
Application of Functional Unit Networks to Next

Generation Radio Networks

Marc Schinnenburg, Fabian Debus, Ralf Pabst

Communication Networks

RWTH Aachen University

Aachen, Germany

{msg | fds | pab}@comnets.rwth-aachen.de

Abstract— This paper presents a framework for building re-

configurable protocol stacks. A high degree of re-configurability

is achieved through composing complex behavior of a

communication system using Functional Units, forming

Functional Unit Networks. The feasibility of Functional Unit

Networks and its application to next generation radio networks

will be discussed. The applicability of Functional Unit Networks

to wireless communication systems is exemplarily shown in the

context of a current research project regarding next generation

radio networks (WINNER).

Reconfigurability, Flexible Protocol Stack, Multi-Mode

Architecture

I. INTRODUCTION

Ubiquitous radio access at high data rates and low delays is
the customer‟s expectation at next generation communication
systems. To meet this expectation the protocols of future
communication systems need to efficiently exploit the
available spectrum in a dynamic way. The need to achieve
optimal performance in a variety of different environments
(e.g., indoor/outdoor) will force devices and their protocols to
adapt themselves to the current situation.

The Wireless World Initiative New Radio (WINNER) is a
European research project funded under the 6th Framework
research funding Program (FP6) of the Commission of the
European Union addressing the design of a next generation
radio network. Among the requirements for WINNER are the
ubiquitous, spectrally efficient radio access at high data rates
and low delays, embedded into a unified radio access
technology. An efficient adaptation of the system to different
environments and scenarios (such as short-range vs. wide-area,
LOS- vs. NLOS propagation etc.) is therefore inevitable. Such
an adaptation in many cases will take place in terms of
switching between algorithms of certain air interface functions
or changing between (sets of) parameters. In some cases, the
adaptation may even involve changing the behavior of the air
interface, e.g., by switching to another duplex scheme.
Different duplex schemes are in the WINNER terminology
referred to as so-called different “physical layer modes” of
operation. These modes represent the highest degree of
adaptation and optimization to different scenarios.

The required degree of adaptivity and the need for
reconfigurability puts high demands on the design and
implementation of future communication systems and
protocols. The inherent complexity can lead to costly and time-
consuming standardization and implementation processes.

To cope with the rising complexity of wireless
communication systems the authors propose the composition of
protocols using Functional Unit Networks [2]. Functional Units
serve as basic building blocks for the aggregation of protocol
functionality and enable the protocol designer to efficiently
design flexible protocol stacks. This structure is also
considered beneficial in systems that are not based on different
Physical Layer Modes, because multiple modes of operation
are typically also employed in higher protocol layers, e.g., as a
consequence of different service-types and/or Quality of
Service (QoS)-requirements.

This paper gives a brief overview of Functional Unit
Networks along with the application of Functional Unit
Networks in the context of WINNER.

II. FUNCTIONAL UNIT NETWORKS

As discussed in [3] Data Link Layers (DLLs) of protocol
stacks of wireless communication systems in general comprise
among others the following set of functions: Automatic Repeat
request (ARQ), Segmentation and Reassembly (SAR),
scheduling, multiplexing and buffering.

In [2] a framework for implementing functions of a DLL as
FUs and creating complete protocol layers by interconnecting
FUs is presented.

:FunctionalUnit

[in connector set]:

DATAreq(Compound)

[in deliverer set]:

DATAind(Compound)

:FunctionalUnito
u

tg
o

in
g

 d
a

ta
 f
lo

w

in
c
o

m
in

g
 d

a
ta

 f
lo

w

Figure 1. FU connections for compound handling.

A Functional Unit Network (FUN) is built by connecting
FUs. FUs within a FUN mainly communicate by propagating
compounds. A compound is an arbitrary chunk of data together
with a pool of commands, where a command denotes the
control information provided by every FU.

The interface of FUs has been identified to consist of five
different aspects:

1. Compound Handler
Implement the handling of compounds of an FU including
intra FUN flow control. Handling of compounds includes
mutation, dropping, injection and forwarding.

The methods provided are:

 DATAind(Compound)

Receive a compound in the incoming flow (figure 1).

 DATAreq(Compound)

Receive a compound in the outgoing flow (figure 1).

 wakeup()

Try to forward compounds as part of flow control.

 isAccepting(Compound)Boolean
Give permission to FUs to propagate the given
compound as part of flow control.

2. Command Type Specifier
Define the type of command provided by the FU. This type
will be used to create an initial command pool and to verify
unit dependencies as will be discussed in section 3.

3. Connector
Hold the set of FUs that compounds will be delivered to in
the outgoing direction. Define a strategy to select the
appropriate FU for a given compound

4. Receptor
Hold the set of FUs in which the FU itself is in the
connector set. Define a strategy to wake up FUs.

5. Deliverer
Hold the set of FUs that compounds will be delivered to in
the incoming direction. Define a strategy to select the
appropriate FU for a given compound.

A. Flow Control

As discussed in [2], there is a need for intra FUN flow
control. To implement flow control between FUs, two methods
are necessary:

 isAccepting(Compound) Boolean

 wakeup()

Before an FU is allowed to deliver a compound to another
FU using DATAreq, it has to ask for permission using the

isAccepting method. If the response is negative, it may not

send a compound to the questioned unit.

When an FU can not deliver further compounds, it cannot
proceed and thus ceases operation until it is triggered again.
Such triggers can come from new compounds being delivered,
timers expiring, but it may as well happen that an FU in its
connector set changes its state to accept compounds again.

 The method used for informing other FUs that they

might succeed in sending a compound is wakeup. A set of
FUs that have to be notified when an FU is willing to accept
new compounds is called receptor set. The receptor set of an
FU “A” contains exactly those FUs that have FU “A” in their
connector set.

Figure 2 shows an example of two FUs transmitting
compounds with respect to intra node flow control.

B. Flow Separation

FUs as described have a cohesive responsibility within a
FUN. In terms of object-oriented design a FU represents a
class, whereas a FUN is composed of FU instances. Thus,
every FU comprises state and behavior. An SAR unit for
example needs to store segments of compounds to be able to
apply segmentation and reassembly.

A FUN being part of a protocol stack that is supposed to
handle multiple connections needs to hold separate states for
each of the connections. One option is to let each FU maintain
the states for different flows and to select the appropriate state
for the processed compounds. This approach has a drawback: It
complicates the implementation of FUs, since it burdens the
FU with the maintenance of different, flow specific states.
Another option is to implement a specialist in separating flows

upper lower

true

DATAreq(compound)

isAccepting(compound)

false

wakeup

wakeup

isAccepting(compound)

Figure 2. Intra node flow cotntrol.

FlowSeparator FunctionalUnit

KeyBuilder

*

FunctionalUnit

FunctionalUnit

instances

UnitBuilder

:Key

creates

deliverer/

receptor

connector

Figure 3. FlowSeparator in a FUN.

and maintaining states. Thus, keeping FUs simple, leaving
them unaware of flows. Every FU implements functionality
and holds state for exactly one flow. The specialized flow
separator itself again is a FU, separating flows using a
configurable separation strategy and delegating requests to the
according FU instance.

Figure 3 shows the structure of flow separation. The
FlowSeparator itself is a FU. Like any other FU it is

connected to other FUs using the deliverer, receptor and
connector sets. It is configured using a KeyBuilder and a

UnitBuilder. The KeyBuilder is a strategy to extract

information from a compound that is sufficient to distinguish
between compounds of different flows. The keys generated by
the KeyBuilder serve as key to an instance container. For

every compound, the flow separator creates a new key, inspects
its instance container and delegates the request to the according
instance. In case of receiving a compound that has no available
instance, yet, the flow separator creates a new instance using
the UnitBuilder.

C. Configurability

The high degree of configurability of protocol stacks using
FUNs is achieved by allowing configuration at several levels.
The levels of configurability in order of increasing abstraction
are:

Parameterization level: The lowest level of configuration
includes the parameterization of concrete FUs: What is the
window size of the selective repeat ARQ unit? What is the
Maximum Transfer Unit (MTU) of the SAR unit?

Concretion level: The next higher level focuses on the
selection of concrete FUs to fill the respective places in a FUN.
Concrete implementations have to be chosen for intended
protocol functions.

Layout level: The highest level of configuration comprises
the placement of protocol functions in a stack: the scaffolding
of a protocol stack, including the interconnections of FUs and
their intended functions. The order in which certain processing
is applied to compounds as well as the overall set of supported
messages is determined at this level of abstraction.

III. FUNS IN THE CONTEXT OF WINNER

The basic protocol architecture as proposed in [6] aims at
providing a framework which enables all three levels of
adaptation mentioned above. The goal is to allow a flexible
configuration of the WINNER protocols and the efficient
integration of multiple potential WINNER modes in a
complementary way, thereby allowing to take maximum
benefit of the commonalities between the modes (see [1]). As a
consequence, such a reference model requires protocols that
conform to the structure given in figure 4. In order to exploit
commonalities between different modes of operation, the
software of these protocols would (i) ideally follow a modular
approach to allow a high degree of reusability and (ii) provide
suitable structures and interfaces for the flexible composition
of the individual modules.

Another main requirement towards the structure of the
WINNER Reference Protocol Architecture is to match the
layered service architecture as proposed in [7] and [8].

To match the requirements about modular composition of
the functionality of the protocol layers which result from the
reference model in figure 4, the set of functions identified
above have been decomposed into a set of FUs. We further
describe the identified FUs and how they are connected to form
the FUN.

Figure 5 and figure 6 exemplarily show how the intended
functionality of the Data Link Layer-User Plane - as it is
currently discussed within WINNER - can be composed out of
a set of mode independent FUs and a small number of mode-
specific FUs. The used units can be further subdivided into
three different classes:

1. The common, system-independent functions, shown

as light green boxes, these can be taken from a

toolbox of generic protocol functions that can also be

used to implement protocols for other, non-WINNER

radio systems, examples are:

o ARQ: figure 5 shows an upper ARQ for

securing packets end-to-end over multiple

radio hops and a lower ARQ that operates

on a per-hop basis.

o Buffers

o Segmentation and Reassembly

2. The mode-independent, but WINNER-specific

functions, shown as light gray boxes:

o IP Convergence Layer

o Service Classification: among others dealing

with flow handling and addressing

o Relay Inject Buffers: for PDU handling at

the Relay Nodes

o Service Level Controller (SLC): in the

WINNER terminology, this is how the mode

independent QoS scheduling and per-flow

buffering is referred to. This unit also deals

with flow addressing.

Figure 4. Overview of Layered Protocol Architecture and Management

Plane Interaction

3. The WINNER-mode-specific functional units, which

are shown as gray / dark gray boxes. Example for

such functions are:

o Resource Scheduler: performs the actual

mapping of data flows onto physical

resources. It is therefore a unit that is

specific to a certain physical layer mode

being employed.

o ARQ: figure 5 shows a lower ARQ which is

likely to be a Hybrid ARQ and thus also

closely linked to the physical layer mode

being used.
Note that the combination of Resource Scheduler and lower

ARQ is referred to as MAC-r („r‟ stands for radio-specific) in
the reference model in figure 4. This also illustrates that
common and mode-specific functionality can be arbitrarily
located inside the protocol layer, since the FUs referred to as
MAC-r do not necessarily have to be directly connected to each
other.

The mode-specific parts are the only FUs that may be
affected by layout-level adaptation to different WINNER
physical layer modes. The mode-independent boxes may
undergo a change of their parameter set, but their essential
functionality remains the same. The change of the parameters
would be the responsibility of the entity that manages the
respective protocol layer. Figure 5 and figure 6 show that
different subsets of FUs can be active in different FUNs. The
grayed-out boxes denote the FUs that are unused at the BS/UT
or RN respectively. A FUN implementing a RN requires an
additional buffer (“relayInject”) when forwarding Compounds.
This buffer is unused in the FUN of a BS/UT. On the other
hand the SLC of a RN will always forward Compounds and

never deliver them to higher FUs, rendering all FUs above the
SLC in every RN unused.

IV. REALIZATION OF FUNICTIONAL UNIT NETWORKS

To investigate the feasibility of the presented concept of
FUNs a reference implementation is developed as part of the
Wireless Network Simulator (WNS) at ComNets. Besides the
herein presented work on the WINNER project another
simulator module is based on this reference implementation:
IEEE 802.16 (WiMAX).

The experiences gathered so far have shown that the
decomposition of protocols into FUs with distinct functionality
simplifies and accelerates the implementation of protocols
compared to monolithic realizations. The uniform interfaces
and the mechanisms to avoid tight coupling between FUs
directly leads to increased testability of protocol
implementations: During the work on the reference
implementation a number of patterns for testing FUs emerged.
The uniform interfaces of FUs clearly contribute to the
identification of such patterns. The current set of FUs is
covered by extensive unit tests what led to a noticeably lower
defect rate.

Today‟s protocol designs show the need for interfaces
between protocol layers not directly connected to each other
(often referred to as “cross-layer design”) [9]. On the one hand
FUNs facilitate the implementation of more distributed in
contrast to strictly hierarchical protocol stacks, thus fulfilling
the need for more direct information exchange between
protocol entities. On the other hand FUNs strongly emphasize
dependencies between protocol functions, since in they require
any dependency to be made explicit. The direct information
exchange of one FU with one or more other FUs is desirable in

:UpperConvergence

:ServiceClassification

:Buffer

:ServiceLevelController

:Synchronizer

upperARQ:ARQ:FlowSeparator

:FlowSeparator

relayInject:Buffer

User Data Plane

:CRC

:SAR:FlowSeparator

:Concatenation

:SAR

:FlowSeparator

:FlowSeparator

NextHop

Destination

Destination

NextHop

NextHop

lowerARQ:ARQ

:ResourceScheduler

UT / BS

Figure 5. Functional Units in the user data plane of User Terminals /

Base Stations

:UpperConvergence

:ServiceClassification

:Buffer

:ServiceLevelController

:Synchronizer

upperARQ:ARQ:FlowSeparator

:FlowSeparator

Destination

User Data Plane

:CRC

:SAR:FlowSeparator

Destination

:Concatenation

:SAR

:FlowSeparator

:FlowSeparator

NextHop

NextHop

NextHop

relayInject:Buffer

lowerARQ:ARQ

:ResourceScheduler

FUs

WINNER FUs

Mode

specific

Mode

independent

System

independent

RN

Figure 6. Functional Units in the user data plane of Relay Nodes

terms of protocol optimization. At the same time it introduces a
number of drawbacks:

1. Less felixibility: FUs can only be part of a FUN if all

their dependencies are met

2. Increased complexity: FUs behavior not only results

from their own state and their limited interfaces but

from a complex interworking with other FUs

3. Worse testability: Directly results from 1.) and 2.),

since the test scenarios have to meet the

dependencies and cover a larger state space

Besides the aforementioned work on the simulator

modules, further investigations are needed for the
reconfigurability of FUNs. In principle, FUNs can be modified
at run-time, allowing for reconfigurability at all levels:
Parameterization level, concretion level and layout level (see
II.C).

The efforts required at the different levels of
reconfiguration are quite different. Reconfiguration at
parameterization level has already been looked into for the
implementation of control plane functionality which is required
to modify behavior of the user data plane.

Reconfiguration at the remaining levels is expected to
require functionality residing in a management plane to handle
the configuration of a protocol layer or even a whole protocol
stack. This management functionality goes beyond the scope of
this work and will be subject for future studies.

V. CONCLUSIONS

The presented protocol architecture achieves the high level
of adaptability required from the WINNER system concept
through composition of functionalities from FUs with cohesive
responsibility. The main benefits of this concept for the system
design are:

1. Flexible design: possibility to easily investigate
different protocol options and logical ordering of
functionalities and faster performance evaluation of
concurrent design proposals

2. Efficient design: through increased re-use of FUs

3. Reduced complexity of the design: making
dependencies between different functional units

explicit helps to (i) understand (and question) their
necessity and (ii) maintain the modular design
approach

4. Reliable design: better testability of protocol
software

The presented concept also opens up potential for an
abstract description and with this the possibility of external
configuration of the protocol stack and -layers via a formal
description language. As indicated above, the layer and stack
management tasks will be among the next research issues.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Dr.-Ing. B. Walke for
the fruitful discussions and comments to the content of this
paper. The presented work has partly been funded by the
European Commission in the FP6 IST-Project WINNER (IST-
2003-507581).

REFERENCES

[1] Berlemann, L., Pabst, R., Schinnenburg, M. and Walke, B. H., “A
Flexible Protocol Stack for Multi-Mode Convergence in a Relay-base
Wireless Network Architecture”, in 16th IEEE Conference on Personal,
Indoor and Mobile Radio Communications, PIMRC 2005, Berlin
Germany, September 2005

[2] Schinnenburg, M., Debus, F., Otyakmaz, A., Berlemann, L., Pabst, R.,
“A Framework for Re-configurable Functions of a Multi-Mode Protocol
Layer”, SDRforum‟05, Orange County, USA, Nov. 2005

[3] Berlemann, L., Pabst, R., Walke, B. H., “Multimode Communications
Protocols Enabling Reconfigurable Radios”, in EURASIP Journal on
Wireless Communications and Networking 2005:3, pp. 390-400

[4] Pabst, R. et al., “Relay-Based Deployment Concepts for Wireless and
Mobile Broadband Radio,” in IEEE Communications Magazine, vol. 42,
no. 9, Sept. 2004, pp. 80-89.

[5] Gamma, E. et al, “Design Patterns”, Addison-Wesley, 1995

[6] IST-2003-507581 WINNER WP3 D3.2: “Description of deployment
concepts for future radio scenarios integrating different relaying
technologies in a cellular infrastructure including definition, assessment
and performance comparison of RAN protocols for relay based
systems”, February 2005.

[7] IST-2003-507581 WINNER WP2 D2.10: “Final report on identified key
radio interface technologies, system concepts and their assessment”

[8] IST-2003-507581 WINNER WP7 D7.6: “WINNER System Concept
Description”

[9] Srivastava, V., Motani, M., “Cross-Layer Design: A Survey and the
Road Ahead”, IEEE Communications Magazine, Dec. 2005

