AEU ‘Int J. Electron. Commun.
50 (1996) No. 4, 233-239

(© Hirzel-Verlag
Stuttgart

tJ
[9%]
(%]

Stochastic Simulation: A Simplified LRE-Algorithm for
Discrete Random Sequences

Friedrich Schreiber and Carmelita Gérg

Abstract  The LRE-algorithm III (LRE: Limited Relative Er-
ror) for the statistical evaluation of discrete random z-sequences
yields by simple rules the stationary d.f. '(z) and the so-called
local correlation function p(z), —1 < p < 1, to be included in
a mean quadratic error measure for controlling the simulation
run time. The use of this error statement instead of confidence
interval statements and the principle of measuring correlation
evidence instead of trying to eliminate correlation represent es-
sentials for overcoming the deficiencies of the widespread Batch
Means evaluation method.

The LRE-algorithm ITT has been verified by test simulations of
analytically described queueing systems and recently applied as
part of the so-called RESTART/LRE-algorithm for simulating
very small probabilities of rare cell loss events in ATM-networks:
in a situation being affected by various correlation phenomena
the error and run time control procedures of the LRE-method
secure the objectivity of numerical simulation resuits.

Keywords Stochastic simulation, run length control, LRE-
algorithm, discrete random sequences, local correlation, mean
quadratic error measure.

" 1. Introduction

1.1 Statistical Evaluation and Correlation

Since the early days of applying stochastic simulation in the
teletraffic field there has been the major problem how to
evaluate random sequences in the presence of correlation in
order to gain an objective error statement for simulation run
length control. Various attempts to adapt common statistical
methods for solving this problem were not truly success-
ful, see for instance the deficiencies of the most often used
evaluation method Barch Means [1], [2], which depends on
the elimination of correlation by forming quasi-independent,
quasi-normally distributed batch-random variables. In fact,
until recently, experts have warned that the evaluation prob-
lem could jeopardize the trustworthiness of simulation results
in general [2].

To overcame these difficulties the LRE-algorithm IT (LRE:
Limited Relative Error) has been proposed in [3] as a new sta-
tistical evaluation method which takes into account measured
evidence of correlation.? Its main features are as follows:

a) The LRE-algorithm II determines the d.f. F'(z) or compl.
d.f. G(z) = 1 — F(z) of a stationary, but otherwise

1 A first version of this method [4] was restricted to the evaluation
of independent random sequences.
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unknown z-sequence by subdividing not the z-axis but the
vertical F'- resp. G-axis according to prescribed resolution
parameters, namely the desired number of intervals k (e.g.,
k = 200) and the lowest value Fij, resp. Gmin to be
established by simulation (e.g., Gmin = 107%).

b) The character of the z-sequence might be discrete, con-
tinuous, or mixed continuous-discrete: within the lim-
its given by the chosen resolution parameters the LRE-
algorithm II is able to detect “‘rare events” and to establish
isolated discrete points as well as discrete points embed-
ded in a continuous surrounding as part of the function
F(z) resp. G(z).

c) Instead of trying to eliminate correlation by form-
ing quasi-independent batches or by other manipulations
the LRE-algorithm II includes among the objects to be
permanently measured the so-called local correlation
coefficient® o(z), —1 < p < 1, which represents a well
defined (first order) correlation property of Markovian
systems [5], [6], [7] and has been found to be rhe ade-
quate measure for dealing with the correlation problem in
simulation [8].

d) In any state of a simulation run the error statement con-
cerning the posterior function® F'(z) resp. G(z) obtained
by evaluating the z-sequence (under observance of strictly
controlled large sample conditions) is not expressed by
confidence interval methods but by a mean quadratic er-
ror measure, which depends, among other things, on the
measured value® 5(z) of the local c.c. p(z): the poste-
ror variance 0%(z) resp. 0% (z) and, derived from this,
the relative error function dr(z) = or(z)/F(z) resp.
da(z) = o6(z)/G(2).

e) A simulation run is stopped if in the whole prescribed
F- resp. G-range of investigation the relative error dp(z)
resp. dg(z) is below a given error limit dy, 5. To achieve
this the sample size n (number of trials) can be steadily
increased by producing more simulation output events
until the error criterion dp(z) < dpax resp. dg(z) <
dmax is fulfilled.

f) The pair of posterior functions F(z), oc%(z) resp.
G(z), c%(z) imply also posterior statements concern-
ing the expectation parameters (moments) n, = E {z*},
v =1,2,... of the z-sequence.

After its introduction in 1988 the LRE-algorithm II has
been implemented as part of a C++ simulation system [9],
[10)* and has proved its usefulness in many investigations.
The simulation results reported in [11] make evident that this
evaluation tool allows for a more deeply understanding of the

% Abbreviation: local c.c. o(z).

2 The notations here differ partially from those in [3] and [8]:
Fa(z) = F(z), Ga(z) = G(=), Pp(e) = Pa(=) — &(=).

* The CNCL [10] simulation library is available via anonymous
ftp at ftp.comnets.rwth-aachen.de.
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random behavior of queueing systems, because it provides
as a supplement to the d.f. F(z) = 1 — G(z) the function
o(z): arelevant quantitative statement about the correlation

of the investigated z-sequence.

1.2 Evaluation of Discrete Sequences

Whereas the original LRE-algorithm II [3] has a fairly com-
plicated structure due to its ability to evaluate general ran-
dom sequences (see Item (b) in Section 1.1), the new LRE-
algorithm IIT is distinguished by an elementary structure and
by simple operating rules, because it has been designed to
evaluate discrete random sequences only.

This specialized LRE-version is part of-a new simula-
tion system for rare event investigations [12] by combining
an interesting type of importance sampling, the so called
RESTART-principle [13], [14] with the LRE-evaluation prin-
ciples: this RESTART/LRE-algorithm allows time saving
simulation runs for the determination of extremely low cell
loss probabilities in the order of 10~%, which have become
an important performance requirement for switching nodes
in the future ATM-broadband network [15]. Numerical re-
sults obtained by such a method with two or more subsequent
simulation phases depend in a sensitive way on a carefully
chosen error control procedure.

Due to its basic simplicity the LRE-algorithm III is well
suited to display the most important features of the Limited
Relative Error-method: the measurement of correlation and
the use of a mean quadratic error formula for simulation run

length control.

2. The Concept of Local Correlation

We assume now that a discrete r.v. § is generated by the
random state sequence of a recurrent (k + 1)-node Markov
chain with transition probabilities® p;; = P(8 = j|8 = 1),
whose stationary state probability Pp is uniquely determined
by solving the equation system

k
O=ZP,G:'P-£—P.{3: ,6:1,2,...,]:,

i=0
k
Pi=1~Y B k=12, (1)
B=1 :
Then the compl. d.f.
k
Gx)=Gi=) Psi-1<5z<i;i=1,2F
B=1

® The notation pj; = P(j|7) instead of the mostly preferred no-
wation p;; = P(7]i) avoids the frequent use of transposed transition
matrices and complies with the definition of the stochastic matrix in
accordance with standard matrix notation [16].

® Here and in the following we use preferably a description by the
compl. d.f. G(z) instead of by the d.f. F(z) = 1 — G(z) because
in most teletraffic applications there are distributions in the range
0 < z < co. which have 1o be investigated with respect to their
right tail.

Gg - 1,
Gk+1 - D. (2)

exists as shown by Fig. 1. Now, at any point z on the real axis,
we can split this chain into two parts and define an “G(z)-
equivalent” 2-node Markov chain, whose transition proba-
bilities po(z) and p; (z) are uniquely given by the equations

(8]

1 i—1 k
po(z) = &= Y " P(B)> pis,
P p=0 j=i

k i—1
pi(z) = %Zp(ﬁ)zpjﬁs
=0

T E
B=i

bima ad =12k 13

and determine the local c.c. p(z) of this 2-node chain and the
state probability @(z) of its left state So(z) resp. 1 — Q(z)
of its right state Sy (z)

o(z) = 1= [po(z) + p1(2))],
Q(z) = p(z)/[1 = o(z)] = F(z),
1 - Q(z) = po(z)/[1 — o(2)] = G(=),
st mii (4)

From this follows the equality
po(z)F(z) = p1(z)G(z), (5)

and we conclude that the two double sum expressions in eq.
(3) are equal.

The function p(z), which has been considered for the first
time in 1967 by Blomquist [17], [18], is called to be local
due to its dependence on the “location” z and in order to
distinguish it from the standard global correlation coefficient
o, which expresses a mean statement with respect to all z-
values [5]. This local c.c. o(z) represents a well defined (first
order) correlation function of Markovian random processes,
which has been analytically derived for the elementary queue
M/M/1/N [6] as well as for complex semi-Markov queueing
systems [7]. As shown in [5], the function p(z) can also be
derived for discrete Markov chains with an infinite number
of states k — oo and in case of continuous random variables
z like the waiting time in a queue.

3. The LRE-Algorithm III

3.1 Frequency Measurements

We assume now that the compl. d.f. G(z) of a (k + 1)-node
Markov chain with known k-value and known recurrence
property, but otherwise unknown values of the transition pa-
rameters p;; will be determined by simulation. Therefore it
is a priori known that a discrete random sequence with a
known range of possible values has to be investigated. Due
to these elementary prior conditions the *F-Sorting Memory™
FS resp. “G-Sorting Memory™ GS of the relatively compli-
cated LRE-algorithm II [3] can be completely omitted for
operating the simply structured LRE-algorithm III. The only
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Fig. 1. Discrete (k + 1)-node Markov chain and the “G(z)-equivalent” 2-node Markov chain® [8].

memory needed for a G-evaluation is the “G-Result Mem-

ory” GR with a record for storing two frequency values for

each state 7 of the (k + 1)-node chain after this chain has

performed n state changes (trials):

a) The state frequency h; how often each state
1=0,1,..., k has occured in n trials. From this we also
obtain the sum frequency

k -
v;:Zhg, P04k te=n i i(6)
p=i

how often the right state S;(z) of the 2-node chain has
occurred, it — 1 < z < 1.

b) The transition frequency c;,: = 1,2,..., khow
often there has been a transition S;(z) — So(z), that is
a transition from any state G in the range 3 > 1 across the
separation line at a point = in the interval 1 — 1 < ¢ < 1.
The frequencies v; and c; resp. their counterparts r; =

n — v; and a; = ¢; are associated to the “G(z)-equivalent”

2-node Markov chain as shown by Fig. 1.

3.2 Statistics of the 2-Node Markov Chain

After the frequencies v; and ¢; have been measured in n trials
we now apply the results of two statistical investigations [19],
[20] concerning the 2-node Markov chain. If the large sample
conditions

n > 10%, (riyv:) 2 102,
(@i, 60,15 —ai 05— ¢} = 10

(7)

are fulfilled then we can express the required posterior state-
ments concerning
o the posterior compl. d.f. G(z) and the posterior mean state
16,
e the posterior local c.c. §(z) with correlation factor ¢ f(z)
and s
o the relative error dg(z) = o¢(z)/G(z) with respect to
the posterior statement G(z),
by the following formulae:

k

é(m) = @,—zv,—/ﬂ, 5=%Zvis

=1

0 = ci/vi
e(z)=9£—1————l_ﬂi/n,
cf(z) = cfi=(1+8:)/(1- &),
: 1/2
dc(m)=d,-={1-'—‘_"—/’fcf,] ;
i—1<z<i, i=1%:...,k (8

Due to the large sample condition we find — as it should
be — that the levels G; of the posterior function G(z) are
simply expressed by the relative frequencies v; /n. It is the
inclusion of the transition-frequency ¢; into the evaluation
routine that marks the essential progress compared to con-
ventional batch means and confidence interval methods: by
this feature we obtain not only the correlation function g(z)
but also the (mean quadratic) relative error dg(z) as a func-
tion of p(z) in a continual (not batch-subdivided) process
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that allows to increase the number of trials n steadily until
the error condition d; < dmax 1s fulfilled, with d,,x being
the prescribed error limit.

The total needed number of trials n is determined by dpax
and by the smallest desired G-value to be established, namely
Gmin = Gy in the present case; with d; = di = dpax and
cf; = cfr we obtain from eq. (8)

_ (1= Gmin)efe  _ cf e 1
Gm'mdfnu i G::ﬂind?nu;‘J = 1-

U~1]

k

L=l

k

(9)
This formula is useful for estimating simulation run times
for given values of Gmin, @max, and for an estimated value
of g, see Fig. 6 [3]. Assuming for instance G, = 107%,
dmax = 0.05 0or 5 % and g = 0.8 (correlation factor cf =
9), we find that about n = 3.6 x 107 trials are needed.”

3.3 The Procedure of LRE-Algorithm ITI

We assume that the parameters of the simulation dmax
and Gpmin have been prescribed. Then the LRE-algorithm
III evaluates the S-sequence B;, B2, - .., Bn produced by a
{k + 1)-node Markov chain or by any other discrete random
generator and augments the number of events n as far as
necessary until all levels G; > Gmin of the posterior d.f.
G(z) have been established with a rel. error d; < dmax-
After the contents of the “G-Result Memory” GR have been
set to zero the main procedure steps (Stg), . . ., (Stz) can be
outlined as follows.
{Stp) Initiation:

Setn:=0;ig:=0;

Reset the 3-generator to state Sg;

Receive By = 0.
(St;) Input of M-Block:

Setv:=n;

Whilen < v+ M Do Setn :=n + 1;

Receive 8,;

Seti:= 8, h;:=h; +1;

If Bo—1 > 1 Then Set X := B,_1;

Setieiey = gy 1oty =ex+ 1
(St2) Run Time Control:

Setvg i=7n;1: =15 + 1;

(St3) While ¢ < k Do

Setv; i=v;1 — hi; 1 i=1n — v a; = ¢

If “one of the conditions eq. (7) is nor fulfilled”

Then Goto (St;)

Else Compute by eq. (8) g; and rel. error d;;

If d; > dmax Then Goto (St;)

Else Set i5 := 1; 1 := 7 + 1; Goto(St3).
(St3) Termination:

Compute for ¢ = 1,2,...,k by eq. (6) the final sum

frequencies v; and by eq. (8) the final posterior values G;

and g;; Plot the step functions G(z) and 5(z).

" This number of trials should be no problem for simulation
on present day computers. But lowering the smallest G-value to
Gmin = 107° would raise the number of trials to the excessive
valuen = 3.6 x 102: obviously, this would be a situation, where
the “straight-forward” LRE-simulation has to be replaced by rare
event simulation techniques [13], [12].

Comments.
(Stg) Initiation: other, more complicated initiation rules
are conceivable; if for instance the B-sequence is the oc-
cupancy of a queueing system G/G/1/N with buffer size
N = k—1 and the value of interest is the loss probability,
it is recommended to start by a reset to the “idle period”
with 8o = 0 and to relate the sequence 51, 5z,...,0n 1©
the instants “immediately prior to arrivals”.
(St;) Input of M-Block: by means of this feature the
control procedure (Stz) has to be performed only after a
certain progress of the simulation process: the evaluation
of M further S-values. The block size M is typically
chosen in the range M = 10%...10%...10%.
(Stz) Run Time Control: the separation mark 1 g separates
all states ¢ = 1,2,...,7s, which have already fulfilled
the control conditions, from the other states to the right
it =1g+1,i5 +2,..., k, which have not yet passed the
control.

4. Simulation Results

The elementary finite buffer queue M/M/1/N has recently
been investigated in [6] with respect to the function pair
G(z), o(z) ofitsoccupancy 8 = 0,1, ..., kwithk = N+1
being the capacity of a single server queue. Adapting egs. (7)
and (12) [6] to the notation of the present paper and assuming
a traffic load n < 1 these functions are expressed by the
formulae:

e L
1 e )
G(fr)=Gi=m,
(1-n)1 —7*)7
T)=pi=1-— — —
il (1+n)(1 — n')(n* — n*+1)
ke =10 (10)

A simulation run with evaluation by LRE-algorithm III has
yielded the corresponding posterior functions G(z), a(z)
shown by Fig. 2: within the tolerances given by the chosen
error limit dp,.x = 0.05 these two simulated step functions
are in full agreement with eq. (10) and with the analytically
derived diagrams of Fig. 2 [6]. Only the local c.c. p(z) shows
some deviations® at the right end for £ = 24 and z = 25,
which are acceptable considering the very low probabilities
for these states. These results can be improved using the
RESTART/LRE method [12].

Using the values Gz ~ 1.1 x 107 and pp =~ 0.4
the number of trials can also be calculated from eq. (9) to
be about 8.4 x 10%. Assuming a realistic rate of about 10*
trials/s for a simple model this leads to a simulation run time
of about one full day (23.3 h).

Fig. 3 shows the simulated posterior functions G(z) and
6(z) of the finite buffer queue SSMP/D/1I/N with ‘SSMP’
being a ‘Special Semi Markov Process’ for describing a cor-
related interarrival time in ATM-networks [21] and with ‘D’
denoting a constant service time according to the constant
ATM-cell length. This complex queueing system has been
analytically investigated [7].

& The theoretical curve is symmetrical with p1 = g&.
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Fig. 2. LRE simulation of queue M/M/1/N: compl. d.f. C;‘(:c) and local c.c. 3(z),1 — 1 < = < i of occupancy § = 1. Buffer size:
N = k—1 = 24. Traffic load: 7 = 0.6. Loss probability: Pr, = G = 1.1 x 10™%, Simulation parameters: dmax = 0.05, Gmin = 1078,

Number of needed trials: n = 8.4 x 10%.
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Fig. 3. LRE simulation of queue SSMP/D/1/N: compl. d.f. G(z) and local c.c. 5(z),i — 1 < = < 1 of occupancy 8 = 1. Buffer size:
N = k — 1 = 35. Service time: D = 2. Traffic load: n = 0.7. Correlation coefficient of interarrival time: x = 0.4 resp. k = 0.8. Loss
probability: P = G = 5 x 107° resp. = 10™*. Simulation parameters: dmax = 0.05, Gmin = 10~%. Number of trials: n ~ 78 x 10°

resp. n = 4.5 x 106.

and within the tolerances given by dmax = 0.05 and the

parameter values from [7], the step functions G(z) and ()
in good agreement with theoretical results. Only for small

A comparison between the two diagrams Fig. 4 and Fig.
5 in [7] and Fig. 3 shows clearly that the LRE-algorithm
IIT traces, also in case of this complicated simulation object
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values of z (z = 0, 1, 2) significant differences for 5(z) can
be detected. These differences need further investigation.
The number of trials used in the simulation are in the order
of the theoretical values given in eq. (9). The other parameter
values given in [7] can only be verified with the combined
RESTART/LRE method [12] as G min is in the order of 10~°
in these examples.

5. Concluding Remarks

1) Due to its elementary structure the LRE-algorithm III
exhibits in simple terms the “Limited Relative Error’-
principles, namely how to gain from simulated data the
local c.c. o(z) and how to derive therefrom a “correlation
dependent” error measure for controlling the simulation
run time.

2) The experience with a great number of simulative inves-
tigations indicates that the hitherto prevailing evaluation
difficulties with correlated z-sequences can be eliminated
by including the function o(z) into the evaluation proce-
dure.

3) The local c.c. p(z) represents a relevant correlation state-
ment supplementing the distribution statement F'(z) =
1-G(z).

Therefore, the mathematical analysis of the correlation
function o(z) resp. of its more general form p.(z) of
order K = 1,2,...,p01(z) = o(z) deserves to become
an object of interest within the theory of random processes
and queueing systems.

4) The perfect agreement between LRE-simulated results (as
reported in Section 4 and in earlier publications) and ana-
lytically derived results represents a “mutual verification”
of these results and gives rise to the following considera-
tion:

The introduction of the function p(z) into the fields
of statistics and simulation on the one side and into the
fields of probability and analytical methods on the other
side helps to clarify the basic interdependencies and the
common ground of these fields.

5) The main application of LRE-algorithm III refers to rare
event simulations by means of importance sampling. The
RESTART/LRE-algorithm with two simulation phases
[12] has proved that rare event probabilities in the order of
107° can be reliably simulated. The extension of this al-
gorithmto m = 2, 3, ... phases would be of considerable
interest, because — under condition of proper Markovian
state-dependencies — it would allow the simulation of
extremely rare event probabilities of e.g., 10718 see the
extension of the RESTART-method in [22].
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