
Stochastic Automata Network Description of Layer-2 Radio
Communication Protocols for Performance Analysis

Martin Ostermann

Chair of Communication Networks – Aachen University of Technology
e-mail: ost@comnets.rwth-aachen.de

WWW: http://www.comnets.rwth-aachen.de/˜ostAbstra
t | Stochastic Automata Networks (SANs)
have been in use for several years to perform the nu-
merical analysis of certain modelling problems, to sub-
stitute or to complement methods like queuing models,
Petri-nets, etc. By the use of an SAN descriptor, large
Markov chains can be described by small matrices of
the size of the underlying single components of an au-
tomata network. However, the memory savings have to
be paid for by an additional computational overhead. It
is often stated that the SAN approach is not suitable for
networks with many synchronisation points.

In this paper a technique is presented which allows
SANs to be utilised to analyse tightly coupled networks,
like those that describe the behaviour of point to point
communication protocols over stochastic channels. We
describe how to derive a well defined SAN description
from the procedural notation or state definition of a
given protocol.

Solving the static state probabilities of the overall sys-
tem is the key to obtain any performance parameters.
Computational issues, i.e. the effective multiplication of
a vector with the SAN descriptor, are examined. It is
shown that splitting up the transitions into additional
sub-steps may have advantages in simplifying the mod-
elling process as well as speeding up the analysis. The
technique is presented with an example for analysing the
traffic performance of a simple layer-2 (ISO/OSI) proto-
col over a fading radio channel.

I. I NTRODUCTION TOSTOCHASTIC AUTOMATA

NETWORKS

The basic model utilised by the SAN approach is a group
of interacting automata. Good introductions are given in [?],
[?], and [?] . The interaction is achieved either by the means
of synchronising events or functional transitions. Synchro-
nising events take place when a transition in one automa-
ton is forcing at least one transition in a different automa-
ton. Pure functional transitions are local to one automaton,
but their transition probabilities depend on the global state
space of all involved automata. Synchronising events may
also be functional.

The SAN descriptor is used to describe the correspond-
ing Markov chain of the network. By the use of tensor
products (also known as Kronecker products [?]), compact
descriptions of huge Markov chains can be achieved. The
transition matrix of the system can be described as a sum ofNp tensor productsP = NPXj=1
Ni=1P (i)j ;

whereN denotes the number of automata connected. Note
that when considering functional transitions, the matricesP (i)j describe functions. WhileP is a stochastic matrix, the

individual matricesP (i)j do not need to be stochastic matri-
ces themselves.NP increases linearly with the number of
synchronising events [?]. This may appear to be prohibitive
in case of tightly coupled networks, but we will see that
most coupling can be described by the use of functions in-
stead. Also, the matrices of those additional terms usually
are sparse, a fact that can be exploited for efficiency.

Quite rigorous restrictions on the transitions described
by an SAN are necessary to avoid ambiguities resulting in
nondeterminism [?]. This paper proposes a technique to de-
rive a well defined SAN descriptor from a procedural nota-
tion or state machine definition of the protocol to be exam-
ined.

A. Local Transitions

Let us first examine the transition matrices of two inde-
pendent automata with two states each:P (1) = � 1� �1 �1�2 1� �2 � ;P (2) = � 1� �1 �1�2 1� �2 � :
The transition matrix of the Markov chain that describes the
combined global system is easily derived and is shown asPg in Table 1. This result can also be expressed by using
tensor algebra as Pg = P (1)
 P (2):
B. Synchronising Events

If, for example, the second automaton is forced into
state 1 whenever the first automaton switches from state 2 to
state 1 (with the probability�2), this is called a synchronis-
ing event and the automata are no longer independent. We
get the matrixP 0g , which is also shown in Table 1.

This can be expressed asP 0g = P (1)l 0
 P (2)l 0 + Pe1withP (1)l 0 = � 1� �1 �10 1� �2 � ;P (2)l 0 = � 1� �1 �1�2 1� �2 � ;
and the synchronising event given by

Table 1: Example matrices without (Pg) and with (P 0g) a synchronising event.Pg=0B� (1� �1)(1� �1) (1� �1)�1 �1(1� �1) �1�1(1� �1)�2 (1� �1)(1� �2) �1�2 �1(1� �2)�2(1� �1) �2�1 (1� �2)(1� �1) (1� �2)�1�2�2 �2(1� �2) (1� �2)�2 (1� �2)(1� �2) 1CAP 0g = 0B� (1� �1)(1� �1) (1� �1)�1 �1(1� �1) �1�1(1� �1)�2 (1� �1)(1� �2) �1�2 �1(1� �2)�2 0 (1� �2)(1� �1) (1� �2)�1�2 0 (1� �2)�2 (1� �2)(1� �2) 1CA
Pe1 = 0B� 0 0 0 00 0 0 0�2 0 0 0�2 0 0 0 1CA = � 0 0�2 0 �
� 1 01 0 � :

The description has been split into a so-called local part
Ni=1P (i)l and the synchronising eventPe1 . When more than
one synchronising event is present, each is described by its
own tensor product, whereas the local part can always be de-
scribed by a single tensor product. The local part describes
all transitions which are not induced or prohibited by other
automata. It may still contain functional dependencies.

Each synchronising event is described by a tensor prod-
uct of matrices, containing one matrix for each automaton
in the system. One automaton is said to “own” the synchro-
nising event1. It performs a local transition with a prob-
ability described in its matrix. The other matrices can be
considered as routing matrices. They often have a distinc-
tive form. In case of the forced setting of a specific state,
this is a sparse matrix with a single column of unity entries.
The matrices of the automata which are not involved in the
synchronising event are the identity matricesIni . The SAN
needs to be well defined so that no synchronising events in-
terfere with each other [?].

We suggest to achieve that by restraining the owning of
synchronising events that control a certain automaton to a
single automaton (See Section II.D). This ensures that there
will be no active transitions that contradict each other, and
there will be no aggregated behaviour either. As a side ef-
fect, the local transitions are eliminated, but they are em-
ulated by automata matrices which appear in a number of
synchronising events. While it might appear that this is a
rather severe restriction, we will see that the model is still
expressive enough, especially since we have not put any re-
strictions on the use of functions. Also note that an automa-
ton may still control several other automata, even with a
single synchronising event.

II. M ODELLING OF LAYER-2 COMMUNICATION

PROTOCOLS

A. Suitable protocol classes

There are certain constraints on the type of protocols
suitable for a discrete time Markov chain analysis.

1In the above example, this is the first automaton.

� For example, the number of communication partners
must be low, because the state space increases exponen-
tially with the number of automata involved. We need to
store the stationary probability vector, so the number of
(reachable) states may not exceed our main storage capa-
bilities.� Also, in order to combine several discrete time Markov
chains, they must proceed synchronously. Basically, this
implies that the whole system is virtually timed by a com-
mon clock.� In order to reduce the global state space, it is advisable
to model as broad as possible without losing accuracy in
the performance analysis. In case of fixed packet sizes
or fixed slot times in layer-1, the preferred time step
would be the duration of one packet or one slot. Protocols
which use fixed length PDUs (Protocol Data Units) like
ATM (Asynchronous Transfer Mode) and GPRS (Gen-
eral Packet Radio Service) [?] thus appear well suited for
this approach, too.

Consider a typical synchronous communication protocol.
We further assume a slotted behaviour and packets of con-
stant size, such that one packet is transmitted during each
time slot. The transmission of the messages does take some
time, so that the receiving side cannot react on the informa-
tion transmitted before the following time-slot. We allow
for a full-duplex behaviour, i.e. both sides may transmit and
receive simultaneously in one time-slot, as well as for an
interleaved scheme, where only one side is transmitting in
one time-slot. The transmissions can be disturbed, so that no
packet is transmitted to the receiving side. The packet error
ratio is described by an independent stochastic Markov pro-
cess. This model allows for a simple Gilbert-Elliott model
as well as for much more complex stochastic error mod-
els, like the generative radio channel models described in
[?]. The behaviour of each side is described by an extended
finite state machine (EFSM), i.e. there is a certain control
flow that acts on some variables. We also consider the use
of timers to allow for time-out alarms.

B. Implementation of protocol components

Following these provisions, we suggest the following
implementation rules (see also Fig. 1 for a graphical rep-
resentation of an example):

Each variable is modelled by a separate automaton, which
can be set by a synchronising event of its associated core.

Instead of setting a specific state, the new state may de-
pend on other variables. For example the core might re-
quest to copy the state of another variable. It also might
ask to add or subtract the value of a different variable, or
just to increment or decrement the state of the variable
itself. The local transition matrix of a variable is usually
the identity matrix.

Timers can be treated as special variables, which in ad-
dition perform independent state changes. Their transi-
tion matrices primarily contain non-zero entries in a sec-
ondary diagonal.

The core of the EFSM is modelled by a single automaton,
which may impose synchronising events on the associ-
ated variable automata that model the variables of the ma-
chine. The actions of the core automaton may depend on
the global state space, thus also on the state of the vari-
ables. The matrices describing synchronising events of
the core often can be obtained manually. In case of more
complex protocols, we suggest to use common compila-
tion techniques [?].

Layer-1 is modelled by one or more automata that hold the
result of a transmission. It acts much like an ordinary
variable, but its state is set by a synchronising event con-
trolled from the other side. This synchronising event thus
models the transmission, and therefore is functionally de-
pendent on the state of the channel.

The channel is modelled by an independent automaton. Its
state determines via functions the transmission proba-
bilities of information exchanged between both sides in
layer-1, modelling the packet error ratio.

A time-slot of the model may be subdivided into two or
possibly more sub-steps. This allows to separate the de-
scriptions of receiving and sending packets or to separate
between the communication to the upper and lower layers.
In Section III, we will apply this technique to analyse the
traffic performance of a simple layer-2 protocol over a fad-
ing radio channel.

C. Derivation of the state transition graph

In the previous section, we have discussed how to ob-
tain the components of the protocol model. We still need
to describe the behaviour of each component, especially the
actions of the core. In a first step, we need to derive the state
transition graph, i.e. a description of the next state of each
automaton based on the current state of the other automata.

One way to obtain such a graph is to start with a flow
diagram of the protocol code. We then need to modify the
decisions on which the selection of branches depends so that
they are based on the original states of the variables, instead
on intermediate or new states. This can be done by flatten-
ing the graph. A graph is flattened in two steps: First we
remove joints of branches by duplication of the remaining
parts. In a second step, we move the start of branches up
to the root of the graph. Each assignment on the way up
needs to be duplicated in both branches. Note that we do
not need to flatten out the graph by default, it is just a means
to simplify the process of obtaining the transition matrices.
Sometimes, it is better to leave some branches within a syn-
chronising event, especially if the branch is already based

on the original state of a variable and if no other decision
depends on its actions. In such cases, its actions (such as the
assignment or increment/decrement of variables) are imple-
mented as functional matrices that depend of the result of
the branch decision.

D. Derivation of the transition matrices

Within the SAN approach, the actions of each automa-
ton are described by transition matrices. There is one func-
tional matrix for each synchronising event the automaton is
involved in.

We use different synchronising events to select between
the top level branches of the state graph. We associate this
selection with the core automata, which often just consists
of a single state. Hence, this can be described by a boolean
function which is a translation of the decisions that select
the different branches of the flattened state transition graph.
A synchronising event is enabled if the boolean function
evaluates to one, otherwise it is disabled. Enabling all syn-
chronising events with a single automaton (which is said
to “own” the synchronising event, cf. Section I.B) has the
advantage that it is easy to verify that the SAN is well de-
fined. This is reduced to checking that one but only one of
the boolean functions of the core evaluates to true for each
global state.

Derivation of most other transition matrices is easy,
too. For example, assume a variable S should be in-
cremented if and only if it is equal to another variable
D. Let the dimension of both variables be three. This
“increment_if_equal()” function has a transition
matrixS for S dependent on the stateSD of D is given as2:

S = 8>>>>>>>>>>>><>>>>>>>>>>>>:
0� 0 1 00 1 00 0 1 1A if SD = 00� 1 0 00 0 10 0 1 1A if SD = 10� 1 0 00 1 01 0 0 1A if SD = 2

III. E XAMPLE PROTOCOL

In this section, we give a step by step introduction to the
modelling process of a simple layer-2 protocol. We have
chosen a sliding window protocol (Automatic Repeat Re-
quest, ARQ), but with simplifications to keep the model
descriptions short for this educational purpose. We omit-
ted timers, and we reduced the number of different types of
PDUs to two, positive or negative acknowledge with a data
field. If there is no new data to be transmitted, the repetition
of the last valid data and sequence number indicates this.
However, we also omitted a traffic generator, thus assuming
continuous traffic.

The following Sections III.A and III.B describe one in-
stance of the two communication partners A and B, that to-
gether with a channel model describe the complete scenario.
The channel is modelled by a discrete time Gilbert-Elliott

2We assume modulo arithmetic.

VS

VR

VA

Layer 2

VS

VR

VA

Channel

Fig. 1: ARQ protocol example scenario. We see queues,
timers, and variables controlled by two core automata im-
plementing the EFSM specification of the communication
protocol instances. Dashed arrows express functional de-
pendencies, while solid ones refer to synchronising events.

model. This automaton, which has thus two states, also
models the transport in layer-1 dependent on the state of the
channel. Its effect is modelled by an additional transition,
which acts in between the time-slots of the two communi-
cation instances and either transports the PDUs or indicates
an error. The actions of the two instances are interleaved,
which means that one instance gets an acknowledge for a
sent packet before the start of the next cycle. Hence, each
cycle consists of two time-slots with two sub-steps each:

1. Instance A acts.

2. A packet is transmitted (or disturbed) from A to B.

3. Instance B acts.

4. A packet is transmitted (or disturbed) from B to A.

A. Verbal description

Each PDU is identified by the packet sequence number
P, which identifies the data content. An acknowledge field
Q contains the sequence number of the last packet correctly
received. The type field of the PDU indicates whether this is
a positive or a negative acknowledge. A positive acknowl-
edge states that the instance issuing the acknowledge has
received this as the last valid packet. It is to notify the send-
ing party that its packet has been correctly transmitted. A
negative acknowledge states that an out of order packet has
been received, and it requests to resend all packets that fol-
lowed the sequence number in the acknowledge field.

Each protocol instance keeps three variablesVS,VA, and
VR. VS holds the sequence number of the last packet sent.
VA holds the value of the last received acknowledge. Thus
VS andVA keep the status about transmitted data.VR keeps
the status of the received data. It contains the sequence num-
ber of the next expected packet.

The difference betweenVS andVA thus describes the
amount of packets that have been transmitted, but not ac-

knowledged yet. Thesend window size (WS) is a system pa-
rameter that determines whether a new packet can be send,
i.e. if the sequence number can be incremented. This is the
case if the difference betweenVS andVA is less than the
send window size.

B. Procedural description

We continue by giving a more formal definition in a pro-
gramming language similar to C. In each time-slot, the re-
ceive part is executed before the transmit part. We omitted
the part which is responsible to handle the data content of
the packet, since it is not needed for a performance analysis.
Instead, we focus on the handling of sequence numbers.

int VS, VA, VR;
int Q, P;
enum { DATA, REJ, ERR } T_in, T_out;

The variablesQ,P, andT_in take the values of the received
packet.T_out is a temporary variable to describe the type
of the packet to be sent. All actions on variables that hold
sequence numbers are considered modulo arithmetic with-
out further notice.

receive(&T_in, &P, &Q);
if (T_in == ERR) goto TRANSMIT;
if (P == VR)

{ VR++, T_out = DATA; }
else if (P < VR)

{ T_out = DATA; }
else /* P > VR */

{ T_out = REJ; }

The receive part is responsible to handle the incoming data
stream. The acknowledge field of the incoming packet be-
longs to the outgoing data stream and is thus handled by the
transmit part.

First, the variablesQ, P, andT_in are initialised with
the values of the received packet. In case of an transmis-
sion error, theT_in variable containsERR, and the other
variables are invalid. Therefore, in line 2, the receive part
is left in case no valid packet was received. Otherwise, the
remaining commands setVR and theT_out type depen-
dent on the relation between the received packet sequence
number and the expectation stored inVR.

TRANSMIT:
if (T_in == DATA)

{ VA = Q; }
else if (T_in == REJ)

{ VA = Q, VS = Q}
if (VS-VA < WS)

{ VS++; }
send(T_out, VS, VR-1)

The transmit part first handles acknowledges. If a valid
packet was received, theVA variable is set to its new state.
If the acknowledge was negative, theVS variable is set back
to indicate that these packets need to be resent. After that,
it is decided whether it is possible to send a new packet. It
is important to recognise that the variableVA might have al-
ready be changed prior to this, and the decision is based on
its new state.

In any case, a packet is sent at the end. If theVS variable
was not incremented, the last packet is retransmitted.

P<VR

VS’= VS + 1

yesno

<WS
VS-VA

T ="I"
VR’=VR

VA’=Q
VS’=VS

dataw

out

VA’=Q VS’=VS+1

VR’= VR+1

no yes

VR’=VR+1
VA’=Q

I(VS’,VR’-1) I(VS’,VR’-1)

yesno

VA’=Q
VA’=Q

T ="I"
VR’=VR

VA’=Q

outT ="I"
VR’=VR

VA’=Q
VS’=VS

rej rejsw

yes

yes

outT ="REJ"
VR’=VR
VS’=Q+1
VA’=Q

I(VS’,VR’-1)

rep

I(VS’,VR’-1)

outT ="I"
VR’=VR

outT ="I"
VR’=VR

VA’=VA
VS’=VS

VA’=VA
VS’=VS+1

I(VS’,VR’-1)

err errw s

no

P== VR

I(P,Q)

P>VR

no

 ?

VS’=VS + 1

yesno

VA’=Q
VA’=Q

I(VS’,VR’-1)I(VS’,VR’-1)

START

VS’=VS+1

out

REJREJ
(VS’,VR’-1) (VS’,VR’-1)

VS-Q
<WS

VS-Q VS-Q
<WS <WS

ERRORREJ(P,Q)

VS’=VS+1

VS’=Q +1
VA’=Q

outT ="I"

VA’=Q

outT ="I"

VA’=Q
VS’=VS+1VS’=VS

VR’=VR+1

recrec sw

outT ="I"
VR’=VR

VA’=Q

datas

VS’=VS+1
VR’=VR+1

Fig. 2: Flattened state transition graph of the example protocol (“I” is called “DATA” in the text)

C. Construction of the SAN

We derived the state transition graph as described in Sec-
tion II.C. The result for one protocol instance is shown
in Fig. 2. The upper part of the diagram shows the state
transition graph, the lower part denotes the derived tran-
sition matrices. In the diagram, a reference to variable
V denotes the old state, while a reference toV’ relates
to the new state. We needed to implement this twice for
each side of the protocol. In addition, we needed an im-
plementation of the channel and of layer-1. In order to
save on automata, we overlapped the descriptions: The
T_out variable of one instance is read by the other in-
stance as the incoming packet typeT_in, asVS becomes
P, andVR-1 becomesQ. Thus the implementation of layer-
1 only needs to modify theT_out variable according to
its current packet error ratio, which is determined by the
state of the channel. According to Fig. 2 we would need
nine synchronising events. However, we were able to re-
duce them down to four by rejoining some of the branches
which only differ by the calculations ofVS’ and VR’.
This is done by introducing two special matrix functions,
namely “VS’=increment_if_possible(VA)” and
“VR’=increment_if_equal(P)”, but we will not
elaborate further on this.

D. Solving the system to perform an analysis

Calculation of the steady state probabilities of the system
is the key to obtain a wide range of performance parame-
ters. Simple measures such as throughput or packet loss can
be calculated directly by adding up the states where this is
possible, multiplied with transition probability for the given
event [?]. More complex measures, such as the delay dis-
tribution, could be obtained by observing the system from
a given set of states over the time. This is performed by
repetitively multiplying the current state distribution with

the transition matrixP .
We implemented and solved the example system for a

variable size of four, and a send window sizeWS=2. To
obtain the steady state probabilities of this aperiodic sys-
tem, we needed to solve the system of linear equations de-
scribed by(P T � E)� = 0; P� = 1 [?]. The dimension
of � is dim � = QNi=1 ni = 2 � (4 � 4 � 4 � 3)2 = 73728.
We tried to used both the BiCG (BiConjugate Gradient) and
QMR (Quasi-Minimal-Residual) algorithm [?] to solve the
system, but neither did appear to converge well. So we ap-
proximated the result vector� with �i = 1= dim � and by
multiplying itself a few times withP . Using this approxi-
mation of� as a start vector, both the QMR and BiCG al-
gorithms calculate very good approximations for� within
few iterations. Repetition of both steps resulted in a result
vector accurate to a relative error ofe � 10�13 . This took
about 15 minutes processor time on a SUN workstation with
an UltraSPARC processor at 250 MHz. The simple multi-
plicationP� takes about 5 seconds, whilst an iteration of
the QMR algorithm takes about 40 seconds. The program
needs 14 Megabyte main memory.

Examination of the steady state probabilities revealed
that there are only 512 non-zero states left out of the total of
73728. This is due to the fact, that the protocol is designed
to keep each instance informed about state of the other one.
This also means that a conventional sparse matrix algorithm
would perform much better, once a reachability analysis has
been performed. This is caused by the fact that the SAN
approach is still lacking means to efficiently handle knowl-
edge about non-reachable and transient states. Thus, as long
as such means are not implemented, it should be considered
to restrict the usage of SANs to be a modelling aid, but to
perform the numerical analysis by conventional means.

It is also interesting to note that the 512 non-zero proba-
bilities consist of only 32 unique values. This indicates that
exploitation of symmetries would further reduce the size of
the linear system that needs to be solved. The SAN ap-

proach should thus be extended to provide means to identify
and handle such symmetries.

IV. COMPUTATIONAL ISSUES

A. Avoidance of cyclic dependencies

When solving the steady state probabilities of a huge
Markov chain described by an SAN descriptor, it is best to
use iterative methods as they do not require the manipula-
tion of the system itself. Instead, the basic operation needed
is the multiplication of a vector with the matrixP (or its
transposeP T) described by the SAN [?]. A computation-
ally efficient method for this is described in [?]. It has been
shown that a prerequisite for the avoidance of unnecessary
multiplications is the absence of cyclic dependencies of the
matrix functions. In this case, the system can be expressed
as a sum of generalised matrix tensor products (GMTPs)[?].

Splitting up a time-slot into separate sub-steps does not
only keep the model simple, but it also helps to resolve such
cyclic dependencies. If for each sub-stepk 2 [1::ns℄ we de-
fine an extra matrixPj , we obtain(((xP1)P2) � � �Pns) =xQnsk=1 Pi = xP . As each sub-matrix is defined asPk = PNPi=1
Nj=1P (j)k and tensor algebra is distributive
and pseudo commutative [?] among matrix multiplication
and addition, each tensor product may be reordered in the
most efficient way. It is also shown in [?] that remaining
cyclic dependencies can be removed by further splitting the
involved transition matricesPk inton separate matricesPk;l
such thatPk = Pnl=1
Nj=1P (j)k;l , thus enabling additional
reorder opportunities.

B. Complexity issues

In the literature [?, ?] the evaluation of complexity is
usually based on the number of multiplications to be per-
formed. This is probably based on the fact, that the multi-
plication used to be an expensive operation during the calcu-
lation. However, most microprocessors of modern worksta-
tions pipeline the multiplication and are able to perform at
least one multiplication per cycle. Instead, memory band-
width becomes a limiting factor, especially if the working
set exceeds the capacity of the system cache. In addition,
when modelling protocols (or algorithms in general) most
transition matrices are deterministic (one1:0 entry in each
row). We optimised on this, thus in our implementation
most vector-GMTP products are calculated without the need
for multiplications. Thus, it is obvious that the amount of
multiplications cannot be the right measure to estimate the
runtime complexity, but the same still holds true if the tran-
sition matrices are sparse matrices with only a small number
of entries per row.

Each in-place evaluation of a normal factor [?] performsnS=ni (nS = QNj=1 nj) shuffle operations whereni ele-
ments are read, modified, and written back to the sameni
locations. The elements are not located consecutively in
memory, but lie

Qij=1 nj locations apart. It depends onni
and the architecture of the system cache if this operation
is as fast asnS consecutive read and write operations, but
usually it will be slower. We nonetheless assume, that the
calculation of one normal factor will have the time complex-
ity O(nS). To multiply a vector with an SAN descriptor, we

need to perform such an operation for each functional non-
identity automata matrix of all synchronising events. In our
experience, this is only one matrix for each automaton in
one time step per synchronising event3. Thus, whenE de-
notes the number of synchronising events, the total com-
plexity of one matrix vector multiplication with the use of
the SAN descriptor amounts toO(�) = N �E � NYi=1ni:

V. CONCLUSIONS

We have introduced a technique for the detailed mod-
elling of layer-2 protocols in a semi-automatic way. The use
of SAN descriptors allows us to calculate the steady state
probabilities of such models, which is the key to obtain a
wide range of performance parameters. Where applicable,
it is likely that less abstraction is needed compared to other
analysis techniques such as Petri-nets, queuing models, etc.
The problem of state space explosion remains the biggest
obstacle against broad application. It should be investigated
if the SAN approach can be extended to efficiently handle
knowledge about non-reachable and transient states.

3Plus one or two to seperately model the influence of the channel on the
transmission, but this doesn’t affect the complexity.

