
If
-'p
<
~

v

r!
\J

'"",,,,'" ~,;, ~~~

"',..

AEü, Band 38
(19841, Heft ~

F. SCHREIBER:TIME EFFlCIENT SIMULATION: THE LRE-ALGORITHM 93

Time Efficient Simulation: The LRE-Algorithm für Producing
Empirical Distribution Functions with Limited ~elative Error*

by Fri<;drich Schreiber *~*
, ".

Report from the Lehrstuhl für Alj~~meine Elektrotechnik I.IndPatenfemverarbeitung,
- Technische Hochschule Aachen "" "'"

Considering the problem "measurement of an unknown distribution function F(x)" it is
shown that recently derived formulae for the so caJled objective empirical distribution function
Fn(x) and its relative error dr(x) can be made accessible to practical application by imple-
menting the LRE-algorithm ("Limited Relative Error")."This algorithm controls the number of
independent trials n and the sorting of measured random data, such that Fn(x) is traced down to
a desired resolution (minimum vaJue) Fmin,whereby the relative error dr(x) is ,limited below a
gi\'en maximum vaJuedFmu.and the computertime for sorting is reduced effectively.

Simulation examples .demonstrate that tl)e LRE-algorithm can be applied to all stationary
processes with independent random variables.,ofcontinuous and/or discrete nature and that it is
weIlsuited to detect rare event details of F(x) withinth~)ivenresolution Fmin',.,-..

Zeitef6zienteSimulation: der LRE-Algorithmus iurErzeugung empirischer Verteilungsfunktionen
mit begrenztem relativem Fehler

Es wird das Problem "Messung einer unbekannten Ven~ilungsfunktion F(:c)" erneut aufge-
griffen und gezeigt, daß kürzlich abgeleitete Formelj1 für die sogenannte objektive Verteilungs-
funktion Fn(x) und den zugeordneten relativen F~hler qr(x) durch den LRE-Algorithmus
("Limited Relative Error") der praktischen~Anwendung zUgänglich gemacht werden können.
Pieser Algorithmus steuert die Anzahl unabhängiger Versuche n und die Sortierung der gemes-
senen ZufaJIswerteso, daß Fn(x) bis herab zu einer gewünschten Auflösung (Minimalwert) Fmin
dargestellt wird. wobei der relative Fehler dF(x) unterhalb eines vorgegebenen MaximaJwertes
dFmaxbegrenzt bleibt und die Rechnerzeit für den Sortiervorgang wirksam reduziert wird.

Einige Simulationsbeispiele machen deutlich, da~ derLRE-Algorithmus bei allen stationären
Prozessen mit unabhängigen Zufallsvariablen vom kontinuierlichen und/oder diskreten Typ
anwendbar ist und daß er geeignet ist, innerhalb der gegebenen Auflösung FmiDDetails der
Funktion F(x) im Bereich seltener Ereignisse aufzudecken.

1. Introduction I

Fol1owing the invention of the early trafiic
machines simulation techniques on digital comput-
ers have become an indispensable tool to investigate
complex teletraffic systems [IJ. One of the most im-
portant tasIes in simulation is to determine ap-
proximately the apriori unknown d.f. F(x) of a
r.v. x. Often this is achieved by some kipd of Ire-
quelle)'d~slributionmethod, where due to a relatively
large number of trials n the frequency "kuevents in
intervaI u" of m intervals (u = 1,2,..., m) is as-
sumed to be approximately normally distributed.
This then leads to the application of conventional
t-distribution confidence irttervals for the control of
error and simulation TUnlength [2J.

In [3J it has been shown that confidence intervals
belong to the subjective methods in statistics and
can be favorably replaced by easy to handle objec-

* Revised manuscript of a paper presented at the 10th
International Teletraffic Congress (ITC), Montreal
(Canada). June 8-15, 1983.

.. Prof. DrAng. F. Schreiber, Lehrstuhl für Allgemeine
Eektrotechnik und Datenfernverarbeitung, Technische
Hochschule,Templergraben 55, D-5100 Aachen.

tive error formulae derived from the so caIled objec-
ti\'e Bayes-slatistics.In the mean time the simulation
tool has been used to put the fundamentals of these
statistics (including an "extended Bayes-postulate")
on an experimental basis [4J.Thus simulation tech-
niques on computers help to gain improved statisti-
caI methods and these methods on the other hand
improve simulation techniques.

2. The Objective Empirical Distribution Function

2.1. Frequency' distribution methods suffer from
the disadvantage that the information with respect
to the individual magnitude of all x-values collected
in a certain i.nterval is lost. Such information loss
can be avoided by the following solution to the
problem "m~urement of an unknown distribution
function".

Given a r.v. x with unknown d.f. F(x) in the un-
known range X,;;!!x;;!!Xu the x-values measured in
n independent trials can be sorted to yield the

.1Abbreviations:r.v.e randomvariable,p.f.e probabil-
ity function, p~d.f. e probability density function, d.f. e ß

distributionfunction. c.d.f. e complementary distribution
function. In order to simplify notation the same symbol is
used for a r.v. and its value.
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ordered vector

(Xr) = (XI' X2, ..., Xn);

.\r;!!Xr+l, r=I,2,...,n-l.

Then for any given point x on the real axis we
observe r values "left of x" in the range;!! x and
v = n- r values "right of x" in the range '> x. The
evaluation of these observations leads to the so
ca1led objeetive empiricaldistribution~ fuifCtions
Fn(x) and Gn(x) expressing the objectiv~po~terior
approximations to F(x) resp. G(x)=I.'TF(x);in
addition we obtain error measures to JUGge these
approximations. Tbe following formulae have been
derived in [5] and are presented here in a form
whieh covers the generalized case that the unknown
d.f. F(x) may contain continuous sections and steps
at discrete points [6]: .

Objective empirical distributionfunction
r.

V
Fn(x) = (r+I)/(n+2),

}
n ~ I,

Gn(x)= I-Fn(x)=(v+I)/(n+2)

Absolute error (standard deviation)

I

[

(r+I)(V+I)

]

I12

O'F(X)=O'G(X)5U(X)= n + 2 n+3.

Relative error (coeffieient ofvariation)

[

n - r + I

]

112

dF(x) = u(x)IFn(x) = (n + 3)(r + I) ,

[

n-v+ I

]

112

dG(x) = u (x)/Gn (x) = (n + 3)(v + I)

r'
V

These formulae depend on the objeetive Bayes-
statistics applied 10 the case of a binomial random
process, see e.g. formula table in [3]. Tbe step func-
tions Fn(x) and Gn(x) have in ease of a purely
continuous r.v. x a step size lI(n + 2) and are
closely related to but not identieal with the empiri-
caI distribution function known from literature hav-
ing a step size IIn, see e.g. (7].

2.2. Tbe straightforward application of the objec-
tive formulae eqs. (2a, b) and (4a, b) gives rise to a
problem whieh ean be introdueed by the simulation
example Fig. I depicting Gn(x) eq. (2b) and dG(x)
eq. (4b) in case of an Es-distributed r.v. x (Erlang-
distribution of order k = 5). We find that the
-measured funetion Gn(x) has an unbalanced rela-
tive error eurve dG(x) leading from a region of low
relative error to a region of high relative error at the
right tail of Gn(x). If we would be ipterested in
Fn(x)= I - Gn(x) instead of Gn(x) then due to eq.
(4a) the high and low relative error regions would
change sides, see e.g. Fig.7 in [5]. Obviously the
straightforward application of eqs. (2a, b) and -
(4a, b) results principally in unbalanced. relative
error curves.

2.3. Let us assurne that the schedule of a simula-
tion run contains two predescribedparameters:

f~ --

(1)

a) the "resolution". Fminresp. Gmini.e. the lowest
value to be determined 'of the empirical d.f,
Fn(x) resp. c.d.f. Gn(x);

b) the maximum admissible value dFmaxof the rela-
tive error dF(x) within the range Fmin;!!Fn(x);!!1
resp. dGmaxof dG(x) within the range I ~ Gn(x)
~ Gmin.

From eqs. (2a, b) and (4a, b) it is easily derived
that these twoparameters determine the number of
trials nmin which are at least necessary for the
simulation run

I - F .
mIR 3nmin - 2 .

Fmin dFmax
(5a, b) 2

Tbe diagram Fig. 2 expresses the weil known fact
that the low error simulation of the "rare event".tail
region of a distribution function with FmiD'Gmin<U
is expensive with respect to a great number of trials.

(2a, b) Xr;!! X :§; Xr+1

r=- 1,0, I,...,n,n+l

(3) X-I = - X

I

Xo = XI
Xn+I= Xn
Xn+2= X

n~2

(4a, b)
z'=n-r

\0:

~ n E 500

~ .L-
-:;' 1O-'~- .--
~ ~.--:;' d"lx!- I .
~ L,

~-
I.,

IQ-'0 ,-
Fig. 1. E~distribution: objective empirical c.d.f. G" (X) eq.
(2b) and relative error de(x) eq. (4b) ("straight forward
sorting"').

2 In this and other formulae eq. (."a) is associated to
the d.( F"(x). The corresponding eq. (... b) associated to
the c.d.( G,,(x) is given by replacing as far as applicable:

Fmm - Gmin, dFmu- dem.., Fn(x) - Gn(X),
dF(x)- de(x), r - I'.
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V Fig.2. Number of trials nmineqs. (5a, b), which are at least,"
necessary to fulfillthe requirements 2.3a) and b). Curve1'
parameter: maximum relative error dFmuresp. dumax.

If we assume e.g. Fmin= 10-3 and dFmax= 10-1 then
due to Fig. 2 we must execute nmin~ lOs trials: this
is unavoidable. But we must also sort this number'"
of measured x-values in order to obtain the ordered
vec;tor (x,) eq. (1) and this would cause a prohibi-
tively high consumption of computertime for a";.
sorting effort which yields an unneeded extremely '~~'s

low relative error dF(x) in a large part of the
empirica1distribution function.

~
\~

3. The LRE-Algorithm3

3.1. The desired algorithm for handling the evalu-
ation of simulated data should yield a balanced rela-
tive error curve' dF(x) within a given region of
F" (x) and should also allow an essential reduction
of computertime for sorting. For this purpose we
combine eqs. (2a, b) with eqs. (4a, b) eliminating n

0'and express the relative error in the form
(6a, b) 2

. [ I-F,,(x)
]

1/2 1

dF(x) = dFmn [ I +dfmn' F,,(x) , dfmn = r+l '

see Fig.3. From this equation we concludethat in
order to stay below a given maximum relative error
dFmn resp. dGmn we may at any point :-<;of the
simulated curve F,,(x) resp. G,,(x) limit the number
r resp. t. of measured x-values in the range =six resp.
> x according to the formula .

r = ENTIER (dF~ax)- 1 ,
r = ENTIER (dG~ax)- I .

We also conclude from eqs. (6a, b) that if we apply
an algorithm keeping r resp. v constant then as

3 LRE e Limited Relative Error.

10" I d.".. resD.dom.. = 0.2

:;

~

~- ,.

~ 10-':

~

.10''.
-'.' 10'" 10-'

." . F,lxlresp.6nlxl---

iRelative 1rro"~ dF(x~ resp. du (x) eqs. (6 a, b). Curve
meter: maximum relative error dFmaxresp. dumax.

lOC

shown in Fig. 3 we have in the range F" (x) < 10-1
resp. G"(x) < 10- ) (which is of predominant inter-
est jh"siInulation) a practically constant relative
fErrOrigt(.'\):§ dFmaxresp. dG(x) :§ dGmn. This then
is)n effect the desired balanced error curve.

(Vd.f. F"lxl ~ c.d.f. 6nlxI

F - resp. 6- Sorting memory

fF5\ c lßs\ c

:"!iY IFj = XFj.1 ~ Xaj=Xaj.1

,1':{WI':XFtl---1 xF,.1~ ;EEEEJ
direction of sorting

F - resp. 6' ResuLt memory

@ Xi;! xi.!Xi.!;! xi

XIXz

F"lxzll .t;;IXII

Fig. 4. Structure of memories to be implemented in the
evaluation program for the LRE-algorithm, see Section
3.2.

3.2. As shown in Fig. 4 the evaluation program
for performing the LRE-algorithm proposed here
must provide a F-Sorting memory FS resp. G-
Sorting memory GS and a F-Result memory FR
resp. G-Result memory GR. The i-th result Xi
Ci= 1,2, ...) storedin FR resp. GR is obtained after
a number of trials ni has been executed which is
unknown in advance. This indicates the main
featur:e of the balanced error-algorithm: instead of
having n =const and ! resp. v a measured variable
as in Fig. 1 according to the straightforward use of
eqs. (2a, b) and'(4a, b) we have now r = const resp.
v = const eqs. (7a, b) whereas the number of trials
n = ni is a measured variable. We will describe the
algorithm now stepby step for the general case that
F,,(x) and/or G,,(x) have to be determined.

3.2.1.Initial phase

a)Given the desired maximum relative error
dFmu resp. dGmaxcompute the integers r resp. v eqs.
(Ta, b).

..J

X, Xz --- Xg

6nlxII 6nlxZl --- 6nlXgI
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c) Store the first result XI = XFr+1 and F,,(~\",d,,~q.
(2a) in FR resp. XJ= XGI and G,,(xl).eq.«2b) in

4 ' ,GR.

3.2.2.Recursive phase ".[,

a) After the i-th result Xi, ata totaFnumber cf l1i
trials (i = 1,2,. ..), has been obtained .execute as
many further trials l1i+l, l1i+2,... until,)I.La
certain number of trials l1i+1> l1i, the generaie~ x_Tbe LRE-algorithm is demonstrated by three ex-
value fulfills for the first time the relation, amples. ln all cases the same parameter values were
X ~ XFr+1resp. X ~ XGI' .,"J'., ,."'chosen: dFmax,dGmax= 10-1; Fmin, Gmin= fo-3, see

b) Sort X into FS resp. GS thereby elimi!lating"1 SeCtion 2.3. Dueto eqs. (5a,b) this leads inevitably
the previous largest value XFr+1resp. smalleStivalue to'a.final number of trials in the order of magnitude

", ' ." " 5 -
XGI. ''''' I1F,nG::::: 10 .

c) Store the (i + l)-st result Xi+1= XFrZ~"'~ , dIP order to judge the quality of the approxima-
F,,(Xi+l) eq. (2a) in FR resp. Xi+I=XGI nei .,(tionsthe ideal function F(x) resp. G(x) has been
G,,(Xi+l)eq.(2b) in GR.4 '''a.gded to each diagram; in normal practice of course

d) ~suming the lowest value Fmin resp. d.;;Ü! it'this~som~arison cannot be made because F(x) =
accordmg to 2.3a) to be known check the rela.tion:, fil-G (x) ISunknown.
F,,(Xi+l)< Fminresp. G,,(Xi+l)< Gmin:": ""","'.."lIfi' . .
. if this relation~~ false set i:= i + 1 and go>bac:I,c.~'" ,!.~l.In FIg: 5 ~e ~RE-algonthm has been ~pplied

to 3.2.2a); ~!;,~)!..t~..7the Es-~IstnbutIon. Co~pared to the dIagram
. if it is true stop simulation and continue \\,ithl?";,,j)g;.1 obtamed by th.e s~alg?tforward appli.cati~n

3.2.3. Tbe final number of measured ~values:'" of eq: (2b) we note m Eg. :>that the IoganthmIc
stored in FR resp. GR will be ,- ~~epSIzesof G~(x~do not ~ncreasetoward the tai! of
/ . tlie '~urve. TbIS IS a typlcal feature of a11 LRE-
h
res

fi
P' g

l
'

f
. "diagrams with logarithmic ordinate.

t e ma number 0 trIals ~

~' b) Execute 11I = r + 1 resp. 11I= l' + 1 trials, sort
the produced.random x-values 'into FS resp. GS
yielding the initial ordered vector

(XFI, Xn, ..., XFr+l), XFj ~ XFj+J, j = 1,2, ..., r
resp.
(XGJ,XG2, ...,XGr'+I), xGj~ xGj+J, j= 1,2, ..., 1'.

,.- .

v

~
V

I1F resp. nG

is in practice sIightly above the value nmincom-
puted by eqs. (5a, b).

3.2.3. Outputphase

Tbe contents of FR resp. GR determine the plot
ofthe empirical d.f. resp. c.d.f.
F,,(x)= F,,(Xi), Xi~ X ~ Xi-I,

i= 1,2, ...,/; Xo= Xn,

G,,(x) = G,,(Xi), Xi-I ~ X ~ X;,
(8 a, b)

i = 1,2, ..., g; Xo= '~I
where the nonmeasured points Xoareassumed to be
unknown, see' Section 2.1.

Remarks

a) With the LRE-algorithm the objective state-
ments on basis of eqs. (2 a, b) are restricted to the
points Xi stored in FR resp. GR, because only for
these points the integer,. resp. /' and the number of
trials Iliare known quantities. Betweerhwo consecu-
tive points Xi. X;+Jwe are principally free to inter-
polate in accordance with the fundamental char-
acter of a distribution function. But taking into

4 Eqs. (2a. b) have to be used here with n = n; and
,.= const resp. r = const according to eqs. (7 a. bj.

i

account the possibility that the apriori unknown
d.f. F(x) = 1- G(x) may contain steps it is advis-
able to plot at firsnhe above conserl'atil'e empirical
step functions eqs. (8a, b)and to inspect these func-
tions carefully before any extra- and interpolation
takes place, see section 4 in [6).

b) By introducing eqs. (8a, b) in eqs. (6a. b) the
'. relative error dF(x) resp. dG(x) can be plotted for
"'9PIitr()~pUI"Poses.ln practical applications this is not..,"", ".,,!, ,'.' .
.pece~~a.n:because the error IS guaranteed to be

~ belo1v !,he~:givenmaximum value dFmaxresp. dGmax,
see?Seclion"3.1.

4. Measurement Results

4.f. Tbe measurement Fig.6 shows an example
where the LRE-algorithm has traced a generalized
c.d.f. G,,(x) with continuous sections and steps.

10:;

\

~

<:;;

I
10-,I

4 -

. const. rel. erro'

~

~~

~'"'" i
10-: '

- "-.= w-: ~

- C"o"= IC" -')

9 = S8' '\
)

- n. = IG3"SS
\.

10-;. i
Er- ,. 1:

Fig. 5. E~-distribution: empirical c.d.f. G.(.':) eq. (8bj and
associated relative error dG(x) eq. (6b) gained by the
LRE-algorithm.compare Fig. I.

.......
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10;

'0'

-
Fig. 6. Random process with
four cos-sections and three
steps as defined in Appendix
AI [6J:empiricaJ c.d.f. G. (x)
eq. (8b) and associated eITor

. dG(x) eq. (6b).

., +- "', , }" ',;"" '"

Fig.7. Mix'eq C;8~.C;;~;dist?1'
bution (see, Apperiäix): en.h?
piricaJ dL'f;F.(;~) and, c.c:j:rf.
G.(x) eqs. (8a,b)andasso-
ciated relative eITor dF(x)
and dd;'{) eqs. (6a,b)."The
rare event detaif'has been
detected by the LRE-~Igo-
rithm as parto~theEJ:(x)-~
curve.

10

The total computertime for performing acertain
simulation resp. statistical evaluation program will
contain a certain amount Tson for sorting the
measured random x-values. If the speed of a com-
puter is roughly characterized by its average
number of operations per time unit ("operation
intensity") tlop[MOp/s], then the normalized sorting
time J1.opTson[MOp] is the average number of opera-

- - ,n,J '1
t.. = U",;n= ," I
d =dg"",=10.')
f = 707.9 = 594
n, = '04166

~ '0"
<§

..
<:<;
..

~
-;;
;:;:

10.J
0 10 15 20 25x-

- 10'
!5
,..
It

::I.

compare the straightforward evaluation of the same jy~trbnSfqr'''performing a specified sorting job and
'\ random process in [6]. ',' "represe~ts a~ sorting expense measure which is to

.. . ."some exte:nt independent of a special computer.
4.3. ~e measurement FIg. 7 ISof specIal ~ntere~t~ '~Bas~"d"on.,.n'i,easurementof Tsonthe quantity tlopTson

becaus~ It demonstrates that the L~E-algonthm IS.i,?"has be~n:depicted in Fig. 8 as a function of dFmax
weil suIt~d to. detect rare eve~t detaIls of a ~an~om-'tlte~p. d~~aX-
process: m thIS example a mIxed Es-, EwdIstnbu-" ,!f5~". .
tion with a two peak p.d.f. f (x) where the first peak 8:)-{or stral~tf~rward sortmg of all measured x-
is very weak compared to the second, see Fig. 9. ,/~alues~ m Flg. ~, '.

Indeed once the resolution level Fminresp. Gmin(and b) f?F,sel~~ed ~ortmg ~ccordmg to the LRE-algo-
the maximum relative error) have been set then the nthm.as"m FIg. 5 to FIg. 7.
L

,

RE-algorithm Wil

,

l trace automatically all details 103

r\within this level. Theoretically rare event details \
could also be detected by the straightforward ap- MOp \
plication of eqs. (2a, b) but this would fail in \
practice because of the excessive expense for 102
sorting,seeSection5. ,

In Fig. 7 the rare event detail is displayed within
the left tail of the d.f. Fn(x) and cannot be detected
within the c.d.f. Gn(x). From this we conclude that
the rare event analysis of both tails of a truly un-
known distribution function requires the applica-
tion of the LRE-algorithm for both empirieal fune-
tions: the d.f; Fn(x) and the c.d.f. Gn(x). Using all
memory devices in Fig. 4 simultaneously this,ean be
aehieved in a single evaluation ron.

We also eonclude that the relative error dF(x)
resp. dG(x) eqs. (4a, b) and not the absolute error
O'(x) eq. (3) is relevant for the eontrol of the
evaluation.

5. ReducedExpensefor Sorting

~

100

10-1
0 0.1 0.2

dFm., resp.dg..., -

Fig.8. Typicalsortingtimes Tsen measured on a computer
Siemens 4004/151 with fJ.op= 0.25MOp/s. Curve pa-
rameter: resolution FminresP. Gmin'

lJsingeqs. (5a, b) it is found in case a) that
Tson- n~ witlt"goodapproximation. By applieation
of more effeCtive sorting teehniques[8] we could
aehieve at best Tson- n log2(n) but even thisaf-
fords a high expense of computertime for e.g.
n = 105or n = 106 trials.

The LRE-algorithm on the other hand keeps Tson
comparatively low. It can be shown in case b) that a

--
~ 's-:

-- 6-. = ~o-, '1
d_,-,.= :0" J

~g=-2~

}- , n, = ~Q1142
~D-::

r-.. x-
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simple sorting tech~ique with right-side input into
memory FS resp. left-side input into OS in Fig. 4is
practically optimal because the contents of FS resp.
OS represent"sorted x-values of the leftresp. right
taiI.of the distribution function in each interim state
i= 1,2, ..., NF resp. NG.

('

v:

6. Final RemarJcs

6.1. Tbe LRE-algorithm based onthe considera-
tions [4J,[5Jand [6J is not confined to the evaluation
of simulated random data but represents ageneral
method in statistics to obtain an apriori unknown
distribution function F(x) from measured data
under control of an objective error measure. For ex-
ample the large . volume data obtained by traffic
measurements in telephone 01'data networks [9J, [IOJ
could be evaluated favorably by means of the LRE-
algorithm, provided that the independence require-
ment is fulfilled, see Section 63.

6.2. Tbe LRE-algorithm can be developed further
. to perform a window-mechanism:given the pa-
rameters Fmin, dFmn we might be interested to
observe the details of a certain segment F) to F2
(Fmin< FI < F2< I) of the curve Fn(x) with higher
accuracy, i.e. with a reduced maximum relative error
d!rux < dFmax'This can be achieved if the 'evalua-
tion program opens the window at FI by switching
the integer r from the value eq. (7 a) to the value

r = ENTIER (dl,;,J) - I (9)

and closes it at F2 by switching r back to eq. (7a).
Tbis concept can be generalized to allow for,several
windows aIong Fn(x) resp. Gn(x).

~
'~

6.3. Simulation of and trafik measurement in
queueing networks usually leads often to correlated
i.e. dependent random values PIJ and it is therefore
of great practical importance to evaluate such cor-
related data by statistical methods which avoid
"information loss" as it is associated e.g. with the
batch mean method [2J. In [12J Bayes-methods have
been applied to teletraffic birth death processes and
it can be generally assumed that the objective
statistics of Markov- resp. Seminiarkov-processes
and of certain elementary multiparameter problems
such as given by the multinomial distribution will
be needed to deal with many types of correlated
randomvariables. .. .

Appendix

A random process with two mixed Ek-distribu-
tions is described by the p.d.f.

(x/adk,-I
(x) = PI aJI exp (- x/al) +
. (kl- I)! .

(X/02)k.-1
+ (l - Pd all exp (- x/a2) .

(k2- I)!

In order to gain a process with a rare event detail
for the measurement Fig. 7 we have used the pa-
rameter set of the density fex) Fig. 9 where the left

(10)

'-

.'1
10-,1

j

i
-;; 10-2
;;:

10-1 -

0 z-
.

Hz}10 20

Fig.9. Mixed Eg-,E4s-distribution:..p.d.f.fex) eq. (10) with
°1 = 1/2, kl = 8,°2 = J/3, k2= 45, PI = 0.008.

peak is much weaker than the right peak (logarith-
mic scale!). In a previous paper the same parameter

,;set,has been used except PI = 03 yielding a density
fex) with two peaks of comparab1e "strength", see
Fig. 9 in [5]. For details of the software random
generators see the appendices in [5J and [6]:
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