
Realization and Performance Analysis of a SOAP Server for Mobile Devices
Linh Pham, Guido Gehlen

RWTH Aachen University, Chair of Communication Networks
Kopernikusstr. 16, Aachen 52074

e-mail: {lph,guge}@comnets.rwth-aachen.de

Abstract: A middleware platform for mobile devices to
efficiently build distributed applications in a heterogenous
mobile environment is essential. Especially for mobile Peer-
to-Peer (P2P) applications and applications which have to
call back a mobile device, server functionalities for mobile
devices are required.

In this paper the server building block of our mobile
Web Service based middleware is introduced. This server
is integrated in the wireless Simple Object Access Proto-
col (SOAP) in terms of a HTTP server binding to SOAP.
Thus, the mobile application can define services which will
be published and used by other devices.

This paper presents a lightweight SOAP server architec-
ture for Java2 Micro Edition (J2ME) devices as well as the
implementation in Java. Finally, the results of a perfor-
mance analysis are given in consideration of criteria like
latency and memory usage.

1. Introduction

Wireless computing devices increasingly appear in
our environment. So far, the interaction among mobile
devices as well as the interaction between mobile de-
vices and a fixed infrastructure is complicated to realize.
To simplify the application development on top of dis-
tributed systems, a common layer (middleware) has to
be introduced.

We have developed a mobile middleware [4] based on
Web Service technologies. Using this middleware, mo-
bile devices will be a part of the Web Services located
in the Internet. This middleware enables not only the ac-
cess of Internet Web Services, but also the provision of
services. These services can be used either from Inter-
net applications (mobile call back services) or from any
other devices, fixed or mobile (P2P services) [5].

The work as been motivated from research projects
dealing with mobile applications, especially in the logis-
tics and vehicular sector, like INVENT-VMTL project1

and IST-MYCAREVENT2. Moreover, the development
of consumer applications will benefit from such a mid-
dleware.

Before the server building block will be described,
a short introduction to the Service Oriented Architec-
ture (SOA) and the Web Service technologies is given. A
short overview of the mobile middleware and the place-
ment of the server parts is presented. After the detailed
description of the wireless SOAP server, results of a per-
formance analysis are presented.

1Traffic management in transport and logistics (VMTL) is one
project in the research initiative INVENT founded by the German gov-
ernment

2MYCAREVENT is a European research project dealing car break-
downs and roadside assistant services

2. Services Oriented Architecture and
Web Services

The role of the SOA is going to be more and more
popular in the software design for distributed systems.
This middleware framework tries to simplify as much as
possible the software architecture of distributed applica-
tions. The SOA is an architectural style to achieve loose
coupling among interacting software agents realizing a
service. Web Services are one realization of the SOA us-
ing open and platform independent Extensible Markup
Language (XML) based protocols and data descriptions.
Therefore, the Web Service middleware framework is
also applicable for mobile environments.

The SOA defines three roles, a Service-Requestor (R),
Service-Provider (P), and a Service-Broker. A software
agent interacting with other software agents plays one or
more roles. They communicate in the way as depicted in
figure 1.

Service-

Requestor

(R)

Service-

Provider

(P)

Service-

Broker

(B)

Request

Response

Search

Service

Integrate

Service
Publish/Cancel

Service

Service Register

Replication

Figure 1: The Service Oriented Architecture

Providers publish their services to a service registry
(service-broker). More than one service-broker within
the environment have to replicate their service registries.
Requestors use the Broker to search for services and in-
tegrate them by accessing the service description. This
description include all information needed to access the
service and is used to generate a proxy object. The proxy
object represents the remote service and bridges the na-
tive messaging inside the client environment to the plat-
form independent messaging in the SOA environment.
The process of proxy object generation maps the plat-
form independent description into a real software object
for the client’s system environment.

To achieve high interoperability, all SOA entities have
to use a common language for service description, mes-
saging and service registration. The XML is such an
appropriate common language. On the basis of XML

the W3C specifies a middleware framework, called Web
Services, following the SOA. For messaging the SOAP
[6, 1] is used. It is based on standard internet protocols
like HTTP or other arbitrary transport protocol like WAP
[3] or Block Extensible Exchange Protocol (BEEP). The
SOAP envelope is structured in XML. Interfaces are de-
scribed in an XML subset, the so called Web Service
Description Language (WSDL) [2]. This description in-
cludes all the information needed in order to invoke the
service methods from other nodes.

S
e
rv
ic
e

S
e
rv
ic
e
P
ro
x
y

WSDL

SOAP calls

Integration:

Automated

proxy generation

(e.g. WSDL2Java)

Publication:

Automated

WSDL generation

(e.g. C++2WSDL)

Native method

Invocations

(e.g. in Java)

Native method

Invocations

(e.g. in C++)S
e
rv
ic
e

S
e
rv
ic
e
P
ro
x
y

WSDLWSDL

SOAP calls

Integration:

Automated

proxy generation

(e.g. WSDL2Java)

Publication:

Automated

WSDL generation

(e.g. C++2WSDL)

Native method

Invocations

(e.g. in Java)

Native method

Invocations

(e.g. in C++)

Figure 2: Publication and Integration of Web Services
using the WSDL description

The WSDL description can be automatically gener-
ated from the service class at the provider node. An-
other device can use this service by generating a service-
proxy object, see figure 2. After the publishing and inte-
gration phase, the application can call local methods of
the service-proxy which will be transformed in remote
SOAP calls. Thus, the service and service-proxy objects
bridge the platform dependent method calls into a com-
mon platform independent language (XML).

3. HTTP-SOAP Binding
As mentioned in the previous section, SOAP can be

coupled to an arbitrary session or transport protocol,
but most of all Hypertext Transport Protocol (HTTP) is
used. Our implementation for mobile devices is based
on the open source packages kSOAP and kXML. At de-
fault, kSOAP only supports a client HTTP-Binding, but
to publish services from the device to other devices, a
server HTTP-Binding is necessary.

In figure 3 the relevant protocol stacks on one mobile
device are depicted. We are considering an all Internet
Protocol (IP) infrastructure. Thus, the lowest layer is IP.
Inside the mobile middleware is the SOAP layer which
couples to an arbitrary underlying protocol like session
protocol or transport protocol. In this paper we look at
the HTTP Binding. HTTP defines fixed client and server
roles. Within one HTTP session, one device takes the
client role while another device takes the server role. In
our middleware, kSOAP has been extended so that each
device can take both roles. There is an HTTP server lis-
tening on the HTTP server socket for incoming requests.
The requests containing SOAP content are forwarded to
HTTP-server Binding. Requests without SOAP content
may access static resource, like HTML pages and files.

Services will be coupled to the HTTP-Server Bind-
ing to SOAP. The incoming SOAP requests are matched

SOAP
HTTP-

Binding

Session Layer

Transport Layer

Network Layer

WSP-

Binding

HTTP

TCP

IP

WSP

UDP

S
e
rv
ic
e
-

P
ro
x
y

S
e
rv
ic
e

Client

socket

Server

socket

S
O
A
P
-P
a
rs
e
r HTTP server

SOAP-Binding

HTTP server
HTTP client

SOAP-Binding

Static

content

SOAP
HTTP-

Binding

Session Layer

Transport Layer

Network Layer

WSP-

Binding

HTTP

TCP

IP

WSP

UDP

S
e
rv
ic
e
-

P
ro
x
y

S
e
rv
ic
e

Client

socket

Server

socket

S
O
A
P
-P
a
rs
e
r HTTP server

SOAP-Binding

HTTP server
HTTP client

SOAP-Binding

Static

content

Figure 3: The HTTP Binding

within this Binding to method invocations of the corre-
sponding services. The realization will be introduced in
the following sections.

The Service-Proxy is coupled to the client HTTP
Binding for SOAP. All local method calls to this proxy
will be mapped into remote SOAP calls.

4. SOAP-Server Implementation
This section introduces a design and implementation

of a light-weight SOAP server which is used to deploy
Web Services on mobile devices with the J2ME plat-
form. In addition, the performance characteristics of
the light-weight SOAP server are described. The SOAP
server currently makes services available via a HTTP in-
terface, but also further transport bindings are imagin-
able.

Figure 4 shows the core structure of the light-weight
SOAP server.

Service Methods

Response

Handler

Deployment

Interface

Request

Handler

HTTP

Interface

kSOAP

kXML

0

1

2

3

4

5

Client Request

HTTP POST/GET

Client Response

Figure 4: SOAP Server Core Structure

When a client connects to the SOAP server for send-
ing a HTTP POST/GET request, the server socket ac-
cepts the client connection and returns a socket contain-
ing an input data stream. From this input data stream, a
HTTP request message is extracted and given to the Re-
quest Handler (point 1 in figure 4) for further processing.

The Request Handler makes use of kSOAP and
kXML to process the request message. After de-

serializing XML data structures to general Java objects,
the Request Handler will pass these objects and neces-
sary information (i.e: required parameters to invoke ser-
vice methods like requested service method name, infor-
mation about type and name of the general Java objects)
to the Deployment Interface (point 2 in figure 4). Then,
the Request Handler will call the Response Handler to
handle a response to the client (point 3 in figure 4).

The Response Handler gets a result from the Deploy-
ment Interface (point 4 in figure 4) and sends the result
to the client through an output data stream correspond-
ing to the client connection socket. Depending on the
type of result (a responded SOAP message or a static re-
source such as a file), the Response Handler will invoke
a relevant method.

In order to serve the client requests, service methods
that were initiated at the start-up phase of the SOAP
server (point 0 in figure 4) communicate with the De-
ployment Interface.
4.1. De-serialization of XML Data into Java Data

Objects
An important requirement for the SOAP server is that

it must be capable of de-serializing any user-defined data
types. In order to do this task, the SOAP server has to
receive necessary information about the data types from
developers who want to deploy services on the SOAP
server. The kSOAP has a mapping method to map an
XML data structure to a user-defined Java object. How-
ever, when de-serializing the XML data structure, only a
general Java object (Object type) is retrieved no matter
what data type the XML data structure is intended for.
Hence, the SOAP server, at runtime, has to do the task
of type-casting the de-serialized general Java object into
its real type for further processing.

The figure 5 describes an example of the above situ-
ation. An XML data structure named DataStruct is at
the input of the Request Handler module for being de-
serialized. This XML data structure represents an in-
stance of the user-defined Java class named DataStruc-
tObject. A DataStructObject object is defined with three
data members that are varInt of Integer type, varFloat of
Float type, and varString of String type.

The Request Handler de-serializes the XML data
structure DataStruct into a general Java object. This gen-
eral Java object contains information about the name and
the real type of the expected Java object (DataStructOb-
ject). The above information can be extracted from the
general Java object.

The SOAP server now has to type-cast this general
Java object into its real type (the user-defined DataStruc-
tObject type) in order to access its data members.

Although the SOAP server can extract the information
about the type of the expected Java object (an instance of
the DataStructObject class), it can not do type-casting
on run-time. This means we have to clarify type-cast
task before compiling. In other words, the source code
of the SOAP Server has to be changed each time users
want to deploy new services with their own defined data
types. In order to solve this problem, the SOAP server
uses the Deployment Interface which can be thought as a

bridge between the SOAP Server and the Business Logic
module.
4.2. Deployment Interface

The Deployment Interface, as shown in figure 6, con-
tains a static instance of the Hashtable class. This
Hashtable is used to map a service method name to a
service method object which has been deployed before.

User

Service Method
(in the separate package

cnsoap.services)

Request

Handler
DeploymentInterface

Method1 ServiceObject1

Method2

Method Name – Service Object

implements

Java

Object

Request
Method

Register with
DeploymentInterface

Map
(Hashtable object)

public interface

ServiceRegister

ServiceObject2

Input parameter of the

ServiceObject1

Data Type:Object

Data Members: Information about
Name (DataStruct),
Type (DataStructOject), and
Content of DataStructObject object

Figure 6: Structure of Deployment Interface

All service methods register their names and them-
selves (as instances of their classes) with the Deployment
Interface once at the start-up phase of the SOAP server.
These Method Name - Service Object pairs are stored
in the Hashtable. It is noticed that the Hashtable vari-
able was declared static, hence it is independent from
instances of the Deployment Interface class. In other
words, there is only a unique Hashtable for all instances
of the Deployment Interface class. This aims at a mem-
ory saving purpose when increasing number of services.

After de-serializing the XML structure into the gen-
eral Java object as described in 4.1., the Request Han-
dler passes this general Java object, along with a client
requested Method Name (which was retrieved from the
XML structure by the Request Handler), to the Deploy-
ment Interface.

The Deployment Interface then will search the
Hashtable for the requested Method Name and will in-
voke a corresponding Service Object. This Service Ob-
ject is retrieved from the Hashtable as a Java object of
the Object type. Hence, this invoking task can be done
by asking all service methods to implement a public
interface named Service Register which has the invoke
method. Then all the Service Objects will be type-casted
into Service Register to call the invoke method.

The invoke method mentioned above has three input
parameters that must be known by the user for deploy-
ing services. The DeserializedObject is the general Java
object passed from the Request Handler. The two String
parameters ObjectName and ObjectType represent the
name and the type of the DeserializedObject object.

When being invoked with the input parameters, the
service method type-casts the DeserializedObject object
into an object of its real type (in the above example, it is
the DataStructOject type). By implementing this solu-
tion, the SOAP server code is separated from the Busi-
ness Logic code.

A Method Name - Service Object pair which is stored
in the Hashtable (figure 6) can be extended into a pair

<DataStruct
xmlns:ns2="http://soapinterop.org/xsd"
xsi:type="ns2:DataStructObject">

<varInt xsi:type="xsd:int">5</varInt>

<varFloat xsi:type="xsd:float">10.0</varFloat>

<varString xsi:type="xsd:string">Hello</varString>

</DataStruct>

Request-

Handler

 Class DataStructObject {

 Integer varInt;

 Float varFloat;

 String varString;

 }

Java Object
DataStructOject

XML document
DataStruct

TypeCasting DeSerialization
Java

Object

Figure 5: Type Casting of XML Data into Java object

of Method Name - Services Group Object when users
want to deploy a group of several services under one
name of the services group. In this case, the Services
Group Object will be a Hashtable object containing pairs
of Method Name - Service Object.

5. Performance Analysis
The light-weight SOAP server is implemented to run

on J2ME CDC/PersonalJava, CDLC/MIDP and J2SE
platform. It requires a small memory usage and is ca-
pable of handling concurrent client requests.
5.1. Strategies for concurrent request handling

Under limitation of J2ME API (Application Program-
ming Interface), 2 strategies used to handle concurrent
threads are implemented. These strategies are also used
to limit a maximum number of running threads.

With the first strategy, the algorithm is summarized as
following (figure 7a):

1. Start generating n threads to handle n client requests
in parallel (n equals to 4 in this case).

2. Wait until the last thread (the nth thread) finishes.
No thread is created during this interval.

3. Start again generating n other threads and repeat the
step 2.

The figure 7a explains how a maximum number of
running threads is limited. In the graph, the vertical axis
describes a life-cycle of a thread. The horizontal axis
represents a thread index. The value of ε, which is an
interval between two subsequent threads, is considered
very small.

A group of only n (set to 4 in the figure 7a) threads are
created continuously to process n client requests in par-
allel. The life-cycle of each thread can be different. If the
threads finish in orders which they have been created (it
means that first-created, first-finishing), the thread n will
finish finally at the time tn after a life-cycle of Tn. After
the thread n has finished, a group of other four threads
can be generated, starting at the index n+1. During the
interval Tn (the life-cycle of the thread n), no thread is
created.

It has been assumed so far that the threads finish in
order. No thread in a group of n threads exists after the
final thread of this group has finished. In other words,

the number of running threads will not exceed the value
n. In this case, n is the maximum number of running
threads.

Now, the worst case is supposed that the thread n in
a group of n threads always has the shortest life-cycle.
In addition, all (n-1) previous threads have the longest
life-cycle (the shortest and longest life-cycle of threads
can be determined by measuring experimentally the time
required to complete services). After the thread n has
finished, another group of n threads is created, starting
at the index n+1, while the first (n-1) threads of the pre-
vious group are still running. Hence, the number of run-
ning threads exceeds n.

Taking a reference to the graph in the figure, the thread
4 (n=4) in the group 1 has the shortest life-cycle while all
previous three threads have the longest life-cycle. When
the thread 4 finishes, the group 2 of four threads is cre-
ated while the first three threads in the group 1 are still
running.

As supposed, the final thread in group 2 (index=8) also
has the shortest life-cycle. When it finishes, the group 3
of four threads is created while the first three threads in
the group 2 are still running.

It is assumed that the first three threads in the group
1 now finish at the time tN while the three threads in
the group 2 and all the threads in the group 3 are still
running. Before the first three threads in the group 1 fin-
ish, the number of running threads reaches the maximum
number. The maximum number is a sum of the first three
threads in the group 1, the first three threads in the group
2 and all of four threads in the group 3. After the time
tN , the number of running threads reduces by 3 (the first
three threads in group 1).

A formula determining the number of running threads
at the time tN , when the maximum number of running
threads is reached, is derived as following:

Tmax is called the longest life-cycle that the first three
threads in the group 1 have. Tmin is called the shortest
life-cycle that the final thread in each group has. The k
coefficient is defined as followed:

k =
⌈

Tmax

Tmin

⌉
, so that k − 1 <

Tmax

Tmin
≤ k (1)

The number of running threads at the time tN :

k(n− 1) + 1 (2)

Tn = Tmin

Tn = Tmin

Thread Index

tthread

tn-1

tn

tN

Group 1

Group 2

Group 3

4 8 12

k=3

N=3.(4-1) +1

N= 10

Tmax

Handling always
4 Requests

tthread

4 8

Thread Index

ε ε

Figure 7: Concurrent Request Handling: a (left part)- Strategy 1 (the worst case scenario depicted); b (right part)-
Strategy 2

If N is called the allowed maximum number of run-
ning threads that we expect, the below condition for n
can be written:

k(n− 1) + 1 ≤ N ⇒ n ≤ N − 1
k

+ 1 (3)

The value k, according to the figure 7a, has the value
of 3. If N is limited to 10, from equation 3, we have n ≤
4. In other way around, if n is chosen with 4 as in the
figure 7a, the number of running threads at the time tN
can be be calculated from equation 2: k(n−1)+1 = 10.

The equation 3 can be used to limit the maximum
number of running threads. Along with the chosen value
of N, the maximum queue length of the Java server
socket must also be considered. These two parameters
decide how many concurrent incoming client requests
can be handled by the SOAP server.

This strategy has its pros and cons. The pros is that it
is very simple to implement. In addition, there are only
few times that the SOAP server has to handle the client
requests in parallel. Most of the time, the SOAP server
only processes the client requests one by one. Therefore,
this strategy is also an option for handling concurrent
requests. The cons is that device’s resources were not
used efficiently because the device has to wait for all of n
threads to be finished. Then, the device starts generating
n other threads.

The second strategy is an implementation of a thread
pool. The thread pool is given some fixed number of
threads (an array of np worker threads, np = 4 in the
figure 7b) to use. The thread pool will assign a task
(processing a client request) to each of these np worker
threads. When any of these threads finish its old task,
a new task is assigned immediately. If the number of
concurrent client requests is large than np, extra client
requests are put in a queue for later processing by any
free worker threads.

In comparison with the first strategy, this strategy uses
device’s resource more efficiently because it allows a fix

number of worker threads to handle client requests con-
tinually. However, because the thread pool creates an ar-
ray of np Thread objects to pool the tasks, more memory
is allocated for this array. For example, to maintain the
waiting state for client requests, the SOAP server with
the Thread Pool mechanism consumes memory approx-
imately 125 KB with 5 pooling threads whereas the first
strategy requires about 105 KB of memory no mater how
many threads in one group will be created at a time.
5.2. Performance of Serving Time

To evaluate the serving time from client side, a com-
parison test between the light-weight SOAP server and
the Apache SOAP running on the Tomcat servlet engine
was done. A client used Wingfoot3 SOAP running on a
Desktop PC installed Linux operating system and JDK
1.4.1. The SOAP Server runs on an iPaq HP 3870 which
was installed Familiar Pocket Linux. The communica-
tion link between the client and the server was a Uni-
versal Serial Bus (USB) connection which could be fast
enough to produce a low delay of network connection.

Two groups were tested. The first group used the light-
weight SOAP server and J2ME CDC/Personal Java Pro-
file that were installed on the iPaq. The second group
used Apache SOAP 2.3.1 and Tomcat 3.2.4 running on
Blackdown Java 1.3.1 ARM version (installation pack-
ages were considered to be suitable for hardware re-
source of the iPaq).

The figure 8 depicts the interop test result. As shown
in the figure, the round-trip delay produced by the first
group was approximately 50 percent of that produced by
the second group.

The figures 9 and 10 depict interop test results of
the SOAP server (Mobile Information Device Profile
(MIDP) version) running on Sony Ericsson P900 and
Siemens S55 phones. The tests were done with T-Mobile
GPRS (General Packet Radio Service) network. The
SOAP server running on the P900 has a processing time

3http://www.wingfoot.com/index.jsp

617.93

936.93

615.23 613.5
634.73

1248.27

617.47

678.07
630.27

269.033

452.1

265.7

440.17

266.97

441.7

226.7

484.1

264.03
299.37

265.93

771.93 783.03

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11

m
il

is
e

c
o

n
d

s
 (

 a
v

e
ra

g
e

 o
v

e
r

3
0

 r
u

n
 t

im
e

s
)

CN SOAP Server

Apache SOAP 2.3.1 + Tomcat 3.2.4

Figure 8: Comparison of Round-trip Time between CN-SOAP-Server and Apache SOAP Server on iPaq HP3870 PDA-
Wingfoot SOAP client on desktop connecting to PDA via USB connection. Interop Services Methods: 1-echoString();
2-echoStringArray(); 3-echoInteger(); 4-echoIntegerArray(); 5-echoFloat(); 6-echoFloatArray(); 7-echoStruct(); 8-
echoStructArray(); 9-echoBoolean(); 10-echoDate(); 11-echoBase64()

approximately one-seventh total delay time that a client
has to wait for a response (round-trip transmission time
plus server processing time).

When running on the S55 phone, the processing time
of the SOAP server increased obviously. The domination
of the processing time over the transmission time shows
that the SOAP server, despite being able to run on low-
end phones, is rather heavy for them.
5.3. Memory footprint

For the version running on J2ME
CDC/PersonalProfile (and also JVM of J2SE plat-
form), the light-weight SOAP sever core package has a
size of 22 KB. It is the size of the cnsoap.server package.
The other packages like cnsoap.util, cnsoap.service can
be variant in sizes. It depends on how many util-classes
and service-classes are contained in the packages. At
the moment, the following details can be listed:

• cnsoap.server has the package size of 22 KB

• cnsoap.util is about 19 KB including classes that
support the Float, Double, Date, and Base64 data
types.

• cnsoap.services has the ServiceDescriptor class of
1 KB and 21 service class files with 48 KB totally.

For the J2ME platform, MDIP/CDLC version, the light-
weight SOAP sever running on the P900 and S55 mobile
phones has the MIDlet jar file of 90 KB including 11
echo-test services. The detailed package sizes are:

• cnsoap.server has the package size of 29 KB

• cnsoap.util is about 20 KB including classes that
support the Float, Double, Date, and Base64 data
types.

• cnsoap.services has the ServiceDescriptor class of
1 KB and 17 service-class files with 40 KB totally.

For run-time memory test, the J-Sprint tool is used.
It is a shareware Java profiler which does performance
analysis of Java applications4. The peak of memory
usage of the lightweight SOAP sever is approximately
295 KB and happens at the initialized phase when Java
classes and dependent libraries are firstly called. When
entering a stable working phase, about 125 KB of mem-
ory is needed to maintain the waiting state of the SOAP
server. An additional memory amount of 45 KB is re-
quired by the SOAP server to handle each client request
(echo service tests).

6. Conclusions
In this paper we introduce the HTTP server part of

our mobile middleware based on Web Services. After
the overview of the whole concept and architecture, a
detailed description of the SOAP server is given. The re-
alization have been evaluated in consideration of the per-
formance criteria like latency, processing time and mem-
ory usage on mobile devices.

4Information available at http://www.j-sprint.com

2132.87

2457.83

2687.03

2459.40
2597.50 2615.07

3741.80

2318.73

2101.07

2939.13

2390.20

363.57 316.03 368.23 330.13

558.87

311.03

571.40

319.83327.53370.37314.97

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11

m
il
is

e
c
o

n
d

s
 (

 a
v
e
ra

g
e
 o

v
e
r

3
0
 r

u
n

 t
im

e
s
)

 Round-trip delay time

SOAP server processing time (P900)

Figure 9: Comparison of Client Round-trip Delay Time and SOAP-Server Processing Time on P900 phone. In-
terop Services Methods: 1-echoString(); 2-echoStringArray(); 3-echoInteger(); 4-echoIntegerArray(); 5-echoFloat();
6-echoFloatArray(); 7-echoStruct(); 8-echoStructArray(); 9-echoBoolean(); 10-echoDate(); 11-echoBase64()

12.15

14.97

12.42

14.91

12.36
13.19

26.56

11.93
12.59 12.43

14.45

21.22

9.41

11.18

9.36

10.92

9.39

11.01 10.53

9.45 9.61 9.41

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11

s
e
c
o

n
d

s
 (

 a
v
e
ra

g
e
 o

v
e
r

3
0
 r

u
n

 t
im

e
s
)

Round-trip delay time

SOAP server processing time (S55)

Figure 10: Comparison of Client Round-trip Delay Time and SOAP-Server Processing Time on S55 phone. In-
terop Services Methods: 1-echoString(); 2-echoStringArray(); 3-echoInteger(); 4-echoIntegerArray(); 5-echoFloat();
6-echoFloatArray(); 7-echoStruct(); 8-echoStructArray(); 9-echoBoolean(); 10-echoDate(); 11-echoBase64()

REFERENCES
[1] Tom Clements. Overview of soap. Published

on the internet. Available at URL http://
developer.java.sun.com/developer/
technicalArticles/xml/webservices/,
January 2002.

[2] Roberto Chinnici et al. Web services description
language (wsdl) version 1.2. Published on the in-
ternet. Available at URL http://www.w3.org/
TR/wsdl12, June 2003.

[3] Guido Gehlen and Ralf Bergs. Performance of mo-
bile web service access using the wireless applica-
tion protocol (wap). 05 2004.

[4] Guido Gehlen and Geogios Mavrosmatis. Mobile
web services based middleware for context-aware
applications. Apr 2005.

[5] Guido Gehlen and Linh Pham. Mobile web services
for peer-to-peer applications. Jan 2005.

[6] Nilo Mitra. Soap version 1.2 part 0: Primer.
Published on the internet. Available at URL
http://www.w3.org/TR/soap12-part0/,
June 2003.

