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Abstract—Service-area specific optimization is a necessity for
large-scale wireless networks. For this task, a model to estimate
the quality of a radio network configuration is required. In the
case of cellular radio networks, much work exists on models for
Radio Network Planning (RNP).

This work cannot be applied to optimize IEEE 802.11-based
Wireless Mesh Networks (WMNs), as their multi-hop structure
and the distributed medium access deviates significantly from
cellular networks. In this paper, we present a model for IEEE
802.11-based WMNs that fulfills the following criteria: (i) It
has low complexity, enabling iterative optimization; (ii) it has
sufficient accuracy in comparison to simulation; (iii) it includes
a physical layer model that takes into account interference and
multiple transmission rates.

I. I NTRODUCTION

IEEE 802.11 for Wireless Local Area Networks (WLANs)
was initially designed for small unmanaged networks, con-
sisting of one Access Point (AP) and several Stations (STAs).
Recently, IEEE 802.11 is used to provide wireless Internet
access to larger areas, e. g. city centers. As the service area
of one AP is limited, multiple APs are deployed. To reduce
the costs of the wired backbone between the APs, wires are
replaced by radio, introducing the Wireless Mesh Network
(WMN). In a WMN, Mesh Points (MPs) serve to forward
data to or from the nearby AP multi-hop from or to a STA.

Intelligent network deployment is a must to operate a large-
scale WMNs. As WMNs are static it becomes possible to plan
the topology in advance, taking into account the requirements
of the provider, the users, and the service area. This process
is denoted Radio Network Planning (RNP).

Due to their multi-hop structure and the characteristics
of IEEE 802.11, radio network planning approaches known
from cellular networks (e. g. [1]) cannot be applied directly
to WMNs. One major difficulty is the quality estimation of
a network configuration, as realistic saturation throughput
estimation is non-trivial. To be useful as a part of an opti-
mization procedure, this estimation should have high accuracy.
Furthermore, as many iterations may be needed to find an
adequate configuration, a low runtime complexity is required.

The paper at hand describes and evaluates a model for
the quality estimation that fulfils these requirements. Before
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that, we overview in Section II different existing models for
WMN and discuss their applicability in the RNP process.
Then, Section III introduces the developed model. Based on
simplifying assumptions, it allows for a computation of the
saturation throughput for a given network. We compare in
Section IV the model with event-driven simulation. We find
that the developed model exhibits a mean accuracy above 85%
in comparison to simulation using only 3% of the runtime.

II. RELATED WORK

A. IEEE 802.11 MAC Models

Markov-Chains are a prominent tool to convert the dynam-
ics of the IEEE 802.11 Medium Access Control (MAC) into
a static model. By deriving state probabilities, the interaction
between the participating nodes and thus successful and failed
packet transmissions can be predicted. Based on the seminal
work from Bianchi [2], recent extensions allow for the model-
ing of non-saturated sources [4] or different traffic categories
[5]. All models based on this approach share the assumption
that packet errors result only from identical backoff values and
thus frame “collisions” at the receivers. While this model is
applicable in small WLANs where all nodes are in mutual
reception range, it does not capture the challenges of wireless
transmissions in WMNs.

Hidden nodes and multiple Modulation- and Coding
Schemes (MCSs) require to model each link differently,
depending on its position and its neighbors. Therefore, the
model’s complexity becomes similar to an event-based simu-
lation.

B. Wireless Network Models

A different approach is taken by the work presented in
[6] and its extensions (e. g. [7] for hybrid wired/wireless
networks). Here, the authors derive upper capacity bounds
for the network, depending on the maximum link throughput
and the network size. In contrast to the work described in
the preceding section, the used models for transmission errors
(especially the Signal to Interference plus Noise Ratio (SINR)-
based “Physical Model”) are able include the mentioned
characteristics of the wireless channel.

While the upper bounds hold for the saturation throughput
in IEEE 802.11-based networks, they are not intended as a



sharp limit for them. In contrast, it has been shown that the
performance of the IEEE 802.11 MAC is considerable lower
and scales differently with the network size [8].

C. Combined Models

Recent contributions show efforts to combine the effects of
the IEEE 802.11 MAC with realistic wireless channels and
frame error models.

One approach is to define for each link an “interference
range”, containing all nodes that potentially interfere with the
transmission. This approach enables introducing interference
into a Markov-chain MAC model [9]. However, interference
is underestimated: Two interference sources that are harmless
must be outside the interference range. Hence, a simultaneous
transmission must be also harmless, although the combined
interference leads to transmission errors.

Recent work successfully combines the Markov-Chain
model from [2] with a SINR-based frame error model [10],
[11]. Their work is most related to ours, as it combines
certain aspects from both Physical Layer (PHY) and MAC
of IEEE 802.11, while giving up details for low complexity.
Nevertheless, they consider only one MCS per link, which
is in contrast to the eight available MCS of IEEE 802.11a/g
(or the more than 100 in the current draft of IEEE 802.11n);
this simplification can only be used in networks without Rate
Adaptation (RA) and leads to an underestimation otherwise.

D. Our Contributions

In this paper, we go beyond the existing work in three ways.
First, we allow for a set of MCSs with different susceptibility
to interference; the selection of the MCS by the transmitter
is encapsulated in a RA model. Hence, the multi-rate ability
of IEEE 802.11a/g can be included appropriately. Second, the
model covers not only single-hop networks, but is applicable
to any multi-hop network with static topology. Third, in
addition to the saturation throughput our model is able to
estimate theoccupancy of any node in the network. Therefore,
it becomes straightforward to identify the bottleneck of a
network, enabling a precise RNP optimization process.

III. STATIC IEEE 802.11 MODEL FORWMNS

The major challenge for a WMN model is the complex
interactions between links. One important property is the
effective rate r(i, j) of a link i to j, defined as the mean
number of data bits thati is able to transmit successfully to
j per second. First, this rate depends on the MCS selected
by i and the overhead from the channel access procedure.
Second,r(i, j) depends on the Packet Error Rate (PER) and
thus the interference from surrounding nodes. If packet errors
occur frequently,i selects a more robust MCS. Therefore, it
has to transmit longer for the same amount of data, possibly
increasing interference to other nodes. These, in turn, mayalso
change their MCS, which effects the interference atj, etc.

As a second important property is thechannel busy fraction
pbusy(i) of a node i, defined as the fraction of time the
node detects the channel as occupied by other transmissions.

Fig. 1: Core part of the static IEEE 802.11 MAC model

As defined by the IEEE 802.11 protocol, nodes refrain from
transmitting during this time. Similar to the effective rate, this
fraction depends on the neighboring nodes.

The major part of the model is dedicated to these dependen-
cies between the links. Figure 1 shows how an iterative process
is used to approximate the effective rater(i, j) between nodes
i andj; in each iteration, the steps are carried out for all links
(i, j), 1 ≤ i, j ≤ n:

1) The offered link traffico(i, j) divided by the link rate
r(i, j) gives the loadl(i, j) for the link from i to j.

2) The MAC layer model in Section III-A uses the loads
of all links to calculate probabilities for simultaneous
transmissions that result either in interference or in a
busy channel.

3) The probabilities for simultaneous transmissions are
converted into a SINR histogram, based on the channel
model in Section III-B.

4) The SINR histogram determines the selected MCS,
using a RA model explained in Section III-C.

5) The PHY model from Section III-D combines the SINR
distribution and the selected MCS to the new link rate
r(i, j), which is used in the next iteration step.

The iteration converges if the maximum change inr(i, j) for
all links is small, i. e. 1% in our implementation.

In the following, the parts of the model are presented in
depth. Then, in Section III-E this iterative procedure is used
to compute the saturation throughput.

A. Medium Access Control

A central element in the Distributed Coordination Function
(DCF), defined by the IEEE 802.11 MAC, are the Clear
Channel Assessment (CCA) methods that determine the chan-
nel condition: First, the Physical Clear Channel Assessment
(P-CCA) relies solely on the received signal energy; if this
exceeds a threshold, the channel is seen as busy. Second,
Virtual Clear Channel Assessment (V-CCA) uses the frame-



(a) Example network for the interferer tree in
Figure 2b

(b) Interferer Tree for the link transceiver to receiver in the example
network in Figure 2a

Fig. 2: Exemplary network and corresponding interferer tree for one link.

and Network Allocation Vector (NAV)-length transmitted in
the PHY and MAC header which indicate the length of the
current frame and the current frame exchange, respectively. If
a node overhears this information, it defers from the channel
access for the indicated duration.

For any link in the network, the CCA operation controls (i)
which sets of nodes are able to transmit simultaneously with
this link and (ii) which nodes may block the link by their
transmission. The computation of (i) and (ii) together withthe
corresponding probability is the task of the MAC model. The
following explanation of the algorithm (given as Algorithm1)
uses the link “Transmitter→ Receiver” in the network in
Figure 2a as an example. To compute the probabilities, the
load of each node must be given; in the example it is indicated
as small number next to the node.

In a first step, the nodes which affect the link are stored
into the candidate setIcand; they are characterized by having
a load of more than zero and being inside a defined distance
from either the transmitter or the receiver, which is set to -
105 dBm. In the example,Icand = {1, 2, 4, 5, 7}.

The algorithm proceeds in a depth-first search overIcand to
enumerate all sets of nodes which can transmit simultaneously
with the selected link, calledinterference sets. The correspond-
ing search tree of the example is given in Figure 2a. In each
recursion step a nodei is selected fromIcand. Depending on
the node two cases are distinguished: (i)i cannot transmit
simultaneously to the transmitter and adds to its channel
busy fraction (Line 6). (ii)i can transmit simultaneously; this
creates two children: one for a passive and one for an active
i (Lines 10 and 14, respectively). In the case thati is active,
the set of candidate interferers is updated to contain only the
nodes not blocked byi.

Algorithm 1 Static MAC model: computation of
interference sets and blocking probability. Init:
ComputeInterfererSets (tx, Icand, {}, 1.0)

Input: Active transmittertx, candidate interferersIcand, ac-
tive interferersIactive, probability p

Output: I = {(I, pI)|I: Interferer set with probabilitypI},
pbusy

1: if Icand = {} then
2: return {({}, p)} , 0.0
3: end if
4: i← one candidate interferer fromIcand

5: if tx is blocked by transmission fromi then
6: I, pbusy ← ComputeInterfererSets

(tx, Icand − i, Iactive, p)
7: pbusy ← pbusy + p · ptx(i)
8: return I, pbusy

9: end if
10: I

−, p−busy ← ComputeInterfererSets
(tx, Icand − i, Iactive, p · (1− ptx(i)))

11: if ptx(i) > 0 then
12: Inew

active ← Iactive + i

13: Inew
cand ← {j ∈ Icand|j is not blocked byi}

14: I
+, p+

busy ← ComputeInterfererSets
(tx, Inew

cand, I
new
active, p · ptx(i))

15: Appendi to all sets inI
+

16: end if
17: return I

+ ∪ I
−, p+

busy + p−busy



A leaf of the tree is found ifIcand is empty; it represents one
interference set, containing all nodes selected as active on the
branch. The probability of the set is calculated as the product
probability of each case in the branch, which is determined by
the transmission probabilities of the nodes on the path. In the
same way,pbusy of the transmitter is calculated by summing
up the transmission probabilities of the blocking nodes.

B. Wireless Channel

We assume that either on-site measurements or at least a
modeling of the specific propagation conditions in the service
area have been performed. Therefore, for a given network
configuration of n nodes, the average reception power at
node j during transmission from nodei is known or can
be approximated. In the model, we will denote this power
asP (i, j).

Using P (i, j), it is straightforward to convert the output of
the MAC model (a setI consisting of tuples(I, pI), where
I is a set of nodes andpI is the associated probability that
these nodes transmit simultaneously, see Section III-A) into
an SINR histogram for a specific linki to j. This is done by
calculating for each set inI the corresponding SINR value:

SINRI =
P (i, j)

N +
∑

h∈I P (h, j)
,

whereN represents background and receiver noise. Then, all
SINRI with weight pI are sorted into a histogram, approxi-
mating the SINR distribution of this link.

C. Rate Adaptation (RA)

RA in wireless networks deals with the problem that the
transmitter has to select the MCS for a transmission using
limited knowledge of the current SINR condition at the
receiver.

In our model, we assume closed-loop RA [12]. Therefore,
its functionality in the static case is reduced to computing
the mean SINR from the SINR histogram (generated by the
MAC and channel model) and selecting the MCS with the
highest expected throughput at this SINR level. It has to be
noticed that this expected throughput differs from the effective
rate as computed by the PHY model from Section III-D, as
this computes the average rate of the selected MCS, given the
SINR distribution.

D. Physical Layer

For a constant SINR value, the effective rate can be com-
puted from the Bit Error Rate (BER) of the selected MCS, the
frame length, the number of data bits per symbol of the MCS
and the IEEE 802.11 overhead, i. e., headers, preamble, length
of the acknowledgement and the duration of the interframe-
spaces.

Consequently, the effective rate for a given interference
histogram is the mean of the rates at all given SINR values,
weighted by their probability.

Fig. 3: Capacity estimation with the help of the occupancy
estimation model using binary search.

E. Final Model

The effective rate computation requires as input the offered
traffic and an initial effective rate per link. The offered traffic
per link depends on two parameters: the offered end-to-end
traffic in the network and the path selection protocol plus
its link metric. While the first parameter is given by the
scenario, the path selection protocol and the metric are imple-
mentation specific. For WMNs, the amendment “s” of IEEE
802.11 specifies the Hybrid Wireless Mesh Protocol (HWMP)
as mandatory path selection protocol and the “Airtime” as
mandatory link metric [13].

In our model, the dynamic selection and maintenance of
paths is simplified to a static weighted graph, which is used as
input for the Floyd-Warshall all-pairs shortest path algorithm.
To compute the edge weights, the expected rater(i, j) of each
link is required; these rates are computed once for the optimal
case without interference.

Using the output of the Floyd-Warshall algorithm, the
offered end-to-end traffic can be converted to the offered traffic
per link o(i, j) by going through all selected paths and adding
up the corresponding load. Similar, the initial effective rates
are selected as the rates under optimal condition, i. e. without
interference.

After the iterative process from Figure 1 has converged,
the final effective ratesr(i, j) and the channel busy fraction
pbusy(i) are known. Therefore, the fraction of time blocked
by and transmitting to its neighbors can be computed as the
occupancy of the node:

occupancy(i) = pbusy(i) +
∑

j

o(i, j)

r(i, j)

The network is in saturation if at least one node has an
occupancy greater than1.0, this node is the bottleneck of the
network.

To find the saturation throughput using our model, we
search for the offered traffic withmaxi occupancy(i) = 1.0
in a binary-search manner as given in Figure 3. With this
procedure, the saturation throughput can be estimated within
a given error margin.



Fig. 4: Saturation throughput of 75 different scenarios, com-
puted using event-based simulation and static IEEE 802.11
model

IV. EVALUATION

For the evaluation, we apply the WMN scenario creator
from [14]. It is used to generate 25 service areas of 1 km2

with different shadowing conditions; then, the area is covered
with 30 to 35 MPs so that wireless coverage and connectivity
of the WMN is ensured.

In the second step, either 2, 3 or 5 nodes are selected
to be APs, the remaining nodes are MPs; this results in
approximately 15, 10 or 5 MPs per AP and an average path
length of about 3, 2.5 and 1.5, respectively.

Traffic is generated in each of the 75 available scenarios
by 64 STAs, positioned on a 8x8 equi-distant grid; each STAs
requires the same offered traffic, divided in 90% downlink and
10% uplink from/to the Internet, respectively.

To evaluate the accuracy and the complexity of the static
IEEE 802.11-based WMN model, the derived capacity is com-
pared to the capacity obtained from an event-driven simulator.
In this simulator, the complete IEEE 802.11 protocol stack
is implemented, including the same PHY layer abilities as
described in Section III-D.

To assure small confidence intervals, one simulation requires
1.5 to 2 hours. As up to 7 successive simulations are needed
to estimate the saturation throughput using a similar binary-
search method as depicted in Figure 3, it can take 14 hours
to compute the saturation throughput using simulation. In
contrast, the static model needs on average5.6 to 8.2 minutes
for the complete process, about 3% of the simulator.

Figure 4 compares the saturation throughput of the model
with the values obtained by simulation. The mean relative
error is below 15% for all different MPs/AP settings. Some
outliers can be identified, resulting from the simplifications of
the model.

V. CONCLUSION

The presented static model allows for the efficient estima-
tion of the saturation throughput of a given WMN, taking
into account the complex interplay of the different links. The
evaluation shows a reasonable mean relative error of less than
15%, measured in different typical WMN scenarios. While this
error exceeds that in [10], we have included the existence of
MCSs and a RA to select between them. Therefore, our model
is appropriate for RNP of state of the art WMNs installations.
As a special feature, our model allows for identifying the
bottleneck of the network, which can be used to guide the
optimization of the network.
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