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Abstract The LRE-algorithm m (LRE: Limited Relative Er-
ror) for the statistical evaluation of discrete random :z:-sequences
yieJds by simpJe rules the stationary d.f. F (:z:)and the so-called
loeal correlation function e(:z:), -1 $ e $ 1, to be included in
a mean quadratic error measure for controlling the simulation
run time. The use of this error statement instead of confidence
interval statements and the principle of measuring correlation
evidence instead of trying to eliminate correJation represent es-
sentials for overcoming the deficiencies of the widespread Batch
Means evaluation method.

The LRE-algorithm m has been verified by test simulations of
analytically described queueing systems and recently applied as
part of the so-called RESTART/LRE-algorithm for simulating
very small probabilities ofrare cell Joss events in ATM-uetworks:
in a situation being affected by various correlation phenomena
the error and run time controJ procedures of the LRE-method
secure the objectivity of numerical simulation results.

Keywords Stochastic simulation, run Jength controJ, LRE-
algorithm. discrete random sequences, Jocal correJation, mean
quadratic error measure.

. 1. Introduction

1.1 Statistical Evaluation and Correlation

Since the early days of applying stochastic simulation in the
teletraffic field there has been the major problem how to
evaluate random sequences in the presence of eorrelation in
order to gain an objective error statement for simulation run
length contro!. Various attempts to adapt common statistical
methods for solving this problem were not truly success-
ful, see for instance the deficiencies of the most often used
evaluation method Bateh Means [1], [2], which depends on
the elimination of correlation by forming quasi-independent,

p quasi-normally distributed batch-random variables. In fact,
until recently, experts have wamed that the evaluation prob-

"'-'" lern could jeopardize the trustworthiness of simulation results
in general [2].

To overcome these difficulties the LRE-algorithm TI(LRE:
Limited Relative Error) has been proposed in [3] as a new sta-
tistical evaluation method which takes into account measured
evidence of correlation.l Its main features are as foilows:

a) The LRE-algorithm TIdetermines the d.f. F( x) or comp!.
d.f. G(x) = 1 - F(x) of a stationary, but otherwise

1 A first version ofthis method [4] was restricted to the evaluation

of independent random sequences.
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unknown x-sequence by subdividing not the x-axis but the
vertical F. resp. G-axis according to prescribed resolution
parameters, namely the desired number of intervals k (e.g.,
k = 200) and the lowest value Fmin resp. Gmin to be
established by simulation (e.g., Gmin = 10-3).

b) The character of the x-sequence might be discrete, con-
tinuous, or mixed continuous-discrete: within the lim-
its given by the chosen resolution parameters the LRE-
algorithm TIis able to detect "rare events" and to establish
isolated discrete points as weil as discrete points embed-
ded in a continuous surrounding as part of the function
F(x) resp. G(x).

c) Instead of trying to eliminate correlation by form-
ing quasi-independent batches or by other manipulations
the LRE-algorithm TI includes among the objects to be
permanently measured the so-called loeal eorrelation
eoefficien?- {!(x ), -1 :::;e :::; 1, which represents a weil
defined (first order) correlation property of Markovian
systems [5], [6], [7] and has been found to be the ade-
quate measure for dealing with the correlation problem in
simulation [8].

d) In any state of a simulation ron the error statement con-

cerning the posterior function3 F( x) resp. G(x) obtained
by evaluating the x-sequence (under observance of strictly
controlled large sampie conditions) is not expressed by
confidence interval methods but by a mean quadratie er-
rar measure, which depends, among other things, on the
measured value3 g(x) of the local c.c. e(x ): the poste-
rior variance <T~(x) resp. <TMx) and, derived from this,
the relative error funetion dF(X) = <TF(x)/F(x) resp.

dG(x) = <TG(x)/G(x).
e) A simulation ron is stopped if in the whole prescribed

F - resp. G-range of investigation the relative error dF (x)
resp. dG( x) is below a given error limit dmax. To achieve
this the sampie sire n (number of trials) can be steadily
increased by producing more simulation output events
until the error criterion dF(x) :::; dmax resp. dG(x) :::;
dmax is fulfiiled.

f) The pair of posterior functions F( x ), <T~( x) resp.

G(x), .<Tz.(x) imply also posterior statements concern-
ing the expeetation parameters (moments) /l-v = E {XV},
1/ = 1, 2, . . . of the x-sequence.

After its introduction in 1988 the LRE-algorithm TI has
been implemented as part of a C++ simulation system [9],
[10]4 and has proved its usefulness in many investigations.
The simulation results reported in [11] make evident that this
evaluation tool allows for a more deeply understanding of the

2 Abbreviation: local C.c. e(:z:).

3 The notations here differ partially from those in [3] and [8]:

F,,(:z:) --+ F(:z:), G,,(:z:) --+ G(:z:), PF(:Z:) = PG(:Z:) --+ g(:z:).

4 The CNCL [10] simulation library is available via anonymous
ftp at ftp.comnets.rwth-aachen.de.
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random behavior of queueing systems, because it provides
as a supplement to the d.f. F( x) = 1 - G(x) the function
(l(x ): a relevant quantitative statement about the correlation
of the investigated x-sequence.

r~
~

1.2 Evaluation of Discrete Sequences

Whereas the original LRE-algorithm TI [3] has a fairly com-
plicated structure due to its ability to evaluate general ran-
dom sequences (see Item (b) in Section 1.1-),the new LRE-
algorithm m is distinguished by an elementary structure and
by simple operating rules, because it has been designed to
evaluate discrete random sequences only.

This specialized LRE-version is part of. a new simula-
tion system for rare event investigations [12] by combining
an interesting type of importance sarnpling, the so called
RESTART-principle [13J. [14] with theLRE-evaluation prin-
ciples: this RESTART/LRE-algorithm allows time saving
simulation runs for the determination of extremely low cell
loss probabilities in the order of 10-9, which have become
an important performance requirement for switching nodes
in the future ATM-broadband network [15]. Numerical re-
sults obtained by such a method with two or more subsequent
simulation phases depend in a sensitive way on a carefully
chosen error control procedure.

Due to its basic simplicity the LRE-algorithm m is weIl
suited to display the most important features of the Lirnited
Relative Error-method: the measurement of correlation and

the use of a mean quadratic error forrnula for simulation run
length controL

2. The Concept of LocaI Correlation

We assurne now that a discrete r.v. ß is generated by the
random state sequence of a recurrent (k + 1)-node Markov
chain with transition probabilities5 pji = P(ß = jlß = i),
whose stationary state probability Pß is uniquely deterrnined
by solving the equation system

~
k

0 = LPßiPi - Pß,
i=O

ß = 1,2,. . . , k,
" '

k

Po = 1 - L Pß,
ß=1

Then the comp!. d.f.6

k = 1,2,.... (1)

k

G(x)=Gi = LPß, i-lSx<i, i=I,2,...,k,
ß=i

5 The notation pji = P(jli) instead of the mostJy preferred no-
tation Pij =P(jli) avoids the frequentuseof transposedtransition
matrices and complies with the definition of the stochastic matrix in
accordance with standard matrix notation [16].

6 Here and in the following we use preferably adescription by the

comp!. d.f. G (x) instead of by the d.f. F( x) = 1 - G (x) because
in most teletraffic applications there are distributions in the range
0 ~ x < =. which have to be investigated with respect to their
right tai!.

~

Go = 1,
Gk+l = O. (2)

exists as shown by Fig. 1.Now, at any point x on the real axis,
we can split this chain into two parts and define an "G( x)-
equivalent" 2-node Markov chain, whose transition proba-
bilities po (x) and PI (x) are uniquely given by the equations
[8]

1 i-I k

Po (x) = p L P(ß) LPjß,
, ß=O j=i

1 k i-I

PI(x) = G. LP(ß) LPjß,
, ß=i j=O

i-I S x < i, i = 1,.2,. . . , k. (3)

and determine the local C.c.(l(x) of this 2-node chain and the
state probability Q( x) of its left state So (x) resp. 1 - Q( x)
of its right state SI (x)

(l(x) = 1- [Po(x) + PI (x)],

Q(x) = pl(x)f[1 .:. (l(x)] ==F(x),

1- Q(x) = po(x)f[l- (l(x)] == G(x),
i-I S x < i. (4)

From this follows the equality

po(x)F(x) = pl(X)G(X), (5)

and we concIude that the two double sum expressions in eq.
(3) are equal.

The function (l(x), which has been considered for the first
time in 1967 by Blomquist [17], [18J, is called to be local
due to its dependence on the "location" x and in order to
distinguish it from the standard global correlation coefficient
(l, which expresses a mean statement with respect to all x-
values [5]. This local C.c.(l(x) represents a weH defined (first
order) correlation function of Markovian random processes,
which has been analytically derived for the elementary queue
M/M/l/N [6] as well as for complex semi-Markov queueing
systems [7J. As shown in [5], the function (l(x) can also be
derived for discrete Markov chains with an infinite number
01states k --> 00 and in case of continuous random variables
x like the waiting time in a queue.

3. The LRE-AIgorithm m

3.1 Frequency Measurements

We assurne now that the comp!. d.f. G (x) of a (k + 1)-node
Markov chain with known k-value and known recurrence
property, but otherwise unknown values of the transition pa-
rameters Pji will be determined by simulation. Therefore it
is Q priori known that a discrete random sequence with a
known range of possible values has to be investigated. Due
to these elementary prior conditions the "F-Sorting Memory"
FS resp. "G-Sorting Memory" GS of the relatively compli-
cated LRE-algorithm Il [3J can be completely omined for
operating the simply structured LRE-algorithm m. The only
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.Fig. 1. Discrete (k + l)-node Markov chain and the "G(x )-equivalent" 2-node Markov chain6 [8].

memory needed for aG-evaluation is the "G-Result Mem-
ory" GR with arecord for storing two frequency values for
each state i of the (k + 1)-node chain after this chain has
performed n state changes (trials):
a) The state frequency hi how often each state

i = 0,1,..., k has occured in n trials. From this we also
obtain the sum frequency

p

k

Vi = Lhß,
ß=i

Vo= ni = 0, 1, . . . , k,

\ / how often the right state SI (x) of the 2-node chain has
occurred, i-I ::Sx < i.

b) The transition frequency Ci,i = 1,2,. . . ,k how
often there has been a transition Sl(X) -+ So(x), that is
a transition from any state ß in the range ß ~ i across the
separation line at a point x in the interval i-I ::Sx < i.

The frequencies Vi and Ci resp. their counterparts Ti =
n - Vi and ai ~ Ci are associated to the "G( x )-equivalent"
2-node Markov chain as shown by Fig. 1.

3.2 Statistics of the 2-Node Markov Chain

Afterthe frequencies Vi and Cihave been measured in n trials
we now apply the results oftwo statistical investigations [19].
(20] concerning the 2-node Markov chain. If the large sampie
conditions

n~103, (Ti,Vi)~102,

(ai, Ci, Ti - ai,Vi - Ci) ~ 10

(6)

are fulfilled then we can express the required posterior state-
ments concerning.the posterior comp!. d.f. G( x) and the posterior mean state

ß,
. the posterior local C.c. e(x) with correlation factor cf (x )

and.the relative error dG ( x) = (J" G (x ) / G( x) with respect to

the posterior statement G(x ),
by the following formulae:

G(x) = Gi = vi/n,
- 1 k

ß = - LVi,
n i=l

Ci/V'e(x) = ei = 1 - ---2 / '
1 - Vi n

cf(x) = cf; = (1 + e;)/(I- ei),

[

1-Vi/n

]

1/2

dG(x) = di = Vi cf; ,

i-I ::S x < i, i = 1,2, . . . ,k. (8)

(7)

Due to the large sampie condition we find - as it should
be - that the levels Gi of the posterior function G(x) are
simply expressed by the relative frequencies vi/no It is the
inclusion of the transition-frequency Ci into the evaluation
routine that marks the essential progress compared to con-
ventional batch means and confidence interval methods: by
this feature we obtain not only the correlation function e(x )
but also the (mean quadratic) relative error dG( x) as a func-
tion of (j(x) in a continual (not batch-subdivided) process

'/
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that allows to increase the number of trials n steadily until
the error condition di :;; dmax is fulfilled, with dmax being
the prescribed eITor limit. .

The total needed number of trials n is determined by dmax
and by the smallest desired G-value to be established, namely
Gmin = Ch in the present case; with di = dk = dmaxand
cJi = Cfk weobtairifromeq. (8)

(1 - Gmin)cfk Cfkn= ~- ,
Gmin~ax Gmin~ax

Cfk = 1 + ~k .
1 - (!k

(9)
This formula is useful for estimating simulation ron times
for given values of Gmin, dmax,and for an estimated value
of ek. see Fig. 6 [3J. Assumingfor instance Gmin = 10-4,
dmax = 0.05 or 5 % and ek = 0.8 (coITe1ationfactorCfk =
9), we find that about n = 3.6 x 107 trials are needed.7

~~
'-.-/ 3.3 The Procedure of LRE-Algorithmm

We assurne that the parameters of the . simulation dmax

and Gmin have been prescribed. Then the LRE-algorithm
m evaluates the ß-sequence ß1, 132,. . . , ßn produced by a
(k + 1)-node Markov chain or by any other discrete random
generator and augments the number of events n as far as
necessary until all levels Gi 2: Gmin of the posterior d.f.

G(x) have been established with a rel. eITor ~ :;; dmax.
After the eontents of the "G-Result Memory" GR have been
set to zero the main procedure steps (Sto), .. -,(St3) can be
outlined as folIows.

(Sto) Initiation:
Set n := 0; is := 0;
Reset the ß-generator to state So;
Receive ßo = o.

(Std Input of M-Block:
Set l/ := n;
While n < 1/ + M Do Set n := n + 1;
Receive ßn;
Set i := ßn; hi:= hi + 1;
If ßn-1 > i Then Set>. := ßn-1;
Set Ci+1 = Ci+1 + 1, . . . , c). = c).+ 1.

(Sh) Run TiIIle Contro!:
Set Vo := n; i := is + 1;
(st;) While i < k Do
Set Vi := Vi-1 - hi; Ti := n - Vi; ai := Ci;
If "one of the conditions eq. (7) is not fulfilled"
Then Goto (St1)
Else Compute by eq. (8) ei and rel. eITor di;
If di > dmax Then Goto (St1)
Else Set is := i; i := i + 1; Goto(St;).

(St3) TerIIlination:
Compute for i = 1,2,..., k by eq. (6) the final sum
frequencies Vi and by eq. (8) the final posteriorvalues Gi
and ei; Plot the step functions G(x) and e(x ).

f'
'-/

7 This number of trials should be no problem for simulation
on presem day computers. But lowering the smallest G-value to
Gmin = 10-9 would raise the number of trials to the excessive
value n = 3.6 X 1012: obviously. this would be a situation, where

the "straight-forward" LRE-simulation has to be replaced by rare
event simulation techniques [13J, [12J.

t

Conunents.

(Sto) Initiation: other, more complicated initiation mies
are eonceivable; if for instance the ß-sequenee is the oc-
cupancy of a queueing system G/GIl/N with buffer size
N = k - 1 and the value of interest is the loss probability,
it is recommended to start by a reset to the "idle period"
with ßo = 0 and to relate the sequenee ß1, ß2, . .. , ßn 10

the instants "immediately prior to arrivals".
(St1) Input of M-Block: by means of this feature the
control procedure (St2) has to be performed only after a
certain progress of the simulation process: the evaluation
of M further ß-values. The block size M is typica1Jy
chosen in the range M = 102 . . . 103 . . . 104.
(St2) Run Time Control: the separation mark is separates
all states i = 1,2,..., is, whichhave a1readyfulfilled
the control conditions, from the other suites to the right
i = is + 1, is + 2, . . . , k, which have not yet passed the
contro!.

4. Simulation Results

The elementary finite buffer queue MfM/1IN has recently
been investigated in [6] with respect to the funetion pair
G(x), (!(x)ofitsoccupancy ß = 0,1,..., kwithk = N +1
being the capacityof a singleserverqueue. Adapting eqs. (7)
and CI2) [6]to the notationof the presentpaper and assuming
a traffic load TJ< 1 these functions are expressed by the
formulae:

TJi- 1]10+1

G(x) = Gi = I_TJH1'
(1 - TJ)(1 - TJH1 )TJi

(!(x) = (!i = 1 - (1 + TJ)(1- TJi)(TJi - TJH1)'

i-I S x < i, i = 1,2, . . ., k. (10)

A simulation ron with evaluationby LRE-algorithm m has
yielded the eOITesponding posterior functions G(x), e(x )
shown by Fig. 2: withinthe tolerances given by the chosen
eITorlimit dmax = 0.05 these two simulated step functions
are in full agreementwith eq. (10) and with the analytically
deriveddiagramsofFig. 2 [6].Onlythe local c.c. e( x) shows
some deviations8 at the right end for x = 24 and x = 25,
which are acceptable considering the very low probabilities
for these states. These results can be improved using the
RESTARTILRE method [12].

Using the values Gmin ~ 1.1 X 10-6 and Pk ~ 0.4
the number of trials can also be calculated from eq. (9) to
be about 8.4 x 108. Assuming a rea1istic rate of about 104
trialsls for a simple model this leads to a simulation ron time
of about one fulJ day (23.3 h).

Fig. 3 shows the simulated posterior functions G(x) and
f!(x) of the finite buffer queue SSMJ>/D/lI N with 'SSMJ>'
being a 'Special Semi Markov Process' for describing a cor-
related interarrival time in ATM-networks [21] and with 'D'
denoting a constant service time according to the constant
ATM-celJ length. This complex queueing system has been
analytically investigated [7].

8 The theoretical eurve is symmetrieal with l?1 = l?k.
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Fig. 2. LRE simulation of queue M/MIllN: comp!. d.f. G(x) and local c.c. g(x), i-I :S x < i of occupancy ß = i. Butter size:
N = k -1 = 24. Trafik load: 1]= 0.6. Loss prob ability: PL = Gk :::::1.1 x 10-6. Simulationparameters:dmax = 0.05, Gmin = 10-6.
Number of needed trials: n :::::8.4 x 108.

x
0 35

X

Fig. 3. LRE simulation of queue SSMPfD/l/N: comp!. d.f. G(x) and local C.c.g(x), i-I :S x < i of occupancyß = i. Butter size:
N = k - 1 = 35. Service time: D = 2. Trafiic load: 1] = 0.7. Correlation coefficient of interarrival time: K, = 0.4 resp. K, = 0.8. Loss
probability: PL = Gk :::::5 X 10-6 resp. :::::10-4. Simulationparameters: dmax = 0.05, Gmin = 10-6. Numberof trials: n :::::78 x 106
resp. n :::::4.5 x 106.

A comparison between the two diagrams Fig. 4 and Fig.
5 in [7] and Fig. 3 shows clearly that the LRE-algorithm
m traces, also in case of this complicated simulation object

.,

i:

and within the tolerances given by dmax = 0.05 and the
parameter values from [7], the step functions C(x) and ij(x)
in good agreement with theoretical results. Only for small
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values of x (x = 0,1,2) significantdifferencesfor (j(x) can
be detected. These differences need further investigation.
The number of trials used in the simulation are in the order
of the theoretical values given in eq. (9). The other parameter
values given in [7] can only be verified with the combined
RESTARTfLRE method [12] as Grnin is in the order of 10-9
in these examples.

5. Concluding Remarks

r;
'-'

1) Due to its elementary structure the LRE-algorithm III
exhibits in simple terms the "Limited Relative Error"-
principles, namely how to gain from simulated data the
local C.c. e( x) and how to derive therefrom a "correlation
dependent" error measure for controlling thesimulation
run time.

2) The experience with a great number of simulative inves-
tigations indicates that the hitherto prevailing evaluation
difficulties with correlated x-sequences can be eliminated
by inc1uding the function e( x) into the evaluation proce-
dure.

3) The local C.c. e(x) represents arelevant correlationstate-
ment supplementing the distribution statement F( x) =
1- G(x).

Therefore, the mathematical analysis of the correlation
function e(x) resp. of its more general form eK(X) of
order", = 1,2,..., e1(X) == e(x) deserves to become
an object of interest within the theory of random processes
and queueing systems.

4) The perfect agreement between LRE-simulated results (as
reported in Section 4 and in earlier publications) and ana-
lytically derived results represents a "mutual verification"
of these results and gives rise to the following considera-
tion:

The introduction of the function e( x) into the fields
of statistics and simulation on the one side and into the

fields of probability and analytical methods on the other
side helps to c1arify the basic interdependencies and the
common ground of these fields.

5) The main application of LRE-algorithm III refers to rare
event simulations by means of importance sampling. The
RESTARTfLRE-algorithm with two simulation phases
[12] has proved that rare event probabilities in the order of
10-9 can be reliably simulated. The extension of this al-
gorithm to m = 2,3, . . . phases wouldbe of considerable
interest, because - under condition of proper Markovian
state-dependencies - it would allow the simulation of
extremely rare event probabilities of e.g., 10-18, see the
extension of the RESTART-method in [22].

~
"---"
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