
Paper submitted to

10th Aachen Symposium on Signal Theory

Name: Matthias Siebert, Martin Steppler

Affiliation: Communication Networks
Aachen University of Technology

Address: Kopernikusstr. 16
D–52074 Aachen, Germany

Phone: +49 241 80 5828
Fax.: +49 241 88 90382
E-mail: {mst|steppler}@comnets.rwth-aachen.de

Paper Title: Software Engineering in the face of 3/4G Mobile Communication
Systems

Symposium Topic: 3rd and Next Generation Systems

Characterizing Keywords: Software Development (Process), Quality Aspects, CASE-Tool,
SPEET, Software (Defined) Radio, Genericity of Protocol SW

WWW: http://www.comnets.rwth-aachen.de/~{mst|steppler}

Number of Pages: 8

http://www.comnets.rwth-aachen.de/~{mst|steppler}

Software Engineering in the face of 3/4G
Mobile Communication Systems

Matthias Siebert, Martin Steppler

Communication Networks
Aachen University of Technology

Kopernikusstr. 16
D–52074 Aachen, Germany
Phone: +49 241 80 5828

E-mail: {mst|steppler}@comnets.rwth-aachen.de

Abstract

The development of (protocol) software (SW) has to be done from an engineer’s point of view. By applying
methods of project management, the process of software engineering can be scheduled, controlled and moni-
tored. Since future systems will rely on well proven features, characteristics and methods of existing systems,
it is obvious that the same applies to the employed SW. To enable 3G/4G systems to benefit from today’s
programmer’s work, certain ’rules’ have to be followed. Congruously, this paper firstly points out general steps
within the SW development process, quality aspects and a CASE∗ tool called SPEET∗∗, and secondly applies
these worksteps by presenting a method for Designing Generic and Adaptive Protocol Software (DGAPS).

1 Software Development

Every developing process matches a process of prob-
lem solving: A development task is stated and finally
at the end of the process one has to supply evidence
that the solution of the problem, the software system,
matches the specification.

1.1 Software Life Cycle

Several proposals have been made in the context of the
software development process: In order to character-
ize the different steps, an underlying Phase Concept
is defined. Each phase points out typical activities
within the development process. Well known phases
within the Software Life Cycle are:

. Specification

. Analysis

. Design

. Modeling/Implementation

. Testing/Validation
∗Computer Added Software Engineering
∗∗SDL based Performance Evaluation Environment and Tools

. Installation

. Usage/Maintenance

Within this scope, several different languages come
into operation as shown in Fig. 1. In the beginning
there is a qualitative outline of the problem followed
by a Feasibility Study. In this phase an informal, nat-

Java, C++, Cobol, ...

German, English, ...

Programming Language

SDL

Language
Specification and Description

UML

Modeling Language

Unified Modeling Language

Natural Language

Installation/
Maintenance

Problem

Test
Implementation/

Design

Feasibility Study

Analysis

Specification

Figure 1: Languages in the process of SW engineering

ural language (German, English,..) is used. The next
steps are definition of requirements (Specification),
Analysis and Design. Since natural language includes
a high risk of misconstruction, the modeling has to
be non-ambiguous. This is why dedicated modeling
languages come into operation.

Still at the beginning of the nineties, a large number
of (object oriented) modeling languages were in use
(Object Modeling Technique OMT, Booch-Method,
Object Oriented Software Engineering OOSE,...)
which led to acceptance problems. The Unified Mod-
eling Language (UML) which was accepted in Novem-
ber 1997 by the Object Management Group (OMG)
as official industry standard managed to incorporate
and harmonize the different approaches.

Once the modeling has concluded, the specifications
have to be implemented. This can either be done
directly in a higher programming language, or by an
intermediate step with the help of the Specification
and Description Language (SDL). SDL is based on
the theory of extended finite state machines. It is
an object oriented programming language which was
standardized by ITU-T[1].

The nexus of these phases results in a Process
Model. The process model thus defines besides an
overall structure, the contents and the results of the
phases as well as their interconnection. The different
paradigm of software development basically rely on a
different process strategy, see Figure 2. Basically,
one distinguishes between two concepts, pointed up
by the Life Cycle and the evolutionary Model.

The Life Cycle again can be split up in the following
sub-models with their respective properties:

• Linear Life Cycle

. top-down-refinement

. sequential processing of different steps

. no return to preceding phases

. implementation in relatively late process
(phase) of development

• Iterative Life Cycle

. top-down-refinement

. stepwise approach:
general specification ↔ concrete tasks

. return to preceding phases possible → error
correction

. implementation in relatively late process
(phase) of development

• Prototype-oriented Life Cycle

– explorative, experimental, evolutionary

. combination of prototyping-concepts
with those of SW Life Cycle

. reduction of evaluation risks

���������
	
����������������

�����
� �!�#"%$&�
'�(�)�*�+�,�-�.�/

0214365736598;:=<?>A@CB4DFE
GIH7E�J
K�L�M�N�O�P�Q�R�S

TVU&W;X�YIZ#[�WC\�]
^�_
`badcde�f

g�hji;kmlon p�qjr;smtou v�wjx;ymzo{

|�}j~;�m���

���j�;�m���

���j�;�m���

���j�;�m���

������������� �¢¡

£�¤j¥;¦m§�¨

©�ª�«�¬F�®°¯²±´³
µ2¶d·¹¸»º
¼½2¾d¿¹À»Á
Â

Ã2ÄdÅ¹Æ»ÇÉÈÊ2ËdÌ¹Í»ÎÉÏ
Ð2ÑdÒ¹Ó»Ô ÕÖ2×dØ¹Ù»Ú Û

Ü�Ý�Þ�ß�à�áãâ�ä#å
æ�ç�è�é�ê�ëãì�íïî

Figure 2: Paradigm within SW development

. overlapping of different phases possible

The evolutionary prototyping contravenes to the
principles of the Life-Cycle-Models and leads over
to an own concept, presented by the evolutionary
Model, in which the SW developing process passes
through several developing-cycles, each of which con-
sists of the same phases. Although this model is also
based on a top-down refinement, the onward level of
detail is related to the developing-cycles and not to
the phases.

1.2 Quality Aspects

DIN 55350 defines quality as the whole of charac-
teristics and features of a product or of activities
for the fulfillment of determined requirements1. In
such a way, software can be characterized by quality-
features, as they are:

• correctness: correct solution of the prob-
lem/task

• reliability: robust within error situation

• efficiency: economical handling of resources

• handling: easy and intuitive usage

• maintainability: easy to adapt and to advance

• testability: easy and fully testing of operative-
ness

• flexibility: adjustable to different terms of use

• reuseability: (partly) operation in different ap-
plications

• portability: portable to different hard-
/software platform

In some points these targets are orthogonal which
means that it is not possible to optimize all features at
the same time. Table 1.2 relates the aforementioned
(plus some other) features and their influence on the
cost of development and time. Thus the developer
has to define a main target and boundary conditions
1
”
Qualität ist die Gesamtheit von Eigenschaften und Merk-
malen eines Produktes oder von Tätigkeiten zur Erfüllung
festgelegter Erfordernisse.“

Feature 1 2 3 4 5 6 7 8 9 10 A B C D E F

1 correctness + o o + o o o o o - + - + + o
2 reliability o o o + o o o - o - + - + + o
3 adequacy o o + o o o o + - - o - + + -
4 learnability o o o o o o o - o - o - + o o
5 robustness o + + o o o + - o - + - + + o
6 readability + + o o + + + - + + + + o + +
7 change-/extensibility + + o o + o + - + - + + o + +
8 testability + + o o + o + - + + + + o + +
9 efficiency - - + - - - - - - - + - + + -
10 portability o o - o o o + o - - + - - - +

+/-/o : positive/negative/no impact A : time of development B : life time C : cost of development
D : cost of operation E : cost of maintenance F : portability cost

Table 1: Interaction of SW quality features with respect to costs and time [2]

subject to this limitation the product has to be opti-
mized.

1.3 CASE-Tool: SPEET

A systematic approach to the analysis, design, im-
plementation and maintenance of software usually in-
volves the use of dedicated tools. A key word in this
context is Computer Aided Software Engineer-
ing (CASE). One CASE oriented solution for product
development using formal methods is SPEET [3, 4].

1.3.1 SPEET Tool components

SPEET defines a SW development environment sup-
plemented by respective tools, as indicated in Fig.3.
An automatic code-generator, called SDL2SPEETCL
[5] maps system-software, formally specified in SDL
on respective C++ classes of a dedicated class library,
the SPEET Class Library, SPEETCL [6]. With the
help of dedicated interfaces, the Command Line In-
terface (CLI) and the Graphical User Interface (GUI)

SPEET−Runtime System

Spezification
in SDL

SDL2SPEETCL
Codegenerator

Spezification
in C++Models

Hardware−
Emulator

Generators
Load

Evaluation
Statistical

Command Line−
Graphical− and

Interface
MSC−Diagrams

Transmission

Class Generation
Scripts for

Figure 3: Interaction of SPEET components and tools

SPEET

Simulation

1 2

4 Behaviour/
Performance−
Evaluation

Implementation
UNIX / Windows NT−

3

in SDL
Spezification

Figure 4: SPEET as used in the development cycle

the user can control the simulation process and visu-
alize statistical data. Additional output for drawing
(MSCs) for debugging purposes is also facilitated.

Altogether SPEET provides

• event based simulation of several SDL systems in
parallel,

• various traffic load generators representing differ-
ent services as well as an adjustable mix of them,

• transmission models including en-/decoding, de-
/modulation and channel behaviour,

• statistical evaluation of data measured during
simulation runs.

“The objective of SPEET is the design and eval-
uation of complex, formally specified communication
systems in an early phase of their development by
means of simulation [...]” [3]. For this, a recursive
cycle is applied as shown in Fig. 4.

In a first step (step 1) the formal SDL specifica-
tion is taken to automatically generate C source code
which will be compiled under the same operation sys-
tem SPEET runs on. Prior to code generation the
user is supposed to insert probes into the formal spec-
ification [7] to gain additional information about the
simulation model and its implementation (step 2).
These information can be evaluated (step 3) and the

respective insights can be used to improve the speci-
fication (step 4).

As we can see, SPEET follows the evolutionary
model presented in section 1.1.

2 Design of 3G/4G Protocol
Software

The following section describes the design of proto-
col software to be used in present and future mobile
communication systems following the aforementioned
phases within the life cycle.

Since the software is supposed to be used in current
but also 3G/4G mobile communication systems, the
main target that has to be achieved is reusability,
cp. Section 1.2. The boundary conditions given here
are change-/extensibility and efficiency. Due to Table
1.2 these quality-aspects do have a negative impact
on each other. However, the here presented method
of Designing Generic and Adaptive Protocol Software
(DGAPS) features by minimizing this impact.

2.1 Problem Description

Today’s different existing air-interfaces together with
the different services they support still require the use
of multiple physical handsets. Similar situations ap-
ply if the mobile is to be used abroad. First solutions
to this problem offer multi-band, multi-mode porta-
bles that mainly represent a number of dedicated de-
vices integrated into a single cover. This way of so-
lution means that a certain overhead has to be ac-
cepted, due to the multiple protocol software having
basically the same structure and functionality. Fur-
thermore, updating of software in a terminal is diffi-
cult or even impossible. The introduction of new ser-
vices like GPRS, HSCSD or EDGE reveals the disad-
vantage of the aforementioned solution: Though only
a part of the air-interface related software has to be
changed, newly developed devices will be necessary.

2.2 Feasibility Study

Software (Defined) Radios (SDRs) [8][9] maybe a
more efficient solution. An SDR is based on processors
and wide band front-ends and all kind of functional-
ity is achieved by means of dedicated control software.
Thus it is possible to design a multi-mode radio capa-
ble of supporting multiple air-interfaces and protocol
stacks.

2.2.1 1. Requirements on SDRs

SDRs will be able to meet various demands. The
support of several air-interface standards provides the
ability to roam across access networks with one single
handset, called network mobility. Since all modules

of an SDR are under software control, a change of the
functionality is easier to realize. Dedicated interfaces
will allow to add new services without the need of
hardware modifications.

Generation bridging will be eased, an important as-
pect since current and new standards like e.g. GSM
and UMTS will have to coexist for a transitional pe-
riod.

Another goal is reconfigurability: By modifying a
radio’s configuration software, its use with different
access networks and the adaptation to different air-
interfaces can be achieved. Since the protocols run-
ning at the base station (BS) and mobile station (MS)
are basically symmetrically, reconfigurability is appli-
cable to both network elements. Thereby an opera-
tor can built up an infrastructure that easily can be
reconfigured to support a new standard in addition
when necessary. This is interesting for both, devel-
oped countries that are in the migration from 2G to
3G mobile radio networks and for developing countries
that are planning to introduce mobile technology but
do not want to decide for a standard now due to the
unpredictable acceptance of the systems under con-
struction.

Reusability of software is a big concern. New air-
interface standards typically rely on well-understood
protocol stacks of predecessor systems. Cost intensive
re-engineering of software can be avoided and software
can be re-used if designed in a suitable way. Modular
software design entails several advantages. On the
one hand, portability of dedicated functionality is
supported. Using well defined interfaces, the same
module can operate within different systems. On the
other hand software-upgrades are easily facilitated,
as the respective modules can be changed individually.

There are a number of research issues that need to
be addressed, like

• the definition of elementary commonalities of the
various mobile communication systems,

• resource-sharing within telecommunication soft-
ware,

• modular software design and interfaces,

• reusability of software,

• interworking of different systems.

• structure of a generic protocol stack,

• nature of software extensions to an existent sys-
tem, or

• composition of an adaptive protocol stack archi-
tecture.

2.3 Specification

Since the configuration software and an implemented
protocol stack represent one important part of a

device, their structural composition, implementation
and realization is of fundamental research interest.
Having the ISO/OSI reference model in mind a
high degree of similarity can be found for different
air-interface standards. Concerning the control
software many features can be implemented as shared
resources. Applying DGAPS results in a generic
protocol stack, that provides a common basis for
a number of different systems. Specialization by
introducing standard-specific functions to the generic
stack stepwise results in a specific realization towards
a specific protocol stack.

2.4 Analysis

Identification of commonalities

In a first step (step 1) different systems, say System
I and System II, are analyzed layer by layer to iden-
tify their commonalities. A more detailed description
of the analysis process (exemplarily for DECT and
GSM) together with a reference implementation is de-
scribed in [10]. The number of different systems to be
considered may be two or larger. The result will be
an SDL specification of a common subset of the access
protocol stacks for the systems, see Figure 5. Since
this stack provides the common characteristics of the
considered air-interface standards it is called a generic
protocol stack.

Development of standard-specific supplements

The next step (step 2), see Figure 6, is to develop SDL
specifications specific to given air-interface standards,
say for System I or System II. These include func-
tions that are specific to respective standards and thus
represent the individual behaviour of a system. Dif-
ferent approaches can be taken to achieve that goal.

� �

�

�

�����
	�
�

�� �

�������������
� ��� �!�"�"�$#&%'�!()�$*

Figure 5: Generic protocol stack for various system
types

System_I System_II

Generic_protocol_stack

System_I_specific_protocol_stack

System_I_specific_part System_II_specific_part

System_II_specific_protocol_stack

step 3

step 2

step 3

same functionality
 step 1

communities

step 2

step 3

same
properties

same
properties

Figure 6: Interaction of components for an SDR pro-
tocol stack

In order to make use of the object-oriented proper-
ties of SDL together with inheritance, it is suggested
to implement these parts as subclasses derived from
base classes implemented within the generic stack.
This is of special advantage, if more than two sys-
tems are considered; procedures that are common to
most but not necessarily to all standards still will be
implemented within the generic stack. The standard-
specific supplements than will have to redefine the
respective procedures and the behaviour required is
achieved then.

Integration of a dedicated air-interface
standard

To end in a dedicated air-interface standard, the
generic protocol stack and the standard-specific sup-
plement, have to be merged (step 3). This is done
by means of inheritance. Figure 6 shows the correla-
tions and dependencies of the aforementioned parts in
the notation of UML. In order to distinguish between
a specific protocol stack that is designed either con-
formant with the above presented approach or not,
the notation System X (non-conformant) and Sys-
tem X specific protocol stack (conformant) is used.

2.5 Design/Implementation

All the software specifications are being done formally
with the help of SDL[11]. SDL provides language
constructs for object orientated software design that
support features like inheritance and information hid-
ing. Because of its graphical (besides an equivalent
phrase-) representation and an easy to understand
finite state machine basis, SDL has been accepted
worldwide for the specification of communication pro-
tocols.

To obtain the portable source code from an
SDL specification, an automatic translator, called
SDL2SPEETCL [12], is used. It takes the phrase
representation (SDL/PR), generated by the SDT-
Analyzer [13] (thus syntactical and semantical errors
are excluded), as input and maps the system be-

haviour to classes of SPEETCL (SDL Performance
Evaluation Tool Class Library) [6]. SPEETCL is a
C++ class library developed for the integration of
protocols specified in SDL into an event-driven simu-
lation environment.

2.6 Optimizations/Validation

Optimization of the SDL-Specifications

To result in a run-time efficient code after translation
it is necessary to undertake some code optimization.
Investigations have shown that the following rules will
result in a substantial speed-up:

• use of pointers in SDL instead of parameter lists

• decrease the number of process switching

• reduce the number of events and timers

• replace SDL data types by C-code constructs

Further Optimizations

In a final step those parts of the code are to iden-
tify that are most frequently used during runtime and
the respective functions have to be considered to be
implemented in hardware, say in FPGAs etc.

In fact, these aforementioned improvements mostly
are not workable right from the beginning. Instead
the identification process is part of the recursive cycle
of the evolutionary model followed by SPEET as
explained in section 1.3.1.

The optimized SDL specification can be guaranteed
to be conformant to other specifications, since errors
would appear when running against each other. Con-
formance thus will be reached after removal of these
errors in the informally implemented code.

3 Conclusion

The focus of this paper is to point out a method for
(protocol) SW design. Thereby it is important, that
the software features by a high degree of genericity
which allows employment as a basis for current and
future mobile communication systems.

The first part of this paper therefore explains the
process model as well as respective paradigm to be fol-
lowed to design SW. Additionally the (partly orthogo-
nal) quality aspects under which the development has
to take place are presented. The use of CASE tools
thereby is inevitable. One of these tools, SPEET,
together with its components subsequently simplifies
the different phases by providing an environment ac-
companying the development process.

The second part describes a method of design-
ing generic and adaptive protocol SW (DGAPS) for
current and future 3G/4G systems. The respective

phases within the life cycle are taken up and con-
nected to concrete development tasks.

Following these ideas avoids cost-intensive re-
engineering since the achieved SW will distinguish
oneself by a long life time, for use in XG mobile com-
munication systems.

References
[1] ITU-T, “Specification and description language (sdl).” ITU-T

Recommendation Z.100, Nov. 1999. 1.1

[2] D. Klöditz, “Software-Entwicklungstechnolo-
gie.” http://www.inf.hs-anhalt.de/˜Kloeditz/Infor-
matik/17Softwaretechnologie/index.htm. 1

[3] M. Steppler and M. Lott, “Speet – sdl performance evaluation
tool,” in Cavalli and Sarma [15], pp. 53–67. Dieses Dokument
ist unter http://steppler.de frei verfügbar. 1.3, 1.3.1

[4] M. Steppler, “Performance analysis of communication systems
formally specified in sdl,” in Tagungsband des

”
First Interna-

tional Workshop on Simulation and Performance ’98“ (C. U.
Smith, P. Clements, and M. Woodside, eds.), (Sante Fe, Neu-
Mexiko, USA), pp. 49–62, acm, 12.-16. Oktober 1998. Dieses
Dokument ist unter http://steppler.de frei verfügbar. 1.3

[5] M. Steppler, W. Olzem, and C. Lampe, SDL2SPEETCL –
SDL-PR to C++ Code Generation Using the SPEETCL.
comnets, sep 1998. 1.3.1

[6] M. Steppler, SPEETCL — SDL Performance Evalua-
tion Tool Class Library, Rel. 3.2.0. AixCom GmbH
(www.aixcom.com), Dec. 2000. 1.3.1, 2.5

[7] International Telecommunication Union Q.6/10, Performance
Measurement of SDL Specifications – The New SDL Probe
Symbol, (Erlangen, Germany), 17th–19th February 1998.
1.3.1

[8] “http://www.sdrforum.org.” Homepage SDR Forum Web Site.
2.2

[9] J. Mitola, “Technical challenges in the globalization of software
radio,” in IEEE Communications Magazine, February 1999,
pp. 84–89, February 1999. 2.2

[10] M. Siebert, “Design of a Generic Protocol Stack for an Adap-
tive Terminal,” (Proc. of the 1st Karlsruhe Workshop on Soft-
ware Radios, Institut für Nachrichtentechnik Karlsruhe, Ger-
many), pp. 31–34, March 2000. 2.4

[11] A. Olsen, O. Færgemand, Møller-Pedersen, R. Reed, and
J. Smith, Systems Engineering Using SDL-92. ELSEVIER
SCIENCE B.V., 1994. 2.5

[12] M. Steppler, SDL2SPEETCL — An SDL to C++ code gen-
erator, Rel. 4.1.0. AixCom GmbH (www.aixcom.com), Dec.
2000. 2.5

[13] Telelogic, Malmö, Sweden, SDL Design Tool (SDT) 4.1 Ref-
erence Manual, 2000. 2.5

[14] B. Walke, Mobile Radio Networks. Chichester, UK: Wiley,
2nd ed., 2001.

[15] A. Cavalli and A. Sarma, eds., Tagungsband des 8. SDL-Fo-
rums: SDL ’97 – Time for Testing – SDL, MSC and Trends,
(Evry, Frankreich), 23.-26. September 1997. Dieser Tagungs-
band kann unter http://www.elsevier.nl bestellt werden. 3

[16] Hering, Gutekunst, and Dyllong, Informatik für Ingenieure.
No. ISBN 3-18-400944-0, VDI Verlag, 1995.

http://steppler.de
http://steppler.de
http://www.elsevier.nl

	1 Software Development
	1.1 Software Life Cycle
	1.2 Quality Aspects
	1.3 CASE-Tool: SPEET
	1.3.1 SPEET Tool components

	2 Design of 3G/4G Protocol Software
	2.1 Problem Description
	2.2 Feasibility Study
	2.2.1 1. Requirements on SDRs

	2.3 Specification
	2.4 Analysis
	2.5 Design/Implementation
	2.6 Optimizations/Validation

	3 Conclusion

