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Abstract
With the introduction of different multimedia ser-
vices for the Universal Mobile Telecommunication Sys-
tem (UMTS), performance of the TCP/IP protocol be-
comes a crucial issue. Using IPv4 for this purpose
appears to be a good approach due to its fairly well-
known behaviour. On the other hand, specific de-
mands of the upcoming applications are not suffi-
ciently covered with this protocol. Typical problems
arise from multicast transmissions or when QoS sup-
port is required.

With the introduction of the new IPv6, many of
these drawbacks have been solved, while performance
of IPv6 in conjunction with the 3GPP protocols is
mostly unknown. Based on the accurate implemen-
tation of IPv4 and IPv6 in our UMTS protocol sim-
ulator, comparative studies between those protocols
were carried out. While performance is obviously af-
fected by the channel quality, several simulations have
been made in this context. Furthermore, the effect of
using selected compression algorithms in the Packet
Data Convergence Protocol (PDCP) has been investi-
gated.

I. Introduction

The delivery of multimedia services to the mobile user
is one of the goals of 3rd generation mobile communica-
tion systems. UMTS [1, 2] will provide data services with
data rates of up to 144 kbps in rural areas, 384 kbps in hot-
spots and up to 2 Mbps in indoor scenarios. Disregarding
the actual bandwidth, the mentioned applications are typ-
ically based on the TCP/IP protocol stack [3]. In contrast
to the Internet, theUMTS Terrestrial Radio Access Net-
work (UTRAN), in conjunction with the 3GPP protocol
stack, imposes specific parameterizations for the TCP/IP
[4]. Furthermore, new applications like video broadcast-
ing, are demanding for new features, such as multicast
support. This criterion together with some other issues,
like enhanced QoS support, imply the use of IP version 6
(IPv6) [5–8] rather than IP version 4 (IPv4).

Considering the different protocol versions, this pa-
per first of all presents the enhancements of IPv6 versus
IPv4. Following this summary, in particular delay and
throughput characteristics are presented. For this purpose
the UMTS Radio Interface Simulator (URIS), a flexible
UMTS protocol simulator, has been used. Besides an ac-
curate implementation of the TCP/IP protocols for both
versions , it also offers an almost complete 3GPP proto-
col stack for UMTS. The interaction of IETF and 3GPP
protocols enables for comprehensive investigations of the
overall system behaviour. Furthermore, the interaction
between the IP layer and theRadio Link Control (RLC)
layer has been considered in more detail. The required
adaptation is provided by the PDCP [9], which also im-
plements different methods for IP header compression.
Since IPv6 initially generates more overhead due to larger
headers, appropriate compression is mandatory.

II. Simulator Design
Investigation of IPv6 versus IPv4 protocol behaviour

requires a deeper understanding of the interactions inside
the protocol stack. Hence, all following simulations were
carried out with the URIS as a powerful protocol simula-
tor. Its core consists of an almost bit-accurate model for
the 3GPP layers one to three, as well as the IETF layers
three and four. The implemented protocol stack structure
can be found in fig. 1, indicating also the separation of
different planes in UMTS. TheRadio Resource Control
(RRC) is located in the control plane with the ability to
manage and configure the entire protocol stack. On the
other hand, TCP/IP can be found in the user plane to pro-
vide the appropriate interface for packet switched con-
nections. Adaptation towards the 3GPP protocol stack is
realized by the PDCP, which is part of the UMTS speci-
fication. Furthermore, circuit switched services, like typ-
ically voice calls, are also connected to the user plane,
bypassing the upper layers.

Apart from theBroadcast Multicast Control (BMC)
and RRC algorithms, all of the indicated protocols are
implemented in theSystem Description Language (SDL).
This is done individually for every mobile and base sta-
tion. In addition, the URIS provides various types of
Load Generators (LGs) on top of the SDL implementa-
tion. LGs are able to produce artificial load of various ser-
vices in a detailed manner. Besides different voice codecs
and video streaming services, in particular the genera-
tion of FTP and HTTP traffic has been used for the in-
vestigations. FTP load generation produces downlink-
only traffic, since the amount ofuplink (UL) data can
usually be neglected. HTTP requires true bidirectional
traffic modeling, including a much more detailed model
to describe web-page loading, rather than individual file
transfers. Below the SDL environment, embedding the
protocol stacks, a simple channel model has been imple-
mented.

BMC

PDCP

RLC

MAC

PHY
Layer 1 

Control−Plane signalling CS domain

Layer 2

RRC

C
on

tr
ol

User−Plane information

TCP/IP

Layer 3

(Physical Layer)

(Data Link Layer)

(Network Layer)

PS domain

Signalling radio bearers
U−Plane radio bearers

Transport channels

Logical channels

Figure 1: URIS Structure Overview



III. IP Headers and Compression Modes
Considering the focussed simulations, at least a basic

understanding of the differences between IPv4 and IPv6
is necessary. The required implementations not only af-
fect the network layer, but also PDCP in layer two and
certain adaptations for the transport protocol in layer four.
Nevertheless, the most important changes can be found in
the IP layer, or to be more precise, in the format of the ap-
propriate IP headers. For convenience, an overview of the
IPv4 header is shown in fig. 2, whereas the IPv6 header
is depicted in fig. 3. According to their relevance towards
header compression, the different fields are marked with
different shapes in both cases. In general it can be stated,
that the basic IPv6 header is larger compared to the IPv4
header. On the contrary, less different fields and a con-
stant length can be identified for the IPv6 header as com-
pared to IPv4.

For routing issues the latter aspect is a clear advan-
tage of the new header format, since evaluation of fewer
headers makes routing decisions faster and simpler. Be-
yond that, the absence of IP checksums in fig. 3 further
increases processing speed, since physical and data link
commonly provide CRCs. Further enhancements of the
protocol version six include the addressing capabilities
[10], a better support for options and a flow labeling field.

The address-range has been extended by four times
from 32 bits to 128 bits for sender and receiver together
with a new, hierarchical structure. Options are not any-
more a variable length part of the basic header, but en-
capsulated in so-called extension headers in IPv6. This
yet simplifies routing, since only additional routing ex-
tension headers need to be further evaluated by interme-
diate hops. Furthermore, routing can be even simplified
by using the flow label field. By calculating a specific
value for this field, packets of the same connection can
be quickly identified without parsing all the other entries.
Contrary to many obvious advantages, the relatively large
initial header from IPv6 is a clear disadvantage. This is
in particular bad on mobile links with fairly limited band-
width, especially if small packets are used, for instance
with voice over IP.

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

0 3 4 7 8 1615 3118 19

Time to Live Protocol

Fragment Offset

Source Address

Destination Addres

IHL Type of Service

Flags

*

*

*

*Version

Options and Padding

Header Checksum

Total Length

Identification

Figure 2: Compression of IPv4 Headers

A solution to this problem is the application of com-
pression within the PDCP sublayer. According to the
specification in [11],Internet Protocol Header Compres-
sion (IPHC) is one of the commonly used algorithms.
Apart from IPHC, alsoRObust Header Compression
(ROHC) [12] or evenTCP Aware Robust Header Com-
pression (TAROC) [13] might be used in future systems.
Since specification in particular for TAROC is not yet
complete, the presented results are all based on the IPHC
only. Robust header compression basically compresses
IP headers, but also TCP and UDP headers. On the other
hand, TAROC and ROHC show better performance in
particular on disturbed connections. Nevertheless, one
of the main issues have been investigations with IPHC on
perturbed channels, with respect to different header for-
mats.

Considering the headers in more detail, different field
types with respect to the applicable compression can be
identified. Starting with the IPv4 header, most of the
fields (slightly shaded) contain static information, which
stays the same during one entire connection. These, so-
called defining-fields, can be simply suppressed after the

initial transmittion of a full header. In case of corrupt
packets also an intermediate full header has to be sent to
recover the according receiver context. Apart from this
rather static fields, both header types contain at least one
field with context related information (medium shaded).
Typical examples are the total length of the packet or in
fig. 2 also the header checksum. Since theHeader Check-
sum is not required anymore andTotal Length can be
calculated within RLC, both fields are not transmitted at
all. On the contrary the third non-static field-type in the
header is only present in the old IPv4. The heavily shaded
Identification field changes from packet to packet in a
sequential and predictable manner. Here the IPHC can
easily use delta-compression, meaning that under normal
conditions only the relative difference has to be transmit-
ted.

Summarizing the explanations, it can be found that the
IPv4 header with initially 160 bits can be scaled down as
following. For the defining fields, 112 bits can be sup-
pressed after successful context creation. 32 bits from
the context dependent fields plus eventually options have
to be transfered with every packet. Finally a few bits
are necessary to transport the information from delta-
encoding, ending up in approx. one quarter of the initial
header length for most of the transfered packets. In com-
parison to IPv4, the new protocol depicted in fig. 3 makes
compression even simpler. TheIdentification field is
not present anymore, while nearly all other headers con-
tain defining, e. g. semi-static, entries. Furthermore, the
Payload Length is not necessary anymore, since packet
length is known from RLC. In summary this results in
a theoretical reduction from initially 312 bits down to
16 bits, which equals a reduction of almost 95%.
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Figure 3: Compression of IPv6 Headers

IV. BLER Simulation Results
The BLER scenario investigates the effect of an erro-

neous channel on the performance of the Internet Proto-
cols by using different header compression algorithms. A
64 kbit/s channel with a drop probability (BLER) of 10%
and the maximum segment size of 512 bytes for TCP seg-
ments is considered. In contrast to the FTP simulations
depicted in fig. 5, HTTP traffic has been considered in the
BLER scenario according to fig. 4. Load generator pa-
rameterization for both scenarios can be found in tab. 1,
whereby either FTP traffic or HTTP traffic is used.

Taking a closer look at the diagrams, fig. 4(a) to
fig. 4(d) present the outcomes for the HTTPdownlink
(DL), being predominantly used. Complementary, the
graphs from fig. 4(e) to fig. 4(h) show the uplink be-
haviour. Since the UL has to carry a lot less traffic, mostly
in terms of URL requests, it shows a significantly dif-
ferent behaviour. Furthermore, diagrams can be column-
wise distinguished by either presenting throughput results
on the left hand and delay on the right hand. Starting with
the most obvious differences for the uplink throughput,
fig. 4(a) and fig. 4(c) are now considered in more detail.
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Figure 4: HTTP BLER Simulation Results



HTTP Parameter Distribution Mean Variance

Session Arrival Rate [h−1] negative exponential 30 —
Pages per Session geometric 5 —
Reading Time between Pages [s] negative exponential 20 —
Objects per Page geometric 2.5 —
Inter Arrival Time between Objects [s] negative exponential 0.5 —
Page Request Size [byte] normal 1136 80
Object Size [byte] log2-Erlang-k log2 2521 ≈ 11.3 (log2 5)2 = 5.4

FTP Parameter Distribution Mean Variance

Session Arrival Rate [h−1] negative exponential 30 —
Session Size [bytes] log2-normal log2 32768≈ 15 (log2 16)2 ≈ 16
Object Size [bytes] log2-normal log2 3000≈ 11.55 (log2 16)2 ≈ 16
Time between Objects [s] log10-normal log10 4 ≈ 0.6 log10 2.55≈ 0.4

Table 1: Model Parameters of HTTP Browsing Sessions and FTP Sessions
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Figure 5: FTP DL Compression Results

Since HTTP requests typically produce fairly small
packets a vast influence can be noticed from the effective-
ness of header compression. For IPv4 basically four dif-
ferent cases can be distinguished. The best performance
can be obviously found for the error-free channel using
optimal IPHC, including delta compression.

On the contrary the bad channel with a 10% BLER and
no compression at all performs worst. Still a fairly good
performance can be found for the error-free channel with-
out any compression compared to the perturbed channel
with either full or no-delta compression. This difference
clearly indicates the problems IPHC has on erroneous
channels, where frequent context recoveries largely de-
crease performance. Similar results can be found for us-
ing IPv6 as shown in fig. 4(c). The most obvious differ-
ence can be found in the performance for error-free chan-
nels without using compression at all. Since IPv6 packets
are larger, the amount of connections with a throughput
less than approx. 30 kbps increases.

Delay shows almost exactly complementary behaviour
compared to the throughput and is depicted in fig. 4(b)
and fig. 4(d). In general, differences are not that signif-
icant as for the throughput, whereas again larger head-
ers on ideal channels without compression are still more
critical. Comparing the uplink results to those from the
downlink in fig. 4(e) to fig. 4(h), the differences are not
that obvious anymore. This confirms the asymmetric
HTTP traffic behaviour, as produced by the load gener-
ators. While a typical URL usually contains only a small
amount of bytes, WWW page objects, like images or an-
imations, produce larger IP frames. Thus, the downlink
still benefits from header compression in both cases and
faces the same problems on bad channels. Nevertheless,
the extra amount of data produced by the header is by far
not that critical for performance.

V. PDCP Compression Results
The simulation results for the error-rate scenario have

also shown that the IPHC does not perform well on chan-
nels with high BLERs. The reasons for this behaviour
are full headers that have to be send each time a packet
gets lost to recover the context. On the other hand, the
no-delta compression has performed relatively robust on
such channels. In the following scenario these header
compression methods are combined. Packets are by de-
fault compressed here including delta values. In case of
packet losses packets just without delta values, instead of
full headers, are sent. Following figures show exemplary
results for FTP throughput on a DL channel with 10%
BLER. The performance reached by the combination of
two compression methods in fig. 5(b) is higher than that
obtained by each one separately in fig. 5(a)).

VI. Conclusion
Simulation results have shown that header compres-

sion increases the throughput significantly in most cases.
As expected, compression for IPv6 headers is in general
more profitable compared to IPv4 headers, due to the
higher overhead. Furthermore, TCP compression with
differential encoding, which provides the best compres-
sion rate, does not perform well on channels with high
error-rates. In contrast to that, TCP compression without
differential encoding shows a robust behaviour on such
channels, even if its compression rate is worse than that
the delta compression provides.

Since no-delta compression does not invalidate the
context, the packets which come after a lost packet can
still be decompressed correctly. The delta compression,
on the other hand, causes to send a full header each time a
packet-loss occurs. While the delta compression is most



effective and the no-delta compression is robust against
packet losses, these algorithms can be combined to reach
a better overall performance. This can be achieved by
switching the compression algorithms with respect to the
current context and channel state.
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