
Performance Analysis based on Finite Stochastic State
Machines using Generative Radio Channel Models

Martin Ostermann, Herbert Steffan

Institute Communication Networks Aachen University of Technology
e-mail: ost@comnets.rwth-aachen.de

WWW: http://www.comnets.rwth-aachen.de/˜ostAbstract | Recent research results use finite stochas-
tic state machines (FSSM) as a model to describe the
error characteristics of radio channels. Certain classes
of protocols on the sender and receiver side of a broad-
casting system can be described as finite state machines
(FSM) or FSSM as well. A complete scenario will yield a
common finite stochastic system (CFSS).

Common finite stochastic systems describe an inter-
connected aggregate of FSSM which communicate with
each other. For such a system, the static state probabil-
ities can be calculated by solving a huge system of lin-
ear equations. The generation of such a system of linear
equations is known as the state space generation prob-
lem. The usual approach of state space generation needs
to be optimized in order to minimize time and space re-
quirements. This is especially true for CFSS of extended
finite stochastic state machines.

Merging a CFSS into one common finite stochastic
state machine in advance to the state space generation
is one way to save time and space and to retain impor-
tant ordering information useful for applying optimized
sparse matrix algorithms on the resulting linear equa-
tions.

Besides an introduction into the algorithms involved,
this paper discusses how these could be applied to the
examination of an ARQ type protocol. A simple example
is given as well.

I. I NTRODUCTION

A. Objectives

In mobile radio communication environments, the quality
of transmission is significantly influenced by fading of the
signal envelope. Traditionally,burst error behaviour of radio
channels is modeled by stochastic processes.

For mathematical performance analysis, there have been
only few known methods describing the error behaviour of
the radio channel. Stochastic simulation and mathemati-
cal analysis of communication links need better models of
symbol error, which have been developed in previous works
[1, 2, 3].

As we now have more appropriate models, with a struc-
ture that fits mathematical analysis as well as stochastical
simulation, we try to extend the range of applications suit-
able for analysis.

B. Investigating Common Finite Stochastic Systems.

These models are useful for mathematical analysis based
on stochastic finite state machines. In addition to the ra-
dio channel, the communication protocols of the radio sta-
tions can be modeled as (stochastic) finite state machines.
It is now feasible to build a common finite stochastic sys-
tem involving the channel and the two communicating sta-
tions. This common system can be mathematically anal-
ysed. In order to handle complex protocols, which may
lead to systems with several thousands of separate states,
it is necessary to develop rules suitable for machine pro-
cessing and to explore all measures to reduce the number
of states involved, e.g. an effective way of handling ex-
tended finite state machines. This is a new approach in con-
trast to algorithms that are based on matrix computations,
which do not attempt to reduce the number of transitions
involved [4, 5, 6].

II. RADIO CHANNEL MODELS

Channel state models are used to investigate error control
algorithms. Each state is related to a certain symbol error.
Calculating the transition probabilities of the state model re-
quires some effort, but the main problem originates from
the fact, that probabilities must be calculated again, when
changing the scenario, e.g. the velocity of a mobile station.
The fading processes can be approximated by state models.
Using a Markov chain requires less numerical effort than us-
ing digital filters. Fig. 1 shows the respective principle [3].

A. Markov Models

Let S = f0; 1; 2; : : :;Kg ;K 2 IN define a fi-
nite set of states andfSng; n 2 IN0 be a homoge-
neous Markov process. The transition probabilitiespi;j =
PrfSn+1 = jjSn = ig are independent of indexn. They
can be determined by observing the original fading processfA(n)g. Let A = fA1; A2; A3 � � � ; AKg define a set of
thresholds withAi < Ai+1. Thus,fSng is said to be in
statei at time instantk if Ai < A(k) < Ai+1 for n 2IN0; i = 1::(K � 1). As a first approximation consecutive
values are assumed to be neighbouring states. That meanspi;j = 0 for all ji � jj > 1: For exact derivations see [1]
where level crossing rates are used for calculation. A better
model can be build by derivingall transition probabilities.

K

4

3

2

0

1

power of the signal

time

Fig. 1: Modeling Principle

The maximum likelihood estimator for the transition
probabilities can be derived by observing the transitions of
the original process. Ifni;j denotes the number of observed
transitions from statei to statej andni denotes the total
number of transitions leaving statei, then the estimator isp̂i;j = ni;jni i; j = 1::K.

III. M ERGING FSSMS

A. Definitions

Because we will give a rather informal description of the
algorithm, only few formal definitions will be useful.

Definition 1 A(X;Y; S; �d) is called (deterministic) state
machine, if� X;Y andS are non-empty sets, and� �d is a unique transformation of the product setX � S

into the product setS�Y.X is called thecondition set, andY theoutput set.

Definition 2 An state machine is calledfinite state ma-
chine, if X, Y andS are finite sets.

Definition 3 Stochastic State Machines.

Since definitions for stochastic state machines is complex
without being helpful for understanding, we will give an in-
formal description only:� it is similar to the deterministic finite state machine,� now the transitions are only probable withp 2 (0 : : :1],

and� the sum of the probabilities of all transitions exiting one
state for one condition isnXi=1 pi = 1:

Definition 4 �s(s; x; s0; y; p), denoted ass ! s0 : x=y; p,
describes thetransition of a stochastic state machine�s, if�s 2 �s.
Definition 5 Internal Inputs and Outputs are those,
which occur between the two machines to be merged. The
data exchange can be classified by three types of communi-
cation:� active internal communication,

if the transition needs an external (no internal) input, but
an internal output,� passive internal communication,
if the transition contains an internal input; The type of
the output does not matter, or� no internal communication (external communica-
tion),
if the transition neither involves internal input, nor inter-
nal output.

Fig. 2 gives an example with five states and five tran-
sitions. The symbolsa andd are external, whileb and c
are internal symbols. The transitions of the ‘active internal
communication’ type are depicted with thick lines, the ones
belonging to the ‘passive internal communication’ type use
normal strength, and the external1 one features dashed lines.

B. Algorithm

This section will give an informal description of the al-
gorithm.

The merging is based on transitions, and involves two
separate, subsequent steps. While building the common
FSSMC out of two FSSMsA1 andA2, two phenomena
have to be handled:Concurrency of transitions andChain-
ing of transitions (chained transitions).

We speak ofconcurrency, if� A1 containss1 ! s01 : x1=y1; p1� A2 containss2 ! s02 : x2=y2; p2�) C containss1 � s2 ! s01 � s02 : x=y; p
with y = y1 � y2 andp = p1 � p2, if x1 = x2 = x
1Please note, thats! s0 :;p is an abbreviation ofs! s0 : [clock]; p,

with [clock] being an implicit external symbol.

a/b
b/c

0.5;

/d

d/b

Fig. 2: Elimination of Transition Chains: Example Setting

for any combination of transitions contained inA1 andA2.
After that has been done, all remaining transitions with

internal inputs are copied to the new FSSMC.2 Please note,
that this means that for each transition�1 2 �1 and every
states2 2 S2, there will be a transition�c.3

A chain of transitions is observed, if� a transition�1 outputs an internal symbolx1,� which fits the conditiony2 of another transition�2, and� the final states01 of the first transition matches the initial
states2 of the second transition.

We can now substitute the first transition by a new one,
which� contains the conditionx1 of the first transition, and� contains the outputs of both transitionsy1 andy2, and� transforms the initial states1 to the final states02� and is executed with the probability equal to the productp = p1 � p2 of the original probabilities.

In our iteration process, we only substitute transition
chains which contain ‘active internal communication’ type
transitions. We continue this substitution process until there
are no transitions of the ‘active internal communication’
type left. If this is done, we can also discard the transitions
of the ‘passive internal communication’ type, as they are no
longer triggered.

As you may have noticed, the result of this substitution
process may no longer fit our definition of the state machine
given in Definition 3, since only one input and output sym-
bol was allowed. We can deal with this by introducing the
combined symboly1 � y2, and in addition we need to adjust
the other state machines to make them react on the combined
symbol instead of the original ones. However, if one of the
original state machines contains a pair of transitions from
the same state, each reacting on one of the two symbolsy1
andy2, the result is no longer a stochastic state machine,
but instead an indeterministic state machine, since we are
not able to determine the probability for which of the two
transitions will be taken.

But in this case, the indeterminism was a property of the
original CFSS as well. The tool is not able to resolve this
indeterminism but ought emit an error message instead.

C. Elimination Example

Let us reconsider the example given above (Fig. 2). Dur-
ing the first iteration, we are able to substitute two instances
of chained transitions involving ‘active internal communi-
cation’ type transitions. (Fig. 3). In one case we get a tran-
sition of the ‘external communication’ type, the other case
yields a result involving the ‘active internal communication’
type again. Thus we do another iteration (see Fig. 4).

2This step can be optimized by combining it with the first iteration of
the elimination process that follows.

3The same is true for�2 ands1 .

b/c

0.5;

a/c

d/b

/b

Fig. 3: Elimination of Transition Chains: Initial Step

b/c

0.5;

d/b

/c

a/c

Fig. 4: Elimination of Transition Chains: 2nd Iteration

After this second step, there are no longer transitions of
the ‘active internal communication’ type left. Since the in-
ternal symbolsb andc do no longer appear as output sym-
bols, those transitions of the ’passive internal communica-
tion’ type will never be taken, and we can eliminate them
(Fig. 5).

0.5;

/c

a/c

Fig. 5: Elimination of Transition Chains: Final Result

D. Steady State Probabilities

Once we have joined all FSSMs involved, we eliminated
all input symbols except the implicit clock symbol. Thus,
the final CFSSM is autonomous and can be described as a
Markov chain. With the help of a standard Markovian anal-
ysis, we can calculate the steady state probabilities [3].

IV. EXAMPLE

This section explains how to apply these algorithms to
performance analysis problems. For the sake of simplic-
ity, a simplified protocol description is used, to avoid the
use of extended finite state machines. However, the same
techniques could be applied to more complex protocols. A
prototype tool has been developed to automate the merging
process.

The general course of action is alway the same.� Firstly, we need to obtain an adequate machine readable
description of the protocol which is to be analysed in
terms of a finite stochastic state machine. This is denoted
as a set of transitions for each state machine involved.� Using the tool, we can now combine two FSSMs at a
time. Each combination process will yield another FSSM
to be combined with the FSSMs left (see Fig. reftool). An
iterative process involving all FSSM will yield the result-
ing CFSSM. The sequence of a combination process does
not make a difference concerning the final result. How-
ever, it has an effect on the effort needed, and a carefully
chosen sequence can greatly reduce the computational
power needed. As a rule of thumb, it is only desirable
to merge two FSSMs which actually communicate with
each other (e.g. share input and output symbols). This is
because unrelated state machines cannot be merged, but
will only blow up the state space which is to be examined
in later mergings.� After all FSSM have been merged into on CFSSM, the
steady state probabilities can be computed.� The last step involves the evaluation of the results by the
operator. Steady state probablities of a singe FSSM can
be obtained by adding up the steady state probabilities of
all states of the CFSSM which evolved from the FSSM in
question.

To obtain a series of results, scripting tools can be ap-
plied.

Please note, that we have choosen this example for the
sake of easy understanding, rather then to present realis-
tic protocols and error ratings. Such are parameters, which
could be easily adjusted.

A. Model

In order to examine ‘Repeat Request’- and ‘Selective
Reject’-protocols (like HDLC4), it is possible to make cer-

4Highlevel Data Link Control

FSS M1

FSS M1.M2

FSS M2

Parsing of the

FSSM description

Merging of the

FSSs into on common FSS

File1 File2

st1 > st2: ;0.9

st2 > st1: ;0.1 st1 > st2: in/out ;0.7

st1 > st2: in/ ;0.3

Fig. 6: Basic Merging Process

tain simplifications5 In order to reduce the total count of
states, we need to select the information which is of impor-
tance to us.

We are interested in the throughput of the protocols,
whilst the data which is transmitted through the packets is
not of interest. Thus, in the case of a ‘Selective Reject’ pro-
tocol it is possible to neglect which packets need retransmis-
sion and instead we only need to count how many have to
be repeated. We can use the same model as we do for the
‘Automatic Repeat Request’ type. The type of the protocol
then is just influenced by the probabilities assigned to the
count of the packets to be retransmitted.

We examine an ARQ system which contains the follow-
ing components:� a transmit buffer, which holds the packets until the are

enough to transmit6,� a repeater, which transfers the packet that need retrans-
mission back to the transmit buffer,� thepacket source, which as well holds a buffer,� a timing device, which controls the reloading of the trans-
mission buffer, thus useful to adjust the load, and� thechannel, which has been joined with thereceiver. To-
gether they determine the count of packets which have to
be repeated on a stochastical base.

The window size has been set to four as well. Please,
refer to Fig. 7 and Fig. 8 for the state machine definitions.

B. Results

The following results have been obtained for a channel
with just one state and a packet error rate of 5%, using a
simple ‘Reject’ protocol. The actual screen output of the
tool is shown. The output of the raw steady state probablities

5It is desirable to let the tools do the simplifications on itself. But this
needs further research.

6We assume an interleaving of four packets at a time on the channel.

rep0rep

/ repe1 /

e2 /

e3 /

e4 /

e0 /

/ next

rep4

rep3

rep2

rep1

/ rep

/ rep

/ rep

0

1

2

3

rep /

rep /

rep /

rep / out

queue.out / next

queue.out / next

queue.out / next

queue.out/next

Fig. 7: Transmitter

; 0.5

; 0.5

queue.ack / queue.out

1

2

3

queue.ack /

start

0

queue.ack / queue.out

queue.ack / queue.out

/queue.out

w0

/ queue.ack

w1

next /

; 0.5

; 0.5

; 0.5

; 0.5

; 0.5

; 0.5

; 0.5

; 0.6

; 0.5

x1

x0

out / e0 ; 0.8

out / e0 ; 0.96
out / e1 ; 0.01
out / e2 ; 0.01
out / e3 ; 0.01
out / e4 ; 0.01

out / e4 ; 0.05
out / e3 ; 0.05
out / e2 ; 0.05
out / e1 ; 0.05

; 0.4

Fig. 8: Packet Source and Queue, Timer, Channel (2 states)

(of 65 different states left) of the CFSS have been omitted
for the sake of brevity. In a realistic scenario, they are not
useful for human analysis anyway.

Sorted according to the FSSMs, adding the separate

states up, we get:� Transmit Buffer

0 = 0.240155
1 = 0.246998
2 = 0.253376
3 = 0.259471� Repeater Buffer

rep = 0.798436
rep0 = 0.134376
rep1 = 0.026875
rep2 = 0.020156
rep3 = 0.013438
rep4 = 0.006719� Timer

w0 = 0.637186
w1 = 0.362814� Source

start = 0.435622
0 = 0.473397
1 = 0.057784
2 = 0.027575
3 = 0.005621

C. Evaluation

This section is about obtaining the relevant data out of
the simplified model.

Throughput. All packets that have been created but were
not lost, get transmitted to the receiver. These are all pack-
ets, that were not created while the source buffer was in state3. Thus, we add up all steady state probabilities which do
not contain state3 and we multiply the result with the prob-
ability for a packet created in this state, which has a value of0:5. We get np = 0; 5 �Xsp 6=3S1(sp),
which accounts to0; 4971895 packets per slot7. This is the
throughput which is observed.

7The values have been put down with all available digits in order to
enable the reader to follow this example easily. Of course, the actual pre-
cision depends on the accuracy of the radio channel model. Furthermore
numerical stability problems must be considered.

Retransmitted Packets. Whenever the repeat buffer is
neither in staterep nor in staterep0, it is retransmitting a
packet on the channel. Thus, we getnw = Xsw2RS1(sw) ; with R = frep1 : : : rep4g,

equal to6; 7188% of the time. Together with the packets
sent for the first time (equal to the packets generated and not
lost), the channel is busynb = np + nw,

which is 56; 43775%, of the time, which means it tries to
transmit a packet. Furthermore, we yield the information
that nv = nwnb ,

equals to11; 904798%, of the packets transmitted on the
channel were lost and need to be retransmitted.

V. CONCLUSIONS

So far, simple communication protocols have been suc-
cessfully analysed using the method described above [7].
Ongoing work is focusing on resolving the problems in-
volved with this method, especially concerning the use of
extended finite state machines as a means to describe more
complex communication protocols. Also the concept of
time (for example, consider concurrency in contrast to par-
allelism) needs careful examination.

We believe that these methods are applicable on the phys-
ical and data-link layers of communication protocols, as
well as on a broad range of other technical applications.

VI. REFERENCES

[1] H. Steffan, “Generative Radio Channel Models for
Analysis and Simulation,” inProceedings IMACS
Mathmod, (Technical University Wien), pp. 753–759,
1994.

[2] H. Steffan, “Generative Radio Channel Models for
Analysis and Simulation and their Properties,” in8.
Aachener Kolloquium für Signaltheorie - Mobile Kom-
munikationssysteme, (Aachen, Germany), pp. 149–153,
1994.

[3] H. Steffan, Stochastische Modelle für den Funkkanal
und deren Anwendung. PhD thesis, RWTH Aachen,
Aachen, June 1995.

[4] L. Kittel, “Eine Anwendung stochastischer Automaten-
modelle zur Ermittlung günstiger Blocksynchronisa-
tionswörter für die digitale Funksignalisierung,”3.
Aachener Kolloquium, RWTH, pp. 125–128, 1979.

[5] L. Kittel, “Zur Modellierung diskreter Fehlerprozesse
durch stochastische Automaten und Anwendung im
Mobilfunk,” 4. Aachener Kolloquium, RWTH, pp. 135–
138, 1981.

[6] L. Kittel, “Automatentheoretische Analyse vonÜbertra-
gungssystemen für leitungscodierte Digitalsignale,”
NTG-Fachtagung, Neue Aspekte der Informations-
und Systemtheorie, Garmisch-Patenkirchen, NTG-
Fachberichte 84, pp. 155–169, Mar. 1983.

[7] M. Ostermann, “Entwicklung eines Werkzeuges zur
Verwaltung stochastischer Automaten,” Master’s the-
sis, RWTH Aachen, Lehrstuhl Kommunikationsnetze,
Aachen, 1995.

