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Abstract— This paper proposes an algorithm for the generation
of Rayleigh fading processes. This algorithm is based on the sum-
of-sinusoids method proposed by Clarke in [1] and modified
by Aulin in [2]. Clarke’s model is taken as a reference and
it is complemented considering [3], obtaining as a result a
well described algorithm for the generation of Rayleigh fading
processes.

Index Terms— Sum-of-sinusoids method, simulation of
Rayleigh fading, algorithm for generation of short-term fading.

I. INTRODUCTION

Short-term fading refers to the changes in signal amplitude
and phase that can be experienced as a result of small changes
in the spatial separation between transmitter and receiver. This
kind of fading is also referred to as multi-path fading. The
two basic mechanisms that cause multi-path propagation in
mobile radio systems are reflection and scattering [4]. They
lead to a situation in which the received signal is made up of a
number of waves, whose angles of arrival occur randomly for
different positions of the receiver. Furthermore, their phases
are completely random such that they are uniformly distributed
over [−π,π) [1].

In this paper the model of sum-of-sinusoids for generation
of Rayleigh fading first proposed by Clarke in [1] will be
taken as a reference. This model has also been taken as a
reference by other authors who have characterized multi-path
propagation and its statistical properties. In [2], Aulin modified
the original model considering that the assumption of waves
traveling horizontally is not true in an urban environment.
However, the model is not frequently used for the generation
of fading processes, because of its complexity and because the
results obtained with Clarke’s model are satisfactory for sim-
ulation purposes. Moreover, the statistical properties obtained
with this model are correct. In the present paper, the theoretical
approximations as shown in [2] are used and a simplification
is done in order to come to the original model.

As already mentioned, other authors have investigated the
generation of Rayleigh fading and its statistical properties. In
[3], Clarke’s model is reconsidered and a redefinition of its
random variables is done. The paper considers the approach
investigated by Pop and Beaulieu in [5] and includes a review
of the deterministic model of Jakes, [6], which has been widely
used and studied over the time. In [5], Pop and Beaulieu
demonstrated that the probability density function (pdf) of the
signal envelope produced by Jakes’ simulator averaged across
the fading ensemble is a function of time. They conclude that
its ensemble average is not stationary, not even wide sense
stationary. This information is also considered by Xiao, Zheng
and Beaulieu in [7]. In the present paper this ensemble average
approximation is considered and applied in an algorithm with

a new set of generating equations based in the Aulin model
introduced in [2].

It is also worth to mention the so called deterministic
simulation models for the generation of Rayleigh fading. These
methods are based on the development of Jakes and they have
been exhaustively investigated by Pätzold et al. in [8] and [9],
among others. The authors use in their papers the methods
explained in [13]. This kind of generators is not considered in
the present paper due to the reasons explained in [5], i.e., sums
of fixed amplitude, random-phase sinusoids are not ergodic
and stationary, thus, the time averages may or may not equal
to the stochastic ones. These methods are also used in [10] -
[12] for the simulation of uncorrelated and cross-correlated
fading channels. In those papers the objective of the generation
of Rayleigh fading channels characteristics is achieved, but
the higher order statistics of the generated processes are not
mentioned.

In the procedure for Rayleigh fading generation proposed
in the present paper, the original model in [1], and modified
by [2], is used and complemented considering [3]. It will
be shown, that the statistics of first and higher orders agree
with theoretical results for the new model. The most important
contribution of the paper is that the statistical propierties of
the new model are closer to the reference than in previous
papers. The remainder of this paper is organized as follows,
Section II describes the model in [2] and its statistical proper-
ties. Section III presents the algorithm to be followed for the
generation of the Rayleigh fading processes and the statistical
properties of the processes generated with it. In Section IV
the processes generated with this algorithm are evaluated and
finally in Section V some conclusions are drawn.

II. AULIN’S MODEL

A. Mathematical description

Being N the number of superimposed waves (signal paths)
and the nth incoming wave being characterized by spatial
angles of arrival αn to the xz plane and βn to the xy plane.
The nth incoming wave also has an amplitude cn and a phase
shift φn. Moreover,

E{c2
n} =

E0

N
(1)

Denoting the angular carrier frequency by ωc, the resulting
field can be written as in [2]

E(t) =
N∑

n=1

En(t) (2)



where

En(t) = cn cos [ωct +
2π

λ
(x0 cos αn cos βn

+ y0 sin αn cos βn + z0 sin βn) + φn] (3)

Being αn, βn and φn mutually independent and uniformly
distributed over [−π, π). In Eq. 3, the minus sign of Eq. 5 in
Aulin’s paper is corrected because of the consideration that it
is not consistent with the results given by Aulin in his Eqs. 6, 7
and 8.

In a point (x0, y0, z0) and with a mobile station traveling
with a velocity v in a direction with angle γ to the xz plane,

En(t)=cn cos [ωct +
2π

λ
(vt cos γ cos αn cos βn

+vt sin γ sin αn cos βn+z0 sin βn)+φn] (4)

And simplifying for βn = 0, as assumed by Clarke

En(t) = cn cos
[
ωct +

2π

λ
vt cos (γ − αn) + φn

]
(5)

Therefore E(t) can be expressed as

E(t) = Tc(t) cos(ωct) − Ts(t) sin(ωct) (6)

where

Tc(t) =
N∑

n=1

cn cos (ωdt cos(γ − αn) + φn)

(7)

Ts(t) =
N∑

n=1

cn sin (ωdt cos(γ − αn) + φn)

Here ωd = 2πv/λ is the maximum radian Doppler frequency
and the envelope and phase of the complex signal T (t) =
Tc(t) + jTs(t) are given by

|T (t)| =
√

Tc(t)2 + Ts(t)2 (8)

θ(t) = arctan
[
Ts(t)
Tc(t)

]
(9)

B. Statistical Properties

According to the central limit theorem, the processes Tc(t)
and Ts(t) are approximately Gaussian for large N . Thus, for
the statistics, these processes are regarded as purely Gaussian.

The statistical properties of the Aulin’s model can be
consulted in [2] and [15] for the autocorrelations and cross-
correlations of Tc(t), Ts(t) and |T (t)|2, summarizing

RTcTc
(τ) = J0(ωdτ) (10a)

RTsTs
(τ) = J0(ωdτ) (10b)

RTcTs
(τ) = 0 (10c)

RTsTc
(τ) = 0 (10d)

RTT (τ) = 2J0(ωdτ) (10e)
R|T |2|T |2(τ) = 4 + 4J2

0 (ωdτ) (10f)

Where E0 = 2 is taken for normalization purposes.

III. ALGORITHM FOR THE GENERATION OF RAYLEIGH
FADING PROCESSES

A. Algorithm
In Figure 1 the algorithm for the generation of Rayleigh

fading processes is shown. It is composed of three steps. First
of all the definitions and initializations of the variables are
carried out. Here, size(A)=b assigns a size of b to the vector A
and init(A,b) initializes every position of vector A with a value
of b. Furthermore, ∼U[−π, π) generates a random number
uniformly distributed over [−π, π). In the second step a loop

Step 1: Definitions and initializations
Ntr:= Number of trials
N := Number superimposed waves (signal paths)
v := Mobile velocity in km/h, v = v/3600
c := Speed of light in km/s, fc := Carrier frequency
λ = c/fc, fd = v/λ, ωd = 2πfd, Td = 0.025/fd

tm := Maximal evaluated time (a factor of Td)
km = tm/Td

size(Trc), size(Trs) = km + 1
init(Trc, 0), init(Trs, 0)

Step 2: Calculation of the Processes
for tr=1:Ntr

γ[tr]∼U[−π, π)
η[tr]∼U[−π, π)
for k=1:km + 1

Tc = 0
Ts = 0
for n=1:N

if k==1
φ[n]∼U[−π, π)

αn = (2πn − π + η[tr])/N − π
cosγαn = cos (γ[tr]−αn)
Tc + = cos (φ[n]+ωdTd(k-1)·cosγαn)
Ts + = sin (φ(n)+ωdTd(k-1)·cosγαn)

Trc[k] + =
√

2/NTc

Trs[k] + =
√

2/NTs

Trc = Trc/
√

Ntr

Trs = Trs/
√

Ntr

Step 3: T(t) Process
Tr(t) = Trc + jTrs

Fig. 1. Algorithm for the generation of Rayleigh fading processes

is executed. In this loop an ensemble average over Ntr trials is
done. This is carried out with the goal of achieving stationarity,
as mentioned in Section I. After the summation of the Ntr

trials, the resulting value is divided by
√

Ntr for normalization
purposes in the correlations of the process. In every trial of
the ensemble average, Trc and Trs processes are generated as
defined in Eqs. 7. Here, αn = 2πn−π+η[tr]

N − π for improving
the performance of the algorithm, since the generation of an
uniformly distributed number is not needed in every step of the
summation. Moreover, this value fulfils the initial requirements
of the mathematical model. As can be seen η, γ and φn are
independent and uniformly distributed random variables over
[−π,π).

The third and last step is the calculation of the discrete
ensemble average process Tr(t).

B. Statistical Properties
The statistical properties for the process, with the chosen

value of αn are the same as in Eq. 10. Therefore, the cho-
sen implementation fulfils the requirements of the theoretical
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Fig. 2. Autocorrelation of the in-quadrature component

model. The demostration for the autocorrelation of the in-
quadrature component can be seen in Appendix I. The proof of
the remaining equations can be done in an analogous way (they
are not going to be showed here due to space restrictions).

IV. EVALUATION OF THE STATISTICAL PROPERTIES OF
THE GENERATED PROCESS

In Figs. 2-8 both, the statistics of the generated process and
the theoretical values of these statistics are shown for different
values of number of trials. In the figures, the theoretical value
is named Reference and is defined as in Eqs. 10. Ntr corre-
sponds to the number of trials used during the simulations.
Although an optimisation of the values of N and Ntr was
carried out, it is not possible to show the process because
of space restrictions. The optimal values foud were N = 15
and Ntr = 10, this explanation will be subject of a posterior
paper. Even though the optimal value of Ntr = 10, values
of number of trials of 50 and 100 were also simulated for
comparison purposes, i.e., to be able to compare with the
results in [3]. As expected, by increasing the value of number
of trials, the approximation to the theoretical value increases.
The number of superimposed waves used in the algorithm for
the generation of the figures is N = 15, which is a low value
compared with simulations in previous papers. In these papers
the authors normally redefine a value of N0 = 1

2 (N
2 − 1) as

in [6] or M = N
4 as in [3]. In the latter, the authors used a

value of M = 8, i.e., N = 32, for the sum-of-sinusoids in their
simulations. It is important to consider, that although a sums
of N = 15 sinusoids are more time and resource consuming
than a sums of M = 8 sinusoids, in the previous models every
component of the sum also had to be multiplied either by a
cosine or by a sine depending on the component of T (t) that
is to be found. Therefore, the performance of the algorithms
is comparable.

A. Evaluation of Correlation Statistics

Figs. 2-6 show the statistics of the different simulated pro-
cesses for every value of Ntr mentioned in Section IV. It can
be observed that the statistics of the simulated processes are
very close to the theoretical values, this remains valid for a
value of Ntr as small as 10. Even Fig. 6, which shows the
autocorrelation of the squared envelope and contains fourth-
order statistics, [3], is very approximated to the reference. It
can be seen that the model fulfils the statistical properties
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Fig. 3. Cross correlation of the in-quadrature and in-phase components
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Fig. 4. Real part of the autocorrelation of the complex fading

of the Rayleigh fading processes. Furthermore, by comparing
these results with results of previous models, it becomes clear
that the statistics of the simulated processes applying the new
set of equations as in Figs. 2-4 and Fig. 6 are nearer to the
reference model than in previous models for the same number
of trials. On the other hand, the statistical properties in Fig. 5
are closer to the reference in the models developed before,
however, this is hardly noticeable.

B. Evaluation of the pdf of the envelope and the phase

As already known, the pdfs of the envelope and phase are
Rayleigh and uniformly distributed respectively, they are given
by

f|T |(x) = xe−x2/2, x ≥ 0 (11a)

fΘT
(θT ) =

1
2π

, θT ∈ [−π, π) (11b)

Figs. 7 and 8 show the pdf of the fading envelope and phase of
the simulated processes. As can be seen, they overlap almost
totally the theoretical values. In the pdf of the phase there
is a significant improvement compared to figures in previous
papers.

V. CONCLUSION

In this paper, an algorithm for the generation of Rayleigh
fading processes with accurate statistical properties was pro-
posed (Fig. 1). In this algorithm an ensemble average over a
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Fig. 5. Imaginary part of the autocorrelation of the complex fading
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Fig. 6. Autocorrelation of the squared envelope of fading

defined number of trials is carried out as in [3] and [7] for
meeting statistical properties, which were not fulfiled before,
as mentioned in [5]. As can be expected, with an increasing
number of trials, the accuracy of the statistical properties of
the process rises. But this accuracy does not only depend
on the number of trials but also on the number of incoming
waves used during the simulations. For the case of N = 15
sinusoids studied in this paper and for a value of number of
trials Ntr as low as 10, the generated random variables meet
the expected statistical properties, more important, they are
closer to the reference value than in previous models. Hence,
the generation of processes with accurate statistical properties
is better achieved with the new set of equations proposed in
the paper and the corresponding algorithm. Moreover, the use
of computational resources of the algorithm is comparable to
previous models due to the reasons explained in Section IV.

APPENDIX I
AUTOCORRELATION OF THE IN-QUADRATURE COMPONENT

RTcTc(τ)=E{Tc(t)Tc(t + τ)}
=E{

N∑
n=1

cn cos (ωdt cos(γ − αn) + φn)

N∑
m=1

cm cos (ωd(t + τ) cos(γ − αm) + φm)}
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=
2

N

1

2

N∑
n,m=1

E{cos [ωdt cos (γ − αn)

+ωd(t + τ) cos (γ − αm) + φn + φm]}
+

2

N

1

2

N∑
n,m=1

E{cos [ωdt cos (γ − αn)

−ωd(t + τ) cos (γ − αm) + φn − φm]}
Where the stochastic variables δ1 and δ2 can be defined as in

Appendix I of [2]

δ1 = (φn + φm)mod 2

δ2 = (φn − φm)mod 2

These two stochastic variables are uniformly distributed over
[−π,π) for all m and n except δ2 when m = n. When m = n,
δ2 equals zero with probability 1, thus, taking the expectation
over φm and φn,

RTcTc(τ) =
1

N

N∑
n=1

E{cos [−ωdτ cos (γ − αn)]}

And with the value of αn given in the algorithm, i.e., αn =
2πn−π+η

N −π, which is calculated in order to have the desired
integration limits,

RTcTc(τ)=
1

N

N∑
n=1

E{cos [ωdτ cos (γ − αn)]}

=
1

N

N∑
n=1

∫ π

−π

cos [ωdτ cos (
2πn − π + η

N
− π − γ)]

dη

2π



=
1

2π

N∑
n=1

∫ 2πn
N

−π−γ

2π(n−1)
N

−π−γ

cos [ωdτ cos (u)] du

=
1

2π

∫ π

−π

cos [ωdτ cos (u)] du

=J0(ωdτ)
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