interest for the back-end application.

The second possibility is to access the data on demand
from the back-end system, see figure 6 b). The advan-
tage is that the back-end system can decide at which time
the mobile data is needed, but it can only be realized if
the mobile device has server capabilities and is address-
able from the Internet. As mentioned in section 3.1., our
middleware supports HTTP server capabilities and con-
sequently supports also this second possibility. However,
this solution is only advantageous, if the back-end appli-
cation knows the point of time the mobile data is needed.
In case that the decision, whether the data is relevant or
not, depends on the mobile data itself, this solution as
well as the first one are not sufficient.

data

Mobile System Backend System

Data forwarding
(periodically)

Logic

Mobile System Backend System
Logic

Data access
(periodically)

Mobile System Backend System
Logic

Subscription

Notification

Mobile System Backend System

Data forwarding
(periodically)

Logic

Mobile System Backend System
Logic

Data access
(periodically)

Mobile System Backend System
Logic

Subscription

Notification

data

data

a)

b)

c)

Figure 6: High level communication possibilities for
context-awareness:
a) Periodically forwarding of the context data
b) Periodically access of the context data
c) Rule based object monitoring

The third possibility, in figure 6 c), breaks this disad-
vantage by shifting the logic. Thus, the mobile device
can filter the data before forwarding it to the back-end
system (notification). Before, a self-defined rule com-
posed by the backend-system has to set up the data filter.
This is done by submitting a subscription to the mobile

device containing this rule.
The high level communications are divided into two

phases separated in time, see 7. In the first phase the
back-end system will subscribe with a rule to the mobile
device. The rule is related to the data published by the
mobile device and defines which data changes cause a
notification of the back-end system. The second phase
is the notification itself. A notification, specified in the
rule, is send from the mobile device to the back-end if
the rule is fulfilled.

SOAP

Application

SOAP

Application

SOAP

Application

SOAP

Application

M
on

ito
r-

S
er

vi
ce

M
on

ito
r-

P
ro

xy

N
ot

-
P

ro
xy

M
on

ito
r-

S
er

vi
ce Subscription

Notification

Figure 7: Subscription to the rule based monitoring and
notification

To realize this concept, a rule parser, a rule evaluator,
the subscribe and un-subscribe methods, and a notifier
are necessary. The subscribe and un-subscribe methods
will add or delete a new rule on the mobile device appli-
cation. The rule parser will transform the serialized rule,
in our case a specialization of the XML, into a process-
able data object, which can be evaluated.

The implementation of this functionality is based on
the Service Oriented Architecture (SOA). The mobile
node offers and publishes a rule based object monitor
service with two public methodsSubscribe(Rule)and
Un-subscribe(RuleID). The subscription method con-
tains the Rule and starts at the mobile node the evalu-
ation of this rule. The un-subscription method stops the
evaluation of the rule with the correspondingRuleID, see
figure 8. TheRuleID is assigned by the mobile node af-
ter verifying the rule and is returned back to the backend
system.

Application

Rule 0

Rule 1

Rule n

Rule 0Rule 0

Rule 1Rule 1

Rule nRule n

RuleParser

Data Base

Rule-EvaluatorRule-Evaluator

V
er

ify
R

ul
e(

)

Fi
re

 e
ve

nt

M
on

ito
r P

ro
xy

M
on

ito
r S

er
vi

ce

-S
ub

sc
rib

e(
)

-U
ns

ub
sc

rib
e(

)

N
ot

ifi
ca

tio
n

Se
rv

ic
e

N
ot

ifi
ca

tio
n

Pr
ox

y

P
ut

/R
em

ov
e

R
ul

e

SOAP

sensors

� Subscription(Rule)
� Notification(Event)

�

�

�

�

�

RuleID

Figure 8: Architecture of the rule based monitoring mid-
dleware part

After the subscription, see (1) in figure 8, each incom-
ing rule is parsed and verified, (2). If the rule syntax is
valid, the subscribe method returns an acknowledgment
message to the back-end containing an unique Rule ID,
else an error message. A valid rule will be saved into an
list of rules, (3). In a parallel process this list is sequently
evaluated by aRuleEvaluator, (4). Each time the rule ap-
plies, a notification service of the back-end system will
be invoked with the event as parameter, (7), by invoking
theNotification Proxy, (6).

The rules are defined in an platform independent and
XML based rule language, named RuleML (see subsec-
tion 3.3.1.). The RuleParser generates in the first step a
Document Object Model (DOM) of the XML rule, as
illustrated in figure 9. This DOM tree can be recur-
sively processed, thus, arbitrary hierarchically structured
rules can be evaluated. The RuleEvaluator accesses each
DOM rule tree, beginning with the root element. Within
the condition of the rule, two different nodes occur. Re-
lation nodes (AND, OR) with two or more child nodes
and the leave nodes without child nodes, containing the
atom conditions (x > y, ...)

3.3.1. The Rule Meta Language (RuleML)

RuleML is a XML based meta language, which defines
rules in a platform independent syntax. The RuleML hi-
erarchy of general rules branches into the two direct cat-
egories of reaction rules and transformation rules. On
the next level, transformation rules are specialized to the
subcategory of derivation rules. Then, derivation rules
have further subcategories, namely facts and queries. Fi-
nally, queries are specialized to integrity constraints [2].

Within this article we solely consider derivation rules.
They state a sort of if-then-statements building a filter
for the logic-component on the mobile device.

The root element of each rule is the<rulebase> -
element. It can contain attributes such as Namespaces.
Among others, child elements like<Query> , <Fact>
or <Imp> are possible. As mentioned before, the main
focus in this work lies on implication rules (<Imp>)
and their structure in order to come up with the de-
mands. The<Imp> element consists of a<head> and
a <body> element. Inside the<head> element the
implication is stated e.g. send an event to this URL.
The condition is nested in the<body> element, which
is processed recursively. Many conditions are possible,
where each condition is declared in an<Atom> element.
These are coupled by<And> or <Or> relations, result-
ing in a complex tree structure. See in the following
an example rule description in Rule ML and the corre-
sponding document object model tree in figure 9.

<Imp>
<head>

<Atom>
<opr><Rel>send</Rel></opr>
<Ind>Event</Ind>

</Atom>
<Atom>

<opr><Rel>URL</Rel></opr>
<Ind>137.226.4.133:8080</Ind>

</Atom>
</head>
<body>

<And>

<Atom>
<opr><Rel>lower</Rel></opr>
<Var>Lat</Var>
<Ind>5040.0000</Ind>

</Atom>
......

<Atom>
<opr><Rel>greater</Rel></opr>
<Var>Lon</Var>
<Ind>10020.0000</Ind>

</Atom>
</And>

</body>
</Imp>

Imp

headbody

Atom Atom

Atom
send

Atom
URL

And

Atom Atom

Lon >
10020.0000

Lon <
10040.0000

Lat >
5020.0000

Lat <
5040.0000

137.226.4.133:8080Event

Figure 9: RuleML Document Object Model tree

3.4. Application costs and reaction time
In this section the performance and the costs of ap-

plications using this Rule Based Monitoring middleware
instead of periodical data polling is estimated.

We are considering a mobile cellular and packed
switched network, like the General Packet Radio Service
(GPRS) or the Universal Mobile Telecommunications
System (UMTS) with data volume oriented charging.
Thus, the costs (C) are proportional to the transmitted
data volume (V). In the case that the rule evaluation
logic is running on the back-end side, the poll frequency
is fpoll, the overall processing time isτproc, and the net-
work delay isτnet, the maximum delay of the application
is

τpoll,max = 1/fpoll + τnet + τproc (1)

The runtime costs are proportional tofpoll and in-
dependent of the probability density that a rule is true
(pevent). Thus, the costsCpoll can be calculated from
the data volumeVpoll, the communication costs per data
volumerV , and the application running timeTuse to

Cpoll = Vpoll · rV · fpoll · Tuse (2)

In the case that the logic is running at the mobile side,
as in the Rule based Data Monitoring, the application
delay depends only on the network delay (τnet), the pro-
cessing time of each rule, and the number of rules run-
ning on the mobile node

τrule,max = Nrule · τproc + τnet (3)

.

The costs are now depending on the event probability
densitypevent referring to time ([pevent] = 1/s).

Crule = VNot ·rV ·pevent ·Tuse+
⌈
Tuse
Tsub

⌉
·VSub ·rV (4)

Vnot andVsub are the data volumes of one notification

resp. subscription message andnsub =
⌈
Tuse
Tsub

⌉
is the

number of subscriptions within the runtimeTuse.
Comparing the application delay of option a), b) with

option c) by disregarding the processing time and net-
work delay (τproc, τnet → 0), the application delay of
option c) is0 andτpoll = 1/fpoll. Thus, the application
delay depends only on the polling frequency.

The cost ratio of the runtime application costs in case
c) compared to a), b) is

Crule
Cpoll

=
Vnot
Vpoll

· pevent
fpoll

+
nsubVsub

VpollfpollTuse
(5)

Assuming thatVpoll ≈ Vnot, the cost ratio is

Crule
Cpoll

≈ pevent
fpoll

+
nsubVsub

VpollfpollTuse
(6)

The main and time independent portion of the cost ra-
tio is the factorpevent/fpoll. Thus, the decision which
solution should be implemented in a concrete applica-
tion is dependent on the application demands concerning
the application delay (Treact,poll ∝ 1/fpoll) and the es-
timated probability density of an event. For example, if
an application demands a reaction time of 1 minute and
the estimated event probability density is 1 per hour, the
Rule based Monitoring solution is approximately by the
factor 60 cheaper.
3.5. Context-Aware Applications

Context awareness enhances existing applications and
even enables a new class of applications in pervasive
computing. These applications provide clients with a
customized and personalized behavior to better suit the
needs of the user and their tasks [5]. Especially appli-
cations running on mobile devices have to deal with dy-
namically changing execution environments. Thus, the
ability to exploit efficiently context information is chal-
lenging in consideration of the limited resources of mo-
bile devices and mobile communication systems.

Context information is everything that could change
the behavior of an application, like the location, user
preferences, environment, or properties of connectivity
[4]. In our architecture, see figure 8 the context is mod-
elled as a data base, which will be continuously updated
by sensors or persons. The middleware provide the base
functionalities to remotely access these context data or
to subscribe to specific context changes. The applica-
tion developers are simply able to integrate these context
services in their own application in every arbitrary pro-
gramming language on every device.

The work has been motivated by logistics and vehic-
ular application, where the location is the most essential
context property, but also health-care applications are
qualified to build up on this middleware, where in ad-
dition to the user’s location also the user’s mental health

is important. For example, the patient’s mobile device
collects medical data, like heart rate or blood sugar level.
A health-care center application can subscribe to his mo-
bile with rules which are adjusted to the patient’s clinical
picture. Thus, the health-care center will be notified, if a
medical value or a combination of values are critical.

4. Conclusion

The paper has presented a mobile middleware
based on Web Services with special focus on conext-
awareness. The overall architecture and processes have
been described as well as the rule based data monitor-
ing in detail. The middleware provides basic functional-
ities to integrate and provide Web Services and to reduce
the communication frequency by applying a subscription
mechanism.

In the future, context-aware mobile applications in-
creasingly gain in importance. Then, such a middleware
is essential to simply build distributed applications in
a high heterogeneous mobile environment. It has been
proved in recent years, that a middleware based on Web
Services become accepted also for mobile devices, even
though the technologies seem to waste quite a lot of net-
work and device resources. But the plainness and flex-
ibility of the technologies enable an easy adaptation of
the middleware to the mobile environment. Application
developer with existing Web Service knowledge will be
able to migrate easily to a mobile development environ-
ment.

Acknowledgment

The work presented has been motivated by a co-
operation with Ericsson Research Germany within the
German BMBF project INVENT-VMTL1. The authors
would like to thank Prof. B. Walke and L. Pham of Com-
Nets for their help and support, as well as T. Dinsing and
M. Gerdes of Ericsson Research.

REFERENCES

[1] Web service architecture. Published on the internet.
Available athttp://www.w3c.org , 2004. 1.,
2.

[2] H. Boley, S. Tabet, and G. Wagner. Design ratio-
nale of RuleML: A markup language for semantic
web rules, 2001. 3.3.1.

[3] L. Capra, W. Emmerich, and C. Mascolo.
CARISMA: Context-Aware Reflective mIddleware
System for Mobile Applications.IEEE Transac-
tions on Software Engineering, 29(10):929–945,
October 2003. 1.

[4] Kimmo Raatikainen et al. Service adapt-
ability. Published: http://www.
wireless-world-research.org , De-
cember 2003. Whitepaper. 3.5.

[5] Olaf Droegehorn et al. Service person-
alisation. Published: http://www.

1Information available at http://www.invent-online.de

wireless-world-research.org , De-
cember 2003. Whitepaper. 3.5.

[6] Roberto Chinnici et al. Web services description
language (wsdl) version 1.2. Published on the inter-
net. Available at URLhttp://www.w3.org/
TR/wsdl12 , June 2003. 2.

[7] Guido Gehlen and Ralf Bergs. Performance of mo-
bile web service access using the wireless appli-
cation protocol (wap). InProceedings of World
Wireless Congress 2004, pages 427–432, San Fran-
cisco, USA, 05 2004. University Aachen, Commu-
nication Networks. 2., 3.1.

[8] J. Mc Govern, S. Tyagi, M. Stevens, and
S. Mathew.Java Web Service Architecture. Morgan
Kaufmann, 2003. 2.

[9] Michael Jeronimo and Jack Weast. Upnp design
by example. Intel Press, Intel Corporation, USA,
ISBN 0-9717861-1-9, April 2003. 2.

[10] Jaakko Kangasharju, Sasu Tarkoma, and Kimmo
Raatikainen. Comparing SOAP performance for
various encodings, protocols, and connections. In
Marco Conti, Silvia Giordano, Enrico Gregori, and
Stephan Olariu, editors,Personal Wireless Com-
munications, volume 2775 ofLecture Notes in
Computer Science, pages 397–406, Venice, Italy,
September 2003. Springer-Verlag. 3.1.

[11] Cecilia Mascolo, Licia Capra, and Wolfgang Em-
merich. Mobile computing middleware. pages 20–
58, 2002. 1.

[12] Nilo Mitra. Soap version 1.2 part 0: Primer. Pub-
lished on the internet. Available at URLhttp:
//www.w3.org/TR/soap12-part0/ , June
2003. 2., 3.1.

[13] Werner Mohr. Trends in mobile communications
towards systems beyond imt-2000. ITU Seminar,
Ottawa, 2002. 1.

[14] Marshall Rose. Rfc-3081: Mapping the beep core
onto tcp. Published on the internet. Available
at http://www.ietf.org/rfc/rfc3081.
txt , Mar 2001. 2.

[15] Bob Atkinson und Giovani Della-Libera und
Satoshi Hada und Maryann Hondo und Chris Kaler
und Johannes Klein und Brian LaMacchia und Paul
Leach und John Manferdelli Hiroshi Manuyama
und Anthony Nadalin und Nataraj Nagaratnam und
Hemma Prafullchandra und John Shewchuk und
Dan Simon. Web services security (ws-security).
Published:http://msdn.microsoft.com/
library/ , April 2002. 3.1.

[16] WAPForum. Binary xml content format speci-
fication. version 1.3, wap-192-wbxml-20010725-
a. Published on the internet. Available at URL
http://www.wapforum.org , July 2001. 3.1.

http://www.w3c.org
http://www.wireless-world-research.org
http://www.wireless-world-research.org
http://www.wireless-world-research.org
http://www.wireless-world-research.org
http://www.wireless-world-research.org
http://www.w3.org/TR/wsdl12
http://www.w3.org/TR/wsdl12
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/
http://www.ietf.org/rfc/rfc3081.txt
http://www.ietf.org/rfc/rfc3081.txt
http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/
http://www.wapforum.org

	1. Introduction
	2. Services Oriented Architecture
	3. Middleware Architecture
	3.1. SOAP and Bindings
	3.2. Service Publishing, Discovery and Integration
	3.3. Rule Based Data Monitoring
	3.3.1. The Rule Meta Language (RuleML)

	3.4. Application costs and reaction time
	3.5. Context-Aware Applications

	4. Conclusion

