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The paper models the medium access control (MAC) layer of a wireless ATM network as a

distributed queueing system. A random access channel with short slots is used for the transmission of ca-
pacity requests from distributed queues in the wireless terminals to the central scheduler in the base station.
The paper describes the mathematical analysis of a fast collision resolution algorithm which is based on con-
ventional splitting algorithms but employs identifiers of terminals to choose a subset after a collision. Based
on the analytical results, a new medium access control protocol for the random access channel is defined
which is called probing algorithm. Its performance is evaluated by stochastic simulations.

1 Introduction

Future broadband multimedia telecommunication networks according to the I-300-series of the ITU-T recommen-
dations are based on a packet switching technique established in 1990/91, the so-called asynchronous transfer mode
(ATM).

In this paper we analyse a model of the medium access control (MAC) layer of a wireless (W) ATM network.
The MAC layer is characterized by the realization of a distributed queueing system in Fig. 1 as described in [4, 5].
The scheduler of the distributed queueing system is located in the central base station. The buffers with packets
(so-called ATM cells) waiting for transmission over the radio link from the wireless terminals to the base station
are located in the terminals.

A difficult task of the MAC protocol is the transmission of the queue status (so-called capacity request) from the
terminals to the scheduler in the base station, where it is required for the correct execution of the serving strategy
of the scheduler.
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Figure 1: Modelling the MAC layer of a W-ATM
network as a distributed queueing system

Usual MAC protocols for W-ATM networks are using
frames of variable length (so-called periods) with slots for
the transmission of ATM cells and shorter slots for the
transmission of capacity requests. At the beginning of each
period the assignment of slots of the period to terminals is
broadcasted by the base station. The number of short slots
in a period can be chosen from 0 to � with realistic ������� .
The sequence of short slots is called random access chan-
nel (RACH). Polling means, that the base station invites a
specific terminal to transmit in a reserved slot. Random ac-
cess happens, if a group of or all terminals are allowed to
transmit in a slot. The result of a random access (ternary
feedback: free, successful, collision) is broadcasted by the
base station at the end of each period over a feedback chan-
nel. An error-free feedback is assumed. In the conclusions
of the paper we discuss the effect of faulty feedbacks. If a
collision occurs, all collided packets are lost and have to be
retransmitted1. A collision resolution algorithm is neces-
sary to guaranty stability and limited delays [1].

The literature describes splitting algorithms as the colli-
sion resolution algorithms with highest throughput [2, 3].
In this family of algorithms terminals are grouped to sets.
All terminals of a set are allowed to transmit in a specific
slot. A transmission will only be successful, if a set contains exact one terminal. After a collision the set is split
into several subsets according to the order of the collision resolution algorithm (two subsets with binary algorithms,
three subsets with ternary algorithms, etc). A collided terminal chooses its followup subset by using a certain strat-�
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1Capture may enable the reception of the packet with the highest signal strength even if a collision occurred. This effect is neglected.



egy (eg. by an unbiased random experiment, so-called coin flipping). If no collision occurs in a subset, the collision
is resolved, otherwise the subset is split again. In blocking algorithms, a collision resolution phase is started with a
start set. Terminals with new arrivals are not allowed to access the subsets of an ongoing phase. They have to wait
for the next start set founding a new phase. Unblocked algorithms allow new arrivals to enter the current phase
directly. It has been shown that this decreases the performance slightly but reduces implementation effort [3]. The
performance of collision resolution algorithms is given by throughput (radio of slots with successful transmission
to all slots) and delays.

Due to the support of realtime oriented multimedia services in ATM networks, the collision resolution algorithm
in a W-ATM network is less to be optimized to throughput but to short delays. Furthermore, the maximum delay
is an important performance parameter.

2 Model of the RACH
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Figure 2: Model of the RACH for transmission of capacity re-
quests

We introduce the following model of the
RACH: We assume that a period of duration��� is able to offer any number of RACH slots.
In a terminal the need for transmitting capacity
requests is modelled by the arrival of a packet.
We assume the probability  of at least one
new arrival in a terminal during one period ��� .
New arrivals can only occur at terminals with
no waiting packet. At the start of each period
the base station determines the assignment of
slots to groups of terminals. At the end of each
period the error-free feedbacks are broadcasted.

This model differs from that of other systems
in following items:! Limited and known number of terminals, since terminals have to register before transmitting capacity requests.

The terminals are numbered by consecutive identifiers from a identifier space "#�%$'&(&'&�$�)'*,+�-�. with ) being the
order of the space and � being its dimension.! Unlimited number of simultaneous slots per period! Delayed feedback at the end of each period! Delays are measures as multiples of the period duration � � .

3 Analysis of the Identifier Splitting Algorithm

Since the number of terminals is limited and known, it is useful to distribute collided terminals on the followup
subsets according to their identifiers leading to the identifier splitting algorithm. With each splitting step the di-
mension � of the remaining identifier space decreases by one.

For the binary ( )0/21 ) identifier splitting algorithm the number of terminals in the resulting subsets is a hyper-
geometric random variable. In case of a collision ( 35461 ) the probability of 3�7 terminals choosing the left subset
and the remaining 3
89/�3:+;3 7 terminals choosing the right subset is:< *%= >%? 3 7A@ / BDCFEHGJI>(K LMB�CFEHGJI>�NO>(K LB C E> L (1)

We analyse the throughput of the identifier splitting algorithm by determining the number of slots PRQ = *S? 3 @ for
the resolution of a start set of 3 terminals (splitting order ) , dimension � of identifier space). The recursions (2)
for the binary and (3) for the ternary algorithm are used with the starting condition P Q = * ? � @ /TP Q = * ? - @ /U- .

P C = * ? 3 @ / -WV XZY [�\ >�= C EHGJID]^_A` XWacbd\fe = >�N C EHGJI ] B C EHGJI_ L�B C EHGJI>
N _ LBgC E> L h P C = *%Nji ?lk @ VmP C = *%NSi ? 3R+ k @on
/ -WV 1BgC E> L XZY [�\ >
= C EHGJI ]^_A` XWa�bp\fe = >�N C EFG�I ] q 1p*%Njiksr q 1d*%Nji3R+ kAr P C = *%Nji(?lk @ (2)
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Figure 3: Example of binary ( )0/u1 ) identifier splitting with identifier space of dimension �v/xw
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Figure 4: Throughput ��Q = *j? 3 @ of binary ( )�/�1 ) and ternary ( ):/U� ) identifier splitting algorithm with binomial-
distributed number of terminals in a start setP0� = *�? 3 @ / -WV XZY [�\ >
= � EHGJI ]^ _A` e XZY [�\ >
N _ = � EHGJI ]^�'` X�acb'\fe = >
N _ N � EHGJI ] B � EHGJI_ LMB � EHGJI� LOB � EHGJI>
N _ N � LB � E> L hZ�(�'��(�'� P � = *%Nji ?lk @ VmP � = *%NSi ?�� @ V�P � = *%Nji ? 3R+ k + � @gn (3)

The size 3 of a start set of a collision resolution phase is a binomial random variable with �R��3,��)'* and mean3 . Thus, the throughput ��Q = *S? 3 @ is calculated by (4).� Q = * ? 3 @ / 3Q E�> ` e PRQ = *S? 3 @ � B Q E> L h >Q E n > h -�+ >Q E n Q E NO> (4)

The curves � Q = * ? 3 @ in Fig. 4 for the binary and ternary algorithm have been calculated numerically. For com-
parison, the throughput of the coin flip splitting algorithm with a Poisson distributed size of a start set is given.

The distribution of delays is also calculated by a recursion. We define the probability  MQ = *�= >%?A� $�� @ of � mobiles
still being involved in a collision of a start set of 3 terminals after � splitting steps.
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Figure 5: Complementary distribution of delays
< Q = *%= > ? �H¦¨§2© @ of binary ( ),/ª1 ) and ternary ( ),/ª� ) identifier

splitting algorithm with binomial distributed number of terminals in a start set (operating point 3�/�-�&#� )
 C = *%= > ?A� $�� @ /

«¬¬¬¬¬¬­ ¬¬¬¬¬¬®
- for �ª/u3�$ � /u�- for �ª/u�%$�3,�2-�$ � § �X¯Y [
\ >�= C EHGJI ]�_A` XWacb'\fe = >�N C EFG�I ]?l° EHGJI± @ ?l° EHGJI² G ± @? ° E² @ XZY [�\´³ = _ ]��'` X�acb'\fe = ³ N \ >
N _ ]A] C = *�NSi�= _ ?A� +�-�$ � @ �  C = *%Njiµ= >
N _ ?A� +�-
$µ�¶+ � @

for 3 § -
$ � § �� else

(5)

 � = *�= > ?·� $µ� @ /
«¬¬¬¬¬¬¬¬­ ¬¬¬¬¬¬¬¬®
- for �ª/u3�$ � /u�- for �ª/u�%$�3¸�6-
$ � § �XZY [
\ >
= � EFG�Ig]�_A` e XZY [
\ >
N _ = � EHGJID]��(` XWacb'\fe = >�N _ N � EHGJI ]?º¹ EFG�I± @ ?D¹ EHGJI» @ ?�¹ EHGJI² G ± G » @?l¹ E² @ XZY [�\´³ = _ ]�8 ` e XZY [�\¼³ N 8 = � ]�½ ` XWa�bp\fe = ³ N 8 N \ >�N _ N � ]A]�'�(��(�'�  �� = *�NSi�= _ ?A� +�-�$�¾ @ �  %� = *%Nji�= � ?A� +�-�$�¿ @ �  %� = *%Njiµ= >
N _ N � ?A� +�-�$���+À¾Á+Â¿ @

for 3 § -�$ � § �� else
(6)

The complementary distribution of the delays � ¦ results in:< Q = *�= > ? � ¦ §Ã© @ / -3 >^³ ` e � �  Q = *�= > ?HÄ ©µÅ
���ÇÆ $�� @ $È3 § � (7)

Taking into account the binomial distributed size 3 of a start set, we get the complementary distribution of delays< Q = *�= > ? �H¦É§Ã© @ in (8). Fig. 5 shows the curves with the numerically calculated values.< Q = *�= > ? � ¦ §Ã© @ / -3 Q E^> ` e q )'*3 r q 3) * r > q -�+ 3) * r Q E NM> � 3 � < Q = *�= > ? � ¦ §Ã© @ $È3 § � (8)

The calculation of the average delay �J¦ is based on the probability function of the number of periods required
for the successful transmission of a packet in eq. (9) and (10).

 C = *%= > ?A� @ /
«¬¬¬¬­ ¬¬¬¬® - for 3�/�-�$ � /U-i> X¯Y [
\ >�= CFEHGJI ]�_A` XWacb'\fe = >�N C EFG�I ] ? ° EFG�I± @ ? ° EHGJI² G ± @?º° E² @ ?lk �  C = *�NSi�= _ ?A� +�- @ V ? 3R+ k @ �  C = *%Nji�= >�N _ ?A� +Ê- @c@

for 3 § -�$ � § -� else

(9)
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Figure 6: Average delay � ¦ Q = * ? 3 @ of binary ( )9/u1 ) and ternary ( )Ù/T� ) identifier splitting algorithm with binomial
distributed number of terminals in a start set

 � = *%= > ?A� @ /
«¬¬¬¬¬¬¬­ ¬¬¬¬¬¬¬®
- for 3,/2-
$ � /U-i> X¯Y [
\ >�= � EHGJIg]�_A` e XZY [
\ >
N _ = � EHGJID]��(` XWacbd\fe = >
N _ N � EHGJI ]?º¹ EHGJI± @ ?l¹ EHGJI» @ ?�¹ EHGJI² G ± G » @? ¹ E² @ hZ�(�'��(�'� k �  %� = *%Nji�= _ ?·� +Ê- @ V � �  �� = *�NSi�= � ?·� +Ú- @ V ? 3R+ k + � @ �  %� = *%Njiµ= >
N _ N � ?A� +�- @ n

for 3 § -
$ � § -� else

(10)

Using these equations, the average delay �%¦ Q = * ? 3 @ and its variance Û C can be calculated. The curves �%¦ Q = * ? 3 @are shown in Fig. 6.� ¦ Q = * ? 3 @ / ��� � -3 Q E^> ` e0Ü q )'*3 r q 3) * r > q -�+ 3) * r Q E NO> � 3 *�Ýji^ 7 ` e � �  Q = *%= > ?A� @gÞ $È3 § � (11)

Û C B �%¦ = Q ? 3 @ L / -3 Q E^> ` e Ü q )'*3 r q 3) * r > q -�+ 3) * r Q E NM> � 3 *JÝji^ 7 ` e ?A� � � � + �%¦ Q = * ? 3 @�@ C �  OQ = *�= >%?A� @ Þ $È3 § �
(12)

4 Derivation of the Adaptive Identifier Splitting Algorithm

If the size of a start set is large, the throughput can be increased and delays reduced, if the first splitting steps are
skipped. This is equivalent to a dynamically selected splitting order )'* I of the first splitting step. That � i is chosen
that maximizes throughput:� Q·ß'à Q = * ? 3 @ /xáãâdä q � Q = e q 3) * r $ �(�'� $�� Q = *�NM* I q 3) * I r $ �'�'� $c� Q = * B 3 L r (13)

The resulting curves of ��Q·ß'à Q = * ? 3 @ are shown in Fig. 7. The curves result from a piecewise composition of seg-

ments of the curves in Fig. 4. The same applies for the average delay � ¦µåºæ�ç Q = * ? 3 @ in Fig. 8.

The exact ordinate values 3 of the transitions between segments can be calculated by (14).��Q = *�NM* I NSi q 3) * I Ýji r /x��Q = *�NM* I q 3) * I r (14)
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Figure 7: Optimal throughput ��QAß'à Q = * ? 3 @ of identifier splitting algorithm with adaptive order of first splitting step
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Figure 8: Optimal average delay � ¦µåºæ�ç Q = * ? 3 @ of identifier splitting algorithm with adaptive order of first splitting
step

Table 1 summarizes the ordinate values for the binary and ternary algorithm. Dependent on the dimension of
the identifier space and the known or estimated size 3 of a start set, the optimal number of initial slots can be
determined.

The comparison of Fig. 7 and Fig. 8 of the adaptive identifier splitting algorithm with the corresponding Figures
4 and 6 of the original identifier splitting algorithm demonstrated the dramatical improvement of performance that
can be realized, if the size of a start set is known or can at least be estimated.

5 Simulation of Medium Access Control Protocol with Probing Algo-
rithm

The analysis of the identifier splitting algorithm with an adaptive number of initial slots has shown, that the optimal
size of a start set is approximately 1.5 for binary splitting and 2 for ternary splitting with some deviations depending
on the dimension of the identifier space. Now we return to the model of the RACH. We can estimate the probability �ø i of at least one arrival at terminal k during the interval �jùfú'û#ü = ù � � � since its last transmission of a packet:
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Table 1: Optimal number of initial slots dependent on the dimension � of the identifier space and the known or
estimated size 3 of a start set for binary and ternary identifier splitting algorithm

 ø i�= _ /U-�+ � _ � ? -�+5 @ *�� ��� ����� (15)

The parameter
� _ is set to 1 and will be explained later.

Our new medium access control protocol for the RACH can be considered as an unblocking adaptive identifier
splitting algorithm. We call it probing algorithm. At the beginning of each period it divides the identifier space in
a variable number © of consecutive intervals and assigns one slot to each interval. The � -th interval is starting with
terminal k 7 and ending with terminal k 7 Ýji +�- , with k i /�� and k à /T)'*:+�- . It contains �:7S/ k 7 Ýji + k 7 terminals.
� 7 has to be maximized under the constrain (16).P 7 / _ K�� I Nji^_A`O_ K  �ø i�= _ �! (16)

With the parameter  the probability of a successful transmission can be adjusted. At the end of a period the
results of accesses can be used to correct the estimation of  ø i�= _ . If no or one transmission happened in a slot,� ùfú'û#ü = ù is reset to zero and

� _ to - for all involved station. If a collision occurred in the slot belonging to the � -th
interval, the number P#"%$�û¼û = û of involved terminals is estimated by (17).

P "%$�û¼û = û /uP07 -�+ h -�+'& K( K n ( K·NSi-�+ h -�+ & K( K n ( K +ÃP07 h -�+ & K( K n ( K NSi (17)

This estimation is based on the assumption of a binomial distribution of P 7 . This is no exact model but a suffi-
cient approximation. We correct the estimation of  ø iµ= _ by adjusting

� _ :.
� / � 7 +ÃP)"*$�û´û = û�:7O+;P07 (18)

� _ = *,+*- / � � � _ = Q 7 ¦ (19)

After a successful or no transmission on a slot,
� _ of the terminals in the belonging interval is reset to 1.

The approximation made above requires a special treatment of terminals with high  ø i�= _ . To avoid high delays,
terminals with  ø iµ= _ §  Å 1 are polled in specific slots. The same happen with terminals, that have been involved
in more than � consecutive collisions with � being the dimension of the identifier space.

The performance of the protocol has been evaluated by stochastic simulations. The number 3 of terminals, the ar-
rival probability  and the parameter  have been varied. The average and maximum delay as well as the through-
put � over  for 3�/u� and 3�/u1�� terminals is shown in the diagrams in Fig. 9 (with a relative error . ��&#�%- ).  
has been chosen to 1.0 and 1.4. It can be seen, that  has the same effect like the order of a splitting algorithm.
Lower values of  lead to shorter delays but reduces the throughput.

The determination of the optimal value of  requires a more precise model of the MAC protocol and the sur-
rounding system. But our results may be a guideline for finding optimal parameter settings of a real MAC protocol.
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Figure 9: Throughput � , average delay �%¦ and maximum delay �H¦;:=<*> of probing algorithm with 3,/T� and 3,/�1
�
terminals

6 Conclusions

Our new medium access control protocol has been developed taking into account the results of the analysis of the
identifier splitting algorithm. The protocol offers a good performance by combining the advantages of the identifier
splitting algorithm and pure polling. We assumed an error-free feedback. This is no realistic model for a radio
channel with noise and interference. We intent to modify our algorithms in order to use a soft decision feedback.
Based on the accuracy of this feedback, the grade of correcting

� 7 can be adjusted.
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