
Service Oriented Middleware for Automotive
Applications and Car Maintenance

Guido Gehlen, Erik Weiß
RWTH Aachen University,
Communication Networks

Kopernikusstr. 16, 52074 Aachen
{guge, erw}@comnets.rwth-aachen.de

André Quadt
RWTH Aachen University,

Research Institute for Operations Management
Pontdriesch 14/16, 52062 Aachen

qu@fir.rwth-aachen.de

Abstract— The After Sales Market of the Automotive Industry
is an important market in Europe. The changes in the block
exemption regulation by the European Union in 2002 open up
new business opportunities in this market by stipulating the
automotive industry to offer the information they offer to their
dealers also to independent organizations.

Based on the new requirements of the block exemption
regulation the IST-MYCAREVENT project will develop new
applications and services, which can be seamlessly and securely
accessed by mobile clients. To cope with the challenge of a
heterogeneous and mobile environment, a communication and
application middleware has to be developed. One proposal is
based on the Service Oriented Architecture (SOA) and Web
Service technologies.

This paper introduces a middleware for vehicular applications
in common, directed to the support of the roadside assis-
tance, the workshops, and the driver in a breakdown situation.

I. INTRODUCTION

The After Sales Market of the Automotive Industry has
become a very important market. The introduction of inno-
vative mobile applications will enable new ways of working
and collaboration among car manufacturers, workshops, road
assistance services and the customer. In wake of the new
developments in block exemption regulations the different
service providers have the right to access different kinds of
repair information, training material and tools, which earlier
have only been provided to franchised dealers and garages of
the respective vehicle manufacturers.

The IST-MYCAREVENT project aims at developing an in-
novative system which utilizes the state-of-the-art technologies
to support the mobile user and worker in this area and to
establish profitable business models to foster this important
market sector. This paper discusses the gain of current and
near future technologies in the mobile communication and
application domain of MYCAREVENT.

Automotive applications in common and especially the
MYCAREVENT applications are one of the most challenging
applications for mobile communication systems and mobile
application designers. The mobility level varies from station-
arity to velocities of 100 km/h and more. Different mobile
and wired communication system could be used, like e.g. an
Ethernet connection in the workshop, GSM/GPRS, UMTS,

or WLAN on the road, or many communication systems in
parallel.

The computing device environment is very heterogeneous,
since there are various car manufactures, independent and
manufacture dependent roadside assistants and the drivers
themselves. Each of them has different devices. The car equip-
ment ranges from cars without any computing device to cars
with a diagnostic system, navigation system, and entertainment
system. The roadside assistant may be equipped with one or
more diagnostic tool, a laptop, or a Personal Digital Assistant
(PDA). The driver may have a private PDA, a smartphone, or
a mobile phone.

Taking these requirements into account, this paper intro-
duces a middleware which will provide application developers
a flexible and device/OS independent platform to develop
services and applications for automotive applications in the
car maintenance sector.

II. MYCAREVENT

MYCAREVENT will develop and implement new appli-
cations and services, which can be seamlessly and securely
accessed by mobile devices. They will provide manufacture
specific car repair information according to the problems
identified by the Off-/On-Board-Diagnostic systems. This in-
formation needs to be presented in a multi-lingual way. The
mobile worker needs to access information stored within the
manufacturers IT system. Thus, he must interact with the
service portals of the car manufacturers and independent ser-
vices while performing the repair of the car. MYCAREVENT
will foster the aims of the new block exemption and will
support the worker in coping with the increasing complexity
of cars and their repair procedures. The project will also
provide ’Telematic’ support for car drivers with self-services
in situations where a little advice or a software fix is all that
is needed.

Figure 1 illustrates the different domains of the MY-
CAREVENT project which are using mobile communication
systems and mobile applications on the left-hand side and the
stationary domains on the right side. Between these domains
a mobile communication link, the so called INtelligent COn-
nection (INCO), connects the mobile environment with the
stationary one. The INCO represents a virtual link which could



Automotive
Club Roadside

Assistant

Car
Manufacture

Roadside
Assistant

Automotive
Clubs

MYCAREVENT
Mobile

Applications

MYCAREVENT
Portal

Car
Manufactures

Driver

Fig. 1. Overview of the mobile service world of MYCAREVENT

be realized by one or more real communication links, like a
GSM/GPRS, UMTS, or WLAN link.

All use cases in MYCAREVENT will be differentiated into
three Pilot areas. Pilot Area 1 deals with the manufacture
specific car maintenance. Either a roadside assistant of the car
manufacture will be send to the breakdown scene or the driver
is still able to drive his vehicle to the franchised workshop and
will it have repaired there. Opposed to this, Pilot Area 2 deals
with the cases where an independent roadside assistant will
arrive at the broken down car or an independent workshop will
conduct the repair job. Both Pilot Areas are together illustrated
in figure 2.

OBD

RA-Device
(e.g. WinCE 

PDA)

Drivers Car Roadside Assistant
(RA)

Automotive 
Interface /On 

Board Unit (OBU)

RA Vehicle

RACINCO-AP DB

Diagnosis 
and Repair 
Data Base

INCO-
Access 
Point

IN
C

(G
PR

S,
 U

M
TS

)

’
Internet

’’
Internet MYCAREVENT

Backend/Portal

BT BT

Fig. 2. Pilot Area 1 and 2

The roadside assistant (RA) is equipped with a mobile
device and might be able to read the diagnostic data from the
damaged car. Otherwise, he will type the symptoms (visible
damages, but also smells, noises etc.) of the car into his
interactive application. All data is transmitted over the INCO
to the MYCAREVENT portal, which analysis the data and
triggers further events, like the submission of an electronic
and interactive repair instruction or circuit diagram.

If either the damaged car or the driver himself have a long
range communication device, error messages or a symptom
description can be transmitted from the driver resp. the driver’s
car to the MYCAREVENT portal. This first information about
the situation of breakdown can be used to trigger the right

event for the roadside assistant or may be used to instruct the
driver on how to repair the car on his own. This is valid for
trivial repairs and covered in MYCAREVENT by Pilot Area
3. If the detected fault could not be recovered by the driver,
a roadside assistant can be sent to the scene and equipped in
respect of the special demands of the damaged car.

As mentioned above, the Focus Area 3 deals with a driver
self-help scenario, see figure 3. If the driver or the car detects
a fault of the car, he advices to transmit a fault report to
the MYCAREVENT portal. Alternatively, if the car is not
equipped with communication and diagnosis capabilities, the
driver can send a symptom description to the portal. For Pilot
Area 3, the system decides, after the fault/symptom analysis,
to start the drivers selfhelp and prepares a repair instruction
for the driver.

OBD

Driver-Device
(e.g. 

Smartphone)

Drivers Car Driver

Automotive 
Interface /On 
Board Unit 

(OBU)

INCO-AP

’
Internet

’’
Internet MYCAREVENT

Backend/Portal

BT

InCar-
device

Telematic/Infotainment 
device

(Integrated car 
computer)

IN
C

(G
PR

S,
 U

M
TS

)

Fig. 3. Focus Area 3 ...

III. AUTOMOTIVE MIDDLEWARE ARCHITECTURE

To cope with the challenge of this mobile and heterogeneous
environment, a middleware is proposed which lean against
the Service Oriented Architecture (SOA), see section IV. The
main elements in this architecture are the services, which are
atomic software components with a well defined and network
addressable interface.

The development process of the mobile applications is
geared to the Model Driven Architecture (MDA), see section
V. The MDA iteratively maps an application model to a
specific platform until the lowest level platform (here the
operating system) is reached. In our middleware proposal
the first iteration maps the application model to the SOA in
general, then to Web Services, and in the last step to a Java,
.Net Compact Framework (CF), or Symbian OS for mobile
devices, as illustrated in figure 6.

The SOA could be realized by different technologies, like
CORBA, DCOM, or XML Web Services. The middleware is
supposed to use XML Web Services, since there is a big
support by the IT industry, e.g. Microsoft, IBM, and Sun
by integrating XML Web Service functionalities into their



development and runtime environments. Another advantage of
XML Web Services is the link to the application ontology
by using standardized XML data formats and linking the
exchanged XML messages to the standardization in terms of
referencing the corresponding XML schema.

In general, the proposed middleware is divided into two
layers, a communication layer and a service/application layer,
see figure 4. The communication layer provides a secure and
reliable link using different mobile communication systems.
The service layer on top mainly manages the provision, pub-
lication, and discovery of services. The Device Management,
Digital Rights Management, Context Management, Authenti-
cation/Authorization, and Location Management are additional
features.

Service 
Middleware

Communication
Middleware

Service Publishing
Service Discovery
Device Management
Digital Rights Management
Context Management
Authentication/Authorization
Location Management

Media Selection
Link Management
Link Level Security
Transport Reliability
Caching
Network Authentication

Fig. 4. The proposed MYCARVENT middleware segmentation

The separation of the middleware into two layers has
different advantages. The development of the middleware will
be simplified, since the communication experts and service
experts can develop independently. The middleware will be
scalable, since one layer could be replaced without changing
the other layer, e.g. a full featured communication layer can be
replaced by a cheaper lightweight communication layer. This
could be an important criteria for a later product development.

To realize this scalable two layer approach, the interface
between the communication and the service layer has to be
defined clearly. We propose a well standardized and widely
used IP based interface. This enables et al. the distribution of
both middleware parts on different devices if necessary.

The interface of the service middleware to the application
should also be well defined to enable application developers
to implement applications without a deeper knowledge of the
middleware. We propose a Web Service interface, since all
technologies are open and platform independent and several
development environments are supporting Web Services.

Some examples are given, to clarify the approach:

A) The communication and service middleware is deployed
on the device of the roadside assistant, e.g. a laptop or
a PDA. This solution is cost efficient, but may lacks in

performance and useability, since only standard consumer
hardware is used.

B) The communication middleware is separated on an em-
bedded device inside the car and the service middleware
on a different device (laptop or PDA). Thus, the commu-
nication device can be adapted to the car environment,
e.g. by integrating advanced antennas within the car.

IV. SERVICES ORIENTED ARCHITECTURE

Object oriented software architecture is hierarchically struc-
tured to build complex and reusable software. On the lowest
level, functionalities are encapsulated in an object. A set of
interacting software objects is collected into a component. The
Service Oriented Architecture (SOA) [1] consequently extends
this hierarchical structure to distributed systems. The interac-
tion of services does not take places in one application on one
device, but services reside on different heterogeneous systems
and collaborate over communication systems. Services have
the following characteristics [2]:

• Services are self contained and modular
• Services are discoverable and dynamically bound
• Services stress interoperability
• Services are loosely coupled, reduction of artificial de-

pendencies to a minimum
• Services have a network-addressable interface
• Services have coarse-grained interfaces in comparison

to finer-grained interfaces of software components and
objects

• Services are composable

These characteristics should make the distributed system
as simple as possible, but no simpler. In other words, the
SOA is an architectural style to achieve loose coupling among
interacting software agents and to minimize their artificial
dependencies.

The SOA defines three roles, a Service-Requestor (R),
Service-Provider (P), and a Service-Broker (B). A software
agent interacting with other software agents plays one or more
roles. They communicate in the way as depicted in figure 5.

Service-
Requestor

(R)

Service-
Provider

(P)

Service-
Broker

(B)

Access
Service

Search &
Integrate
Service

Publish &
Cancel
Service

Service
Register

Replication

Service-
Requestor

(R)

Service-
Provider

(P)

Service-
Broker

(B)

Access
Service

Search &
Integrate
Service

Publish &
Cancel
Service

Service
Register

Replication

Fig. 5. The Service Oriented Architecture (SOA) roles and relations



Providers publish their services to a service registry
(service-broker). More than one service-broker within the
environment have to replicate their service registries (dashed
arrow). Requesters use the Broker to search for services and
integrate them by accessing the service description (dashed-
dotted arrow). This description includes all information needed
to access the service and is used to generate a service-proxy
object. The service-proxy represents the remote service, i.e.
all published remote service methods are methods of the local
proxy object. This architecture bridges the native messaging
inside the client environment to the platform independent
messaging in the SOA environment. The process of proxy
object generation maps the platform independent description
into a real software object for the client’s system environment.

To achieve high interoperability, all SOA entities have to
use a common language for service description, messaging
and service registration. The Extensible Markup Language
(XML) is such an appropriate common language. On the
basis of XML the World Wide Web Consortium (W3C)
has specified a middleware framework, called Web Services,
following the SOA. For messaging the Simple Object Access
Protocol (SOAP) [3], [4] is used. It is based on standard
internet protocols like HTTP or other arbitrary protocols like
the Wireless Application Protocol (WAP) [5] or the Block Ex-
tensible Exchange Protocol (BEEP) [6]. The SOAP envelope is
structured in XML. Interfaces are described in a XML subset,
the so called Web Service Description Language (WSDL) [7].
This description includes all the information needed in order
to invoke service methods from other nodes.

V. MODEL DRIVEN ARCHITECTURE

As we have mentioned, mobile distributed applications and
the underlying middleware have to be platform independent
and cross-platform interoparable. This takes the heterogeneity
of mobile devices and their operating system and programming
languages into consideration. The MDA [8], specified by the
Object Management Group (OMG), is intended to support
platform independency, interoperability and productivity.

In the past the abstraction level of software development
has been raised by moving from assembly languages to third
generation and object oriented languages like C++, C#, and
Java. The MDA is a software development architecture, which
raises the level of abstraction by using modelling languages
as programming languages. Besides, the abstraction level of
models can iteratively be reduced, starting with a high abstract
model and ending with an implementation model.

Within the MDA different developers, like application de-
velopers, platform experts, and domain experts, build platform-
independent models that are processed by model compilers
(generators). A platform-independent system model can be
mapped to different platforms and systems, or different parts
of the system could be mapped to varying platforms. At every
mapping to a platform, the level of abstraction is reduced.

The MDA differentiates between three viewpoints on a
system, a computation independent viewpoint, a platform
independent viewpoint and a platform specific viewpoint.

Consequently, the system has three different models, the Com-
putation Independent Model (CIM), the Platform Independent
Model (PIM), and the Platform Specific Model (PSM), which
represent a view of the system from the corresponded view-
point.

A system can be modelled by more than one PIM and PSM.
Each of these models is related to a specific platform. The
platform is a set of subsystems and technologies that provide
a coherent set of functionality.

The MDA is illustrated by designing a mobile distributed
application with SOA, Web Services and Java2 Micro Edition
(J2ME). The mobile distributed application can be modelled in
four steps, as depicted in figure 6. The first PIM of the mobile
distributed application is deducted from a CIM including the
Business Model and the Domain Model. This high level PIM
specifies the overall architecture, the communication mecha-
nisms and the algorithms independent of a special platform.

This high level PIM is mapped using the SOA into a PSM
based on the SOA. At the same time, this PSM is the PIM for
the next step. This step will map the PIM of the mobile SOA
application to the PSM of a Web Service Platform.

In the last step, this model is mapped to the final PSM
on a J2ME platform. It is the lowest level model since this
model can be mapped into executable code and deployed on
the devices.

Each model can be used to start a new branch to an alter-
native platform, e.g. the PIM of the mobile SOA application
can be also mapped to a Common Object Request Broker
Architecture (CORBA) platform, or the PIM of the mobile
Web Service application can be mapped into a .Net platform
for MS Smartphones. The PIM will remain unaffected, only
a new mapping in terms of a model compiler have to be
developed by platform experts.

In the proposed MYCAREVENT middleware the MDA can
be used to align the development of applications and services
for many heterogenous devices on top of the two layered
middleware approach. A PIM will be mapped in a first step
to the MYCAREVENT middleware and in a last step to a
specific device OS.

VI. CONCLUSION

This paper describes the IST-MYCAREVENT objectives in
respect to the mobile communications and applications and
a proposal of a middleware. The middleware copes with the
requirements of the heterogeneous and mobile automotive en-
vironment. For the design of the middleware and applications
the SOA and MDA is proposed.

ACKNOWLEDGMENT

The work presented has been motivated by IST-
MYCAREVENT1 project. The authors would like to thank
Prof. B. Walke and C. -H. Rokitansky of ComNets for their
help and support, as well as all partners of the project.

1Information available at http://www.mycarevent.com



PIM
of mobile

distributed application

PSM
of mobile

SOA application

PIM
of mobile Web Service

application J2MEJ2ME

PSM
of mobile Web Service

J2ME application

PIM
of mobile

distributed application

PSM
of mobile

distributed application

PIM
of mobile SOA

application

PSM
of mobile

distributed application

PIM
of mobile SOA

application

PSM
of mobile

distributed application

PIM
of mobile SOA

application

PSM
of mobile

distributed application

PIM
of mobile SOA

application

PSM
of mobile

SOA application

PIM
of mobile Web Service

application

PSM
of mobile Web Service

J2ME application

Web ServicesWeb Services

SOASOA

PSM
of mobile

SOA application

PIM
application Symbian C++

PSM
of mobile CORBA

Symbian application

PSM
of mobile

SOA application

PIM
of mobile CORBA

CORBA

.Net.Net CF

PSM
of mobile Web Service

.Net CF application

Fig. 6. MDA approach of the middleware design

REFERENCES

[1] “Web service architecture,” Published on the internet. Available at http:
//www.w3c.org, 2004.

[2] J. M. Govern, S. Tyagi, M. Stevens, and S. Mathew, Java Web Service
Architecture. Morgan Kaufmann, 2003.

[3] N. Mitra, “Soap version 1.2 part 0: Primer,” Published on the internet.
Available at URL http://www.w3.org/TR/soap12-part0/, June 2003.

[4] T. Clements, “Overview of soap,” Published on the internet. Avail-
able at URL http://developer.java.sun.com/developer/technicalArticles/
xml/webservices/, Jan. 2002.

[5] G. Gehlen and R. Bergs, “Performance of mobile web service access
using the wireless application protocol (wap),” in Proceedings of World
Wireless Congress 2004. San Francisco, USA: University Aachen,
Communication Networks, 05 2004, pp. 427–432.

[6] M. Rose, “Rfc-3081: Mapping the beep core onto tcp,” Published on the
internet. Available at http://www.ietf.org/rfc/rfc3081.txt, Mar 2001.

[7] R. C. et al., “Web services description language (wsdl) version 1.2,” Pub-
lished on the internet. Available at URL http://www.w3.org/TR/wsdl12,
June 2003.

[8] J. Mukerji and J. Watson, “Overview and guide to omg’s architecture,”
Published: www.omg.org/mda, 2003.

http://www.w3c.org
http://www.w3c.org
http://www.w3.org/TR/soap12-part0/
http://developer.java.sun.com/developer/technicalArticles/xml/webservices/
http://developer.java.sun.com/developer/technicalArticles/xml/webservices/
http://www.ietf.org/rfc/rfc3081.txt
http://www.w3.org/TR/wsdl12
www.omg.org/mda

	I Introduction
	II MYCAREVENT
	III Automotive Middleware Architecture
	IV Services Oriented Architecture
	V Model Driven Architecture
	VI Conclusion
	References



