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Abstract— This paper presents a modular architecture for the
design, implementation and performance evaluation of protocol
stacks. The architecture allows a high degree of flexibility through
composing complex behavior of a communication system using
so-called Functional Units (FUs). The composition of Functional
Units (FUs) to form a Functional Unit Network (FUN) is
achieved by offering a generic management interface. We tackle
the issue of protocol development for communication systems
from the perspective of software design and -engineering. The
requirements and the resulting interfaces for the Functional Units
(FUs) are the main focus of this article. The proposed architecture
is presented in the context of a reference model for multi-mode
protocol stacks developed in the European Union-funded research
project WINNER 1. An exemplary implementation of the set of
Data Link Layer functions as they are currently envisaged in
WINNER and an implementation of an IEEE 802.16 (WiMAX)
Data Link Layer (DLL) for performance evaluation is presented
as a proof of concept.

Index Terms— Adaptive Protocol Stack, Flexible Protocol,
Multi-Mode, Functional Unit, Functional Unit Network, Modular
Protocol

I. INTRODUCTION

NEXT generation wireless communication system require-
ments target ubiquitous mobile access in a wide variety

of application scenarios. These scenarios are differentiated by
radio environment, usage, spectrum type or service require-
ments. In order to meet the full range of requirements such a
system requires solutions tailored for the specific scenarios.
Even though the individual solutions will be tailored for
specific scenarios, a system concept would preferably embrace
all these solutions being build on a common technology basis.
This implies a flexible, adaptable air interface.

The WINNER project [2] has therefore developed a protocol
reference model. The requirements of the above mentioned
scenarios are met by different modes in this reference model.
The reference model enables the efficient integration of mul-
tiple such modes in a complementary way, thereby allowing
to take maximum benefit of the commonalities between the
modes (see [3]). As a consequence, such a reference model
requires protocols that conform to the given structure. In order
to exploit commonalities between different modes of opera-
tion, the software of these protocols would (i) ideally follow
a modular approach to allow a high degree of reusability and
(ii) provide suitable structures and interfaces for the flexible
composition of the individual modules.

1 (Wireless World Initiative New Radio), [1] is part of the 6th Framework
Programme for Research

The increasing complexity in today’s software systems has
led to a number of new methods in software development in
the last years. One goal of modern software design is to create
systems consisting of preferably small units [4]. Every unit
should have one cohesive responsibility, provided through a
preferably slim and precise interface. The avoidance of tight
coupling and the focus on testability leads to units that are
easier to build, to test and to maintain. Thus the development
and maintenance costs are reduced. Further, the quality of
software is increased. As a second benefit, reusability of units
is improved if dependencies between units can be kept to a
minimum. The design paradigms from the software design
domain can be immediately applied to protocol design for
communication systems when a high degree of reusability
of the units is targeted at, which is the basis for a flexible
protocol architecture. A protocol stack consisting of small and
independent units, here called Functional Units (FUs), with
cohesive responsibility is therefore one of the key technologies
for next generation radio networks.

To show the feasibility and gain a deeper understanding of
the presented architecture, the research team of the Chair of
Communication Networks (ComNets) has realized an imple-
mentation, which is used to model and evaluate new system
proposals (e.g. as in WINNER) or evaluate proposals for the
extension of existing systems (e.g. as in IST project FIRE-
WORKS, where an Space Division Multiple Access (SDMA)
extension has been integrated into the system concept of
Worldwide Interoperability for Microwave Access (WiMAX)).
Key performance indicators such as throughput per user or per
station (e.g. Base Station (BS)) at different layers as well as
packet delay at different layers can be evaluated.

The remainder of this paper is organised as follows: Sec-
tion I-A of the introduction discusses previous and related
work. Section II briefly introduces the context of the Modes
Convergence Reference Model developed within WINNER.
Section III describes the proposed FUs and the different
aspects of their interfaces. Section IV outlines possible logical
dependencies that may arise between different FUs and how
to resolve these. Section V presents a short overview on how
different data flows (e.g., in a BS) can be handled in our
architecture. Finally, Section VI shows as an example of how
the proposed architecture allows to implement the user-plane
functions of the DLL

a) as they are currently envisaged by the WINNER project
and how this implementation fits into the framework of
the WINNER Modes Convergence Reference Model and



b) of an IEEE 802.16 (WiMAX) system.
The presented implementations serve as protocol stack proto-
types for the simulative performance evaluation of the respec-
tive systems.

A. Related Work

The protocol architecture proposed in this work is inspired
by both i) the work of Siebert and Walke in 2000/2001
(see [5] and [6]) and ii) the work of Berlemann et al. (see
[7]). As proposed in these works, we adhere to the approach
of complementing generic functionality with system-specific
functionality to implement a certain protocol’s (i.e., system’s)
behaviour. The approaches nevertheless differ in some impor-
tant aspects: [5] and [6] propose rather coarse-grained modules
2 and concentrate on an efficient design of the protocols. Due
to the coarse granularity, the solution is relatively monolithic
and requires large efforts to enable run-time reconfiguration.
[7] and our work focus on the composition of protocol layers
out of smaller modules with a single cohesive functionality.
The difference between the two is that Berlemann et al.
investigate the effects of the composition (i.e., the behaviour
of the composed protocols), while our work aims to define
a software architecture and generic interfaces to enable the
composition of arbitrary modules (FU). Additionally, this
architecture offers the desired degree of flexibility to enable
the run-time reconfiguration of protocols.

Following up on [5], Sachs in 2003 (see [8]) has taken up
the idea of a generic protocol stack in focusing on a generic
link layer for the cooperation of different access networks at
the level of the DLL. However, not only DLL protocols but
also adjacent layers’ functions as for instance the control and
management of the radio resources as well as mobility have
to be considered in a multi-mode capable network. The work
of [8] is continued by Koudouridis et al. in 2005 (see [9])
focusing on multi-radio transmission diversity and multi-radio
multi-hop networking which can be seen as a use case for the
software architecture elaborated in this paper.

Approaches that are related to the one presented in this work
also exist in the domain of software engineering for operating
systems. Much like [5] and [6], the x-Kernel architecture
(see [10]) focuses on units that represent entire protocols and
defines interfaces to connect them, while this work defines a
framework to build up individual protocols from a ‘toolbox’
of atomic functions.

II. MODES CONVERGENCE REFERENCE MODEL

The Modes Convergence Reference Model as proposed in
[3] is designed to facilitate the coexistence and the cooperation
of different modes in all logical nodes of the WINNER radio
access network3. This efficient integration of multiple modes
shall be termed ‘Modes Convergence’. Modes Convergence-
enabled devices will have the ability to dynamically adapt
to different modes, giving them maximum flexibility and

2The modules are entire Layer 3 protocol entities, such as Call Control
(CC), Mobility Management (MM) etc.

3Referred to as logical nodes are (i) the User Terminals (UTs) (ii) the BSs
and (iii) the Relay Nodes (RNs)

reducing complexity overhead compared to ‘conventional’
multi-mode devices (e.g. combined 3G / GSM handsets).
Coexistence and Cooperation, i.e., Convergence of modes is
desired in the following areas
Convergence in devices: This refers to the case of devices
capable of (perhaps simultaneously) operating in different
modes at the same time, such as multi-mode UTs, multi-mode
BSs or multi-mode RNs. All these devices can benefit from a
joint optimization of the functionalities in the different modes.
The overall system design also benefits from a convergence of
the modes, because the level of commonalities can be kept as
high as possible if modes convergence is a design target from
the early stages on.
Convergence in spectrum: At the current point in time,
the exact spectrum allocation for beyond 3G (B3G) wireless
broadband systems such as the WINNER system and the
usage of this spectrum by the different envisaged modes
or even systems is not known. Thus, the case of devices
sharing the same available radio spectrum while operating
in different WINNER modes can not be entirely ruled out.
These devices could share the available spectrum efficiently if
they apply a sharing algorithm that is common to the different
modes or maybe common to different systems. Cooperation
between modes may increase the overall efficiency of spectrum
utilization and may contribute to interference mitigation.

Fig. 1 illustrates the high-level architecture of the multi-
mode protocol stack for the flexible WINNER air-interface.
The layer-by-layer separation into specific and generic parts
(where appropriate) enables a protocol stack for multiple
modes in an efficient way: The separation is the result of
a design process where the identification and grouping of
common (generic) functions is one of the main targets. The
generic parts of a layer, marked ‘-g’ in Fig. 1, can be identified
on different levels, such as the Physical Layer (PHY), Medium
Access Control (MAC) and Logical / Radio Link Control
(LLC/RLC) as shown in the figure. The specific parts (marked
‘-rn’) are reused in the different modes supported by the
protocol stack. The composition of a layer out of generic and
specific parts is exemplarily depicted in Fig. 1.

The management and the joint handling of the protocol
stack operating in different modes are performed by the stack
management, also shown in Fig. 1. When multiple modes are
operated, this can be regarded as cross-stack management and
it is envisaged to be performed by a stack modes conver-
gence manager (Stack-MCM) which controls the management
functionality in the respective protocol layers (N-Layer Modes
Convergence Managers, (N)-MCM) in a hierarchical manner.
For further reference on the proposed architecture, see [3].
The introduced multi-mode protocol reference model facil-
itates the structuring of an arbitrary layer into generic and
specific parts. In providing guidance for understanding this
structuring it marks up optimization potential in questioning
the necessity of indicated differences. In this way, an increased
protocol convergence is reached enabling an efficient multi-
mode capable protocol stack for the WINNER system. This
article takes the example of the DLL of the WINNER system
to illustrate how such protocols can be composed from a set
of mode- independent and mode-specific FUs.
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Fig. 1. The WINNER multi-mode protocol architecture, facilitating transition
(switching) between modes (inter-mode handover) and coexistence of modes
(e.g. in relay nodes connecting different modes)

III. FUNCTIONAL UNITS

As discussed in [3] the DLL of protocol stacks of wireless
communication systems in general comprises among others
the following set of functions: Automatic Repeat Request
(ARQ), Segmentation And Reassembly (SAR), scheduling,
multiplexing and buffering. If these units are supposed to
be composed and connected in an arbitrary way, the neces-
sity for a generalized interfaces arises. How should FUs be
organised to support such a wide range of different tasks?
How can these units be connected in a generic way to
support the configuration of larger systems based on such
units only? To answer these questions, we start analyzing
the most fundamental requirements and describe interfaces
that allow these requirements to be met. We will describe
applications of the defined interfaces and how the FUs can be
used to compose complex systems based on these interfaces.
The set of functional units together with a description and
configuration methodology is intended to form a toolbox for
the implementation of protocols.

We have identified four interfaces which are at least nec-
essary to realize an architecture as described in this paper.
Namely, these interfaces are:

• Management
• Flow Control
• Data Handling
• Custom
These interfaces of a FU are depicted in Fig. 2. In the

following sections these interfaces are described in more
depth.

Functional Unit

Management

Flow ControlData Handling

Custom

Fig. 2. General requirements of a FU

A. Interfaces

1) Data Handling Interface: The most fundamental re-
quirement for FUs is the ability to handle data. In the following
we will denote a basic data unit that is transmitted between
FUs a compound. For now a compound can be seen as a
chunk of data of variable size. FUs as part of a protocol stack
may receive compounds for processing before and after such
a compound has been transmitted over the air-interface. The
first case is called outgoing data flow, while the latter case is
referred to as incoming data flow. The interface for handling
compounds has to provide services for accepting data in both
directions, incoming and outgoing. The interface must further
enable the FU to distinguish between compounds of both
flows. To support that, it is advisable to choose two different
methods: sendData(Compound) for compounds in the
outgoing flow and onData(Compound) for compounds in
the incoming flow as depicted in Fig. 3.

2) Flow Control Interface: In practice every FU has only a
limited capacity to store compounds and often FUs do not need
to store compounds at all to accomplish their task (e.g. forward
error correction units). The physical layer on the other hand
introduces a bottleneck, limiting the amount of information
transmitted and thus the rate at which compounds must be
handled. Without any flow control mechanism within a FUN,
compounds could leave the FUN with much higher rates than
the physical layer could possibly handle. This would result
into a dropping of compounds in the physical layer. Buffering
between the layers is not an adequate choice either, since the
delay between processing the compound in the FUN and data
transmission would increase. The increase of delay has several
drawbacks.

First, timeout mechanisms would not work as expected. Re-
transmission timers could lead to retransmission of compounds
although the last transmission of these compounds has not even
been started. Such compounds would be added to the buffer
several times, leading again to increasing delays.

Second, decisions of FUs based on feedback of the physical
layer would loose accuracy; and gathered information would
be outdated, when the consequences of the decisions would
finally manifest.

Thus the need for an intra layer flow control arises. FUs
must have the ability to prevent other units from delivering
compounds to them, when they decide not to accept addi-
tional compounds. There are different reasons for a FU to
decide not to accept compounds. All these reasons are direct
consequences of the limited resources of the physical layer
and thus only apply for outgoing flows. Resources in higher
layers are usually not a bottleneck for incoming flows.

The implementation of this flow control mechanism is
realized with two methods

• isAccepting(Compound)
• wakeup()

Before each sendData call the calling FU (whishing to
send data) must make sure the target FU is accepting via the
isAccepting method (see Fig. 3). It may also happen that
a FU is asked if it is accepting further data and needs in turn
to ask the next FU in charge, to return the right result. The



wakeup of a FU in turn is called by lower FUs to indicate
that the lower (calling) FU is accepting data again.

A good example for this is a Stop-and-Wait ARQ protocol:
the FU implementing the Stop-And-Wait ARQ is not accepting
data if it is waiting for the acknowledgment of a transmission
and is accepting data otherwise (assuming there is no buffer
built into the ARQ). After the ARQ has received the acknowl-
edgment for the transmission it can change its state from not
accepting to accepting again and will in turn call the wakeup
method of the upper FU to signal its state change. The upper
FU can then try to send data to the ARQ again.

Note that flow control is only applied for outgoing flows.
Flow control for incoming flows is not necessary. If a FU A
cannot handle the data in the incoming flow due to limitations
of the processing power of the device and if flow control would
be available, a FU B located below A would need to store the
data instead. Soon, the buffer of B would fill up and the FU
below B would need to store additional data. Finally, if all
FUs are not accepting any data in the incoming flow anymore
the physical layer would need to store the incoming data and
in the end start dropping incoming packets, too. Therefore,
if a device cannot handle the data in the incoming flow, due
to whatsoever limitations, respective flow control mechanisms
between the sender and receiver need to be established to lower
the data rate of the incoming data flow. Additionally, to support
variations in data rate of the incoming data flow inherent to
the system buffering to some extend can be applied in the FU
of concern.

Functional Unit

onFUNCreated

Custom

connect

sendData isAccepting

onDatawakeup

Fig. 3. Detailed interfaces of a FU

Remark: If no multiplexing and demultiplexing aspects are
important, FUs are often drawn in a simplified version where
the flow control and data handling interface are replaced by a
logical upper and a lower interface (see Fig. 4).

3) Management Interface: The management interface of a
FU offers the necessary functionality towards the FU Manager
to manage the composition and (re-)configuration of the proto-
col stack or better a FUN4. Since this paper does not focus on
the management of FUs, the interface presented in Fig. 3 does
not show the complete set of functionality which is currently
available. Two methods have been chosen as an example:

• connect(FunctionalUnit)
• onFUNCreated()
The connect method takes another FU as argument which

should be connected to the FU in question. Special containers

4see III-B for more details on FUNs. Basically, a FUN is the framework
which holds a number of interconnected FUs, forming a protocol with complex
behavior
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(a) sendData and isAccpeting can be logically
combined into the upper interface of an FU. Accord-
ingly, onData and wakeup form the lower interface

Functional Unit

onFUNCreated

Custom

connect

upperInterface

(called from

upper FUs)

lowerInterface

(called from

lower FUs)

(b) FUs are often drawn only showing upper and
lower interface to leave out unnecessary details

Fig. 4. FU with simplified (logical) interfaces

to support multiplexing and demultiplexing of data when the
protocol stack is in full operation are maintained by this
method.
onFUNCreated is a hook which is called by the sur-

rounding framework of a FU to signal the successful creation
of a FUN to the FU. Any special tasks the FU may need
to undertake to get into a proper state for operation can be
handled here. E.g. the FU can access other FUs of the FUN
to resolve any dependencies it may have.

4) Custom Interface: All aforementioned interfaces are
generic interfaces of a FU which need to be supported by each
FU in order to ensure proper working as part of the described
framework. However, it can be beneficial for FUs in terms of
system performance (optimization aspects) to offer additional
interfaces. These interfaces are summarized under the Custom
interface.

The generic interfaces (described so far) don’t export much
information about the internal state of a FU (except whether
a FU is accepting data or not through the isAccepting
method). This contributes to one of the design targets for-
mulated at the beginning: reduced coupling between FUs to
increase reusability. For a further discussion on reusability and
dependencies see section IV.

Fig. 5 and Fig. 6 show two examples for FUs that can have
additional (custom) interfaces.

The method retransmissionsPending of the ARQ
or getLength of the buffer can be used by other FUs of the
FUN to optimize their operation. E.g. a FU can prefer a certain
buffer over others if its length 5 exceeds a certain threshold.

5length is used synonym to size or fill level here



ARQ

onFUNCreated

retransmissionsPending

connect

sendData isAccepting

onDatawakeup

Fig. 5. FU with additional custom interface: ARQ

Buffer

onFUNCreated

getLength

connect

sendData isAccepting

onDatawakeup

Fig. 6. FU with additional custom interface: Buffer

B. Functional Unit Networks

The methods sendData and onData are called by other
FUs to propagate compounds through a Functional Unit
Network (FUN). A simple setup of a FUN including the FU
Manager is shown in Fig. 7. Three FUs are connected by
the FU Manager to form a FUN. The outgoing data flow
is from top to bottom (thus higher layers to lower layers).
Every FU would forward the received data to its next lower FU
without any choice. No (de)multiplexing aspects are present
in this FUN. This is however only rarely the case within a
protocol stack. Thus the frameworks needs means to handle
(de)multiplexing.

Fig. 8 shows a part of a FUN with five FUs: two at the top,
two at the bottom and one in the middle at a higher level of
detail). The FU in the middle now needs to able to

a) multiplex outgoing data from upper FUs
b) demultiplex incoming data to upper FUs
c) demultiplex outgoing data to lower FUs.
Therefor, every FU contains three strategies for

(de)multiplexing and according sets of references to
other FUs: The Connector, the Deliverer and the Receptor
(see Fig. 8). FUs call the sendData method of other FUs
in their connector set to pass on compounds in the outgoing
flow and call onData of FUs in their deliverer set to pass on
compounds in the incoming flow. The strategy of Deliverer
and Connector determine which FU will actually receive the
compound. To wakeup upper FUs (see section III-A.2) the
calls the Receptor which again forwards the call according to
its strategy.

The FUs can be connected to multiple units in both di-
rections to support multiplexing and scheduling, realized by
choosing different strategies to select a unit for compound
delivery. A FUN can now be constructed by choosing FUs
from a toolbox of FUs and connecting them, defining their

Functional Unit

onFUNCreated

Custom

connect

sendData

onDatawakeup

isAccepting

Functional Unit

onFUNCreated

Custom

connect

sendData isAccepting

onDatawakeup

Functional Unit

onFUNCreated

Custom

connect

sendData isAccepting

onDatawakeup

Functional Unit Manager

Fig. 7. Composition of FUs to form a simple FUN

connector and deliverer sets. It is possible to further identify a
set of units as sink for outgoing flows: Compounds delivered
to these units are leaving the FUN for delivery to lower layers.
Another set of units may be identified as sink for incoming
flows: Compounds delivered to these units are leaving the FUN
for delivery to higher layers. Consequently, a FUN can be
seen as a bi-directional data processing network. Input to the
network is injected using either the onData or sendData
method of any of the FUs. The output of the network is
measurable at the sink units. The communication between
peer entities of a protocol can be understood as data exchange
between two FUNs.

C. Commands

Whenever a compound arrives in a FU, the FU gains control
over the compound and can realize different behaviors by
handling the compound accordingly. It may choose to mutate
or drop the data unit, buffer it, forward it to other FUs or
inject new data units into the FUN. A large class of FUs
is characterized by enriching the compound, adding control
information on outgoing compounds and reinterpreting the
added information on incoming compounds. Usually these
FUs provide a transparent connection to other FUs above. An
ARQ protocol for example adds sequence numbers as control
information to the compounds of the outgoing flow. It creates
and injects compounds as acknowledgments in order to reply
to compounds of the incoming flow. The ARQ instance in the
peer FUN reinterprets the added control information, delivers
valid information frames to some FU in the deliverer set and
consumes dedicated compounds containing acknowledgments.
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wakeup onData

Receptor

(wakeup)

Deliverer

(onData)

Connector

(sendData,

isAccepting)

Fig. 8. FUN with FU at full level of detail

The control information added by FUs is called command.
The command can have different characteristics for different
purposes, like an information command or an acknowledg-
ment command for the ARQ. The ARQ in our example is

completely invisible to the FUs above. Even underlying FUs
do not need to have knowledge about the control information
added by ARQ implementations. The only FU that is required
to be able to handle the ARQ command is the peer unit of



the ARQ. Sometimes, however, FUs add commands that are
important to other FUs either in the peer FUN or within the
same FUN. Connection identifiers may serve as an example for
such information. FUs may require being able to retrieve the
destination address of a compound which is part of a higher
level (another FUs) routing command.

This leads to the requirement of having a possibility to
access commands added by other FUs. Note that FUs cannot
simply reinterpret control information added by other units
to the compounds’ data. FUs have no information about the
layout of the FUN and therefore also have no information
about the layout of the combined control information within
the compound. There might be an arbitrary number of FUs in
between the unit that added the control information and the
unit that intends to access it. Additionally, the data might have
been heavily modified by other FUs in between. The solution
is to attach a set of commands to each compound. Since a FUN
has a known number of connected FUs, there is a known set
of potential commands.

The set containing all the commands of every FU within
a FUN is called command pool. We can now specify more
precisely that the compound as defined in Section III-A.1
is the union of a data unit and a command pool. Initially
all commands within the command pool of a compound are
inactive. The data attached to a compound is set to the data
unit delivered by higher layers for transmission. A data unit
is initially empty for compounds being created/injected in the
FUN (e.g., ARQ acknowledgements). Parts of the command
pool get activated during the propagation of a compound
through the FUN, where every FU activates its command when
in control. At the same time FUs can mutate the data.

A set of activated commands ordered by their time of acti-
vation is named a command sequence. A FUN is required to
be free of cycles to assure that commands do not get activated
more than once. Hence, an unambiguous command sequence
must exist in which single commands may be retrieved.

1) Relaying of Compounds: The activation of commands
from a non-extendable command pool introduces the problem
of implementing relaying FUs [11]. Having a single point of
activation implies that compounds may not cross the borders
between the two FUNs from incoming to outgoing data flows.
No FU may forward a compound using sendData, when it
received the same compound via onData. This is a direct
consequence from the activation of commands. Otherwise, it
would be possible for the compound to be delivered to a FU
that already activated its command. To implement relaying, the
relaying FU has to inject a copy of the received compound,
which has only those commands activated and copied that
are in the command sequence before the relaying unit. The
rest of the commands will remain inactivated. Fig. 9 gives
an overview about the activation status of commands within
a compound as it is passed from the originating FUN (left)
via a FUN that has relaying capabilities (middle) to the final
destination FUN (right). The relaying FU injects a copy of
the incoming compound which holds a copy of the activated
command of FU ‘A’ (and activates its own command ‘B’),
because the compound is not going to pass through ‘A’ in the
outgouing path of the relaying FUN. Note that the relaying FU

‘B’ in Fig. 9 is transparent in the case of outgoing flows (left),
for incoming compounds it can either perform the relaying as
explained above (center) or decide not to further relay the
compound because it has reached its final destination (right).

B :Relay

C :FunctionalUnit

A :FunctionalUnit

B :Relay

C :FunctionalUnit

B :Relay

C :FunctionalUnit

A :FunctionalUnit

Command of A: activated
Command of B: activated
Command of C: activated

Command of A: activated
Command of B: activated
Command of C: inactive

Fig. 9. Partial copy of a command pool for relaying

2) Coding of Commands: Besides commands being acces-
sible by other FUs, delaying the coding of commands as
part of the data has another advantage. Often information
in communication protocols is not transmitted explicitly as
a stream of bits, but implicitly through the choice of radio
resources element like time, frequency, space or code. In a
Time Division Multiple Access (TDMA) system for example
with fixed slot reservations for connections, it would be useless
to explicitly transmit connection identifiers. Nevertheless the
information is indirectly transmitted through the choice of a
specific slot. Such a slot must be chosen at some point of time
based on the connection identity. A command provided by a
connection aware FU may contain the connection identifier.
But the choice how to transmit the connection identity is
delayed, and the outcome may be different depending on the
system. As we have shown, attributes of commands serve
different purposes. Some are meant to be transmitted, while
other attributes are only meaningful within a FUN and are not
meant to be sent to the peer FUN. In order to be explicit about
the purpose of a command attribute, we divide the attributes
of commands in two distinct sets: The local on the one hand
and the peer set on the other hand.

D. Five Aspects of a Functional Unit
To summarize the discussion above, we distinguish five

aspects of a FU:
1) Compound Handler: implements the handling of com-

pounds (Data Handling Interface) of a FU including intra
FUN flow control (Flow Control Interface). The methods
provided are
• onData(Compound),
• sendData(Compound),
• wakeup() and
• isAccepting(Compound) −→ Boolean.

Handling of compounds includes mutation, dropping,
injection and forwarding. Activation and initialization
of commands is considered as mutation.



type of FU. This allows friends to be exchanged without 
modifying the dependent FU. 
 Since the exact layout of an FUN is unknown to the 
FUs, the FUN provides services for the FUs to find their 
friends by name and desired interface. Making the names 
of the friends a configuration option to dependent FUs 
results in a high degree of flexibility. Friends can be 
retrieved once after re-configuration of the FUN.  
 To retrieve a command from a command pool, the 
retrieving FU does not need to rely directly on an 
interface of the command’s provider. It relies on the 
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Fig. 10. Flow Separation and dynamic instantiation of Functional Units

2) Command Type Specifier: defines the type of com-
mand provided by the FU. This type will be used
to create an initial command pool and to verify unit
dependencies as will be discussed in Section IV

3) Connector: holds the set of FUs that compounds will be
delivered to in the outgoing direction; defines a strategy
to select the appropriate FU for a given compound.

4) Receptor: holds the set of FUs in which the FU itself
is in the connector set; defines a strategy to trigger
outgoing data from the set of previous FUs (wakeup).

5) Deliverer: holds the set of FUs that compounds will
be delivered to in the incoming direction; defines a
strategy to select the appropriate FU to deliver a given
compound.

IV. UNIT DEPENDENCIES

Ideally a FUN would consist of FUs without any inter-unit
dependencies. But that is not an option for building real world
protocol stacks. Knowing what kinds of unit dependencies
exist, what they imply and when to accept them is essential
for the design of FUs and FUNs. We distinguish between
two different kinds of unit dependencies: Direct and deferred
coupling. Direct coupling is a dependency on the Custom in-
terface of another FU (see section III-A.4); deferred coupling
is the dependency on the command of another FU. When FU
‘A’ depends on the interface or the command of FU ‘B’ we
say that ‘B’ is a friend of ‘A’. Direct dependencies arise for
example for

• multiplexing FUs that need assistance of their friends
below them to decide where to deliver compounds.

• horizontal collaboration; FUs responsible for realising
control plane functionality, receiving supervisory frames
from a peer node and configuring their friends to modify
the user data plane accordingly.

• vertical collaboration; layered protocol functions that
must work close together but change behaviour in dif-
ferent places of a protocol stack.

To avoid tight coupling, those dependencies should rely on
the most general interface possible [4]. The goal should be
to make FUs depend on families of units sharing a common
interface, and not to depend on a single type of FU. This allows
friends to be exchanged without modifying the dependent FU.
Since the exact layout of an FUN is unknown to the FUs, the
FUN provides services for the FUs to find their friends by
name and desired interface. Making the names of the friends

a configuration option to dependent FUs results in a high
degree of flexibility. Friends can be retrieved once after re-
configuration of the FUN. To retrieve a command from a
command pool, the retrieving FU does not need to rely directly
on an interface of the command’s provider. It relies on the
command’s provider to be present in the FUN and on the type
of command the provider specified.

There is another subtle difference between the direct cou-
pling using the custom interface of a FU and the deferred
coupling using the command attached to a compound. The
interface, if used for information retrieval, yields a result which
reflects the current state of the FU. The deferred coupling,
using a command attached to the compound for, can only
offer information reflecting the state of a FU at the time the
compound passed through it.

V. FLOW SEPARATION

FUs as described can have one or more internal states and
exhibit a related behavior. A SAR unit for example needs to
store segments of compounds to be able to apply segmentation
and reassembly. A FUN therefore obviously requires different
instances of a SAR unit for different peer FUNs as depicted
in Fig. 10(a). To dynamically create FUs within a FUN
depending on their data flow a so-called flow separator is
proposed (see Fig. 10(b)). The flow separator itself is a FU,
configured by a key to distinguish flows and a strategy to create
FU instances. It is based on the Instantiator design pattern
proposed by Gamma et al. in [12]. The compound handling
including flow control is delegated to the according instance
by the flow separator. This way, not each FU is burdened with
task to be able to handle multiple flows, but a specialist was
created that can be reused.

VI. PROOF OF CONCEPT

A. Winner Protocol Stack

Fig. 11 exemplarily shows how the intended functionality
of the DLL as it is currently discussed by the WINNER
project can be composed out of a set of mode-independent
FUs (white) and a number of mode-specific FUs (grey). An
implementation of the DLL based on this concept is available
as part of Wireless Network Simulator (WNS) for performance
evaluation of the WINNER system. The DLL is depicted here
only for one mode (Mode 1). However, in the WINNER
project at least 2 modes are currently envisaged. It should
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Fig. 11. WINNER DLL as a Functional Unit Network

be noted that the mode-specific behaviour of the FUs shown
in gray is achieved by pure parameterization, while identical
implementations are being used when Mode 2 is used instead
of Mode 1.

The used FUs can be further subdivided into three different
classes:

1) The common, system-independent functions, these can
be taken from a toolbox of generic protocol functions
that can also be used to implement protocols for other,
non-WINNER radio systems, examples are
• ARQ units. The figure shows an E2E-ARQ for se-

curing packets end-to-end over multiple radio hops
and a Hop-ARQ that operates on a per-hop basis.

• Buffers
• Segmentation and Reassembly Units

2) The mode-independent, but WINNER-specific functions
• IP Convergence Layer (IPCL)
• Mode Selection

3) The WINNER-mode-specific functional units, which are
shown as grey boxes. Example for such functions are
• Resource Scheduler, which needs have detailed

knowledge of the physical layer mode being used.
• Hop-ARQ, which is likely to be a Hybrid ARQ and

thus also closely linked to the physical layer mode
being used.

The change of the parameterization of the mode-specific
FUs to configure a new mode would be the responsibility
of the entity that manages the respective protocol layer (see
Fig. 1).

In addition to the discussed FUs Fig. 11 shows so-called
Layer Services (drawn as boxes with round corners). These
services, in contrast to the FUs, don’t directly exchange
information with some peer service in another protocol stack.
They control, use and observe FUs within the protocol stack
to fulfill a certain task. An example is the ”Mode 1 Cell

Detection” which simply observes the reception of Mode 1
Preambles by the respective FU. In a publish-subscribe manner
the ”Mode 1 Cell Detection” is subscribed to the ”Mode 1
Preamble” reception. Again, this promotes minimizing depen-
dencies between the modules of a layer to enhance reusablity
(any other additional service or FU can subscribe to the ”Mode
1 Preamble” reception) and flexibility (the strategy for the cell
detection can easily be exchanged).

B. IEEE 802.16 Protocol Stack

The presented FU concept has also been used for an imple-
mentation of the IEEE 802.16 protocol stack. Fig. 12 shows the
Functional Unit Network of an 802.16 protocol stack which
realizes the BS and the Subscriber Station (SS) data plane and
the OFDM PHY layer. As in the WINNER protocol stack,
the 802.16 implementation uses several common FUs like the
ARQ or the SAR. These generic FUs are drawn with white
boxes. FUs that are modified or created for the FUN are drawn
in grey boxes.

The function of the FUN can be divided into two classes,
namely the Connection Control and the Radio Resource Con-
trol.

1) Connection Control
The Classifier classifies compounds realizing flow sepa-
ration for buffers, ARQ and SAR entities per CID. The
Relay Mapper performs a rewrite of CIDs in the relay
station for pairs of connections and a partial copy of
the compound as shown in Fig. 9. As a result the relay
implementation is not equipped with the FUs above the
Relay Mapper except the buffers.

2) Radio Resource Control
Radio Resource Management is mainly controlled by
the Frame Builder which provides a common frame-
work for frame based protocols. The frame is indirectly
specified through the FUs that are directly attached to
the upper side of the Frame Builder and through the
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Timing Control which is part of the Frame Builder.
The Timing Control activates the attached FUs in a
previously specified way. While the Frame Builder is
a generic component, the Timing Control is system
specific.

VII. CONCLUSION

We presented a software framework for flexibly building
protocol stacks out of Functional Units (FUs). An implemen-
tation of this framework is used to evaluate the performance of
wireless communication systems by means simulative perfor-
mance evaluation. Simple, cohesive FUs are connected using
a uniform interface to form arbitrary FUNs in order to build
complex protocols. An interface, divided into the following
five aspects, has been defined: Compound Handler, Command
Type Specifier, Connector, Receptor and Deliverer. A solution
for keeping dependencies between FUs at a minimum level is
presented. The problem of flow separation is briefly discussed
and a solution is sketched.

The presented framework opens up potential to

• Exploit similarities between the protocols of different
wireless systems and hence facilitate efficient implemen-
tation of reconfigurable multi-radio devices

• Build systems based on multiple modes, each optimized
to suit a specific environment, without the need to pro-
vide complete protocol software for each mode in the
terminals and base stations.

• Implement software-defined radios where not only the
physical layer but also higher layer protocols can be
adapted through parameterization and configuration.

• Accelerate protocol stack development and performance
evaluation.

Future work includes further investigations on the identifica-
tion and implementation of reusable FUs conforming to the
presented interface and on the management, parameterization
and seamless reconfiguration of protocols represented through
FUNs. Additionally, it is planned to release an implementation
of the presented software architecture within the European
research project openWNS, which currently applies for funding
as part of the FP7. The openWNS project will release an open
source system level simulator for the evaluation of wireless
communication systems.
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