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Time Efficient Simulation: The LRE-Algorithm for Producing
Empirical Distribution Functions with Limited Relative Error*

by Friedrich Schreiber ** i
Report from the Lehrstuhl fiir Allgemeine Elektrotechnik und Datenfernverarbeitung,
Technische Hochschule Aachen

Considering the problem “measurement of an unknown distribution function F(x)" it is
shown that recently derived formulae for the so called objective empirical distribution function
F,(x) and its relative error dr(x) can be made accessible to practical application by imple-
menting the LRE-algorithm (“Limited Relative Error™). This algorithm controls the number of
independent trials # and the sorting of measured random data, such that F,(x) is traced down to
a desired resolution (minimum value) F;,, whereby the relative error dg(x) is limited below a
given maximum value dgp,, and the computertime for sorting is reduced effectively.

Simulation examples demonstrate that the LRE-algorithm can be applied to all stationary
processes with independent random variables of continuous and/or discrete nature and that it is

P well suited to detect rare event details of F(x) within the given resolution Fp;,.

Zeiteffiziente Simulation: der LRE-Algorithmus zur Erzeugung empirischer Verteilungsfunktionen
mit begrenztem relativem Fehler

Es wird das Problem ,Messung einer unbekannten Verteilungsfunktion F(x)“ erneut aufge-
griffen und gezeigt, daB kiirzlich abgeleitete Formeln fiir die sogenannte objektive Verteilungs-
funkuon F,(x) und den zugeordneten relativen Fehler dg(x) durch den LRE-Algorithmus
(..Limited Relative Error**) der praktischen Anwendung zuginglich gemacht werden kénnen.
Dieser Algorithmus steuert die Anzahl unabhéngiger Versuche n und die Sortierung der gemes-
senen Zufallswerte so, daB F,(x) bis herab zu einer gewiinschten Auflésung (Minimalwert) Fp,
dargestellt wird. wobei der relative Fehler dr(x) unterhalb eines vorgegebenen Maximalwertes
drmax Degrenzt bleibt und die Rechnerzeit fiir den Sortiervorgang wirksam reduziert wird.

Einige Simulationsbeispiele machen deutlich, daB der LRE-Algorithmus bei allen stationiiren
Prozessen mit unabhéngigen Zufallsvariablen vom kontinuierlichen und/oder diskreten Typ
anwendbar ist und daB er geeignet ist, innerhalb der gegebenen Auflésung F.;, Details der
Funktion F(x) im Bereich seltener Ereignisse aufzudecken.

¢

1. Introduction!

Following the invention of the early traffic
machines simulation techniques on digital comput-
ers have become an indispensable tool to investigate
complex teletraffic systems [1]. One of the most im-
portant tasks in simulation is to determine ap-
proximately the a priori unknown d.f. F(x) of a
r.v. x. Often this is achieved by some kind of fre-
quency distribution method, where due to a relatively
large number of trials # the frequency “k, events in
interval u” of m intervals (u=1,2,...,m) is as-
sumed to be approximately normally distributed.
This then leads to the application of conventional
t-distribution confidence intervals for the control of
error and simulation run length [2].

In [3] it has been shown that confidence intervals
belong to the subjective methods in statistics and
can be favorably replaced by easy to handle objec-
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tive error formulae derived from the so called objec-
tive Bayes-statistics. In the mean time the simulation
tool has been used to put the fundamentals of these
statistics (including an “extended Bayes-postulate™)
on an experimental basis [4]. Thus simulation tech-
niques on computers help to gain improved statisti-
cal methods and these methods on the other hand
improve simulation techniques.

2. The Objective Empirical Distribution Function

2.1. Frequency distribution methods suffer from
the disadvantage that the information with respect
to the individual magnitude of all x-values collected
in a certain interval is lost. Such information loss
can be avoided by the following solution to the
problem “measurement of an unknown distribution
function”.

Given a r.v. x with unknown d.f. F(x) in the un-
known range x;=x=xp the x-values measured in
n independent trials can be sorted to yield the

! Abbreviations: r.v. = random variable, p.f. £ probabil-
itv function, p.d.f. = probability density function, d.f. =
distribution function. c¢.d.f. = complementary distribution
function. In order to simplify notation the same symbol is
used for a r.v. and its value.
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ordered vector
('er=(x|9x29'--vxn); (1)
XoS X or=l dein=1n

Then for any given point x on the real axis we
observe r values “left of x” in the range = x and
v =n—r values “right of x” in the range > x. The
evaluation of these observations leads to the so
called objective empirical distribution functions
F,(x) and G,(x) expressing the objective posterior
approximations to F(x) resp. G(x)=1= F(x); in
addition we obtain error measures to judge these
approximations. The following formulae have been
derived in [5] and are presented here in a form
which covers the generalized case that the unknown
d.f. F(x) may contain continuous sections and steps
at discrete points [6]:

Objective empirical distribution function
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a) the “resolution™ Fpi, resp. Gmin 1.e. the lowest
value to be determined -of the empirical d.f.
F,(x) resp. c.d.f. G,(x);

b) the maximum admissible value dr,, of the rela-
tive error dg(x) within the range Fpin= F,(x) =1
resp. dgmax Of dg(x) within the range 1 = G, (x)
= Goin.

From egs. (2a.b) and (42a,b) it is easily derived
that these two parameters determine the number of
trials 7y, which are at least necessary for the
simulation run

= 1=F min
v F min dfz'ml.x

The diagram Fig. 2 expresses the well known fact

that the low error simulation of the “rare event’-tail

region of a distribution function with Fuin, Gmin <€ 1
is expensive with respect to a great number of trials.

3 (52.b)2

et nal, (2a,b) X EXE X
Go(x)=1=Fp(x)= (0 +1)/(n+2)
Absolute error (standard deviation) r=—1,0,1,....,n,n+1
5 1 [+D)@+1)]"2 :
Jr(x)=06(x)—0(x)—ﬂ+2 nE3 ] (3) | ;;: ;xlx
Relative error (coefficient of variation) | = | Xme1=31
et 12 = Xp+2= 0
dp(x) = o (x)/Fp(x) = m .
5 e [ n—v+]1 |2 (4a,b) 2
6(x) =0 (x)/Gp(x) = Gt N+ D r=n-—r
These formulae depend on the objective Bayes- 5 AR
statistics applied to the case of a binomial random S
process, see e.g. formula table in [3]. The step func- N,
tions F,(x) and G,(x) have in case of a purely :
continuous r.v. x a step size 1/(n+2) and are
closely related to but not identical with the empiri- i ;
cal distribution function known from literature hav- g :
ing a step size 1/n, see e.g. [7]. = ' =500 \»/
2.2. The straightforward application of the objec- g 2
tive formulae egs. (2a,b) and (4a,b) gives rise to a =

problem which can be introduced by the simulation
example Fig. 1 depicting G,(x) eq. (2b) and dg(x)
eq. (4b) in case of an Es-distributed r.v. x (Erlang-
distribution of order k=35). We find that the
measured function G,(x) has an unbalanced rela-
tive error curve dg(x) leading from a region of low
relative error to a region of high relative error at the
right tail of G,(x). If we would be interested in
Fa(x)=1-=G,(x) instead of G,(x) then due to eq.
(4a) the high and low relative error regions would
change sides, see e.g. Fig. 7 in [5]. Obviously the
straightforward application of eqs. (2a,b) and
(4a,b) results principally in unbalanced - relative
erTor curves.

2.3. Let us assume that the schedule of a simula-
tion run contains two predescribed parameters:

e
0

g —

Fig. l. Es-distribution: objective empirical c.d.f. G,(x) eq.
(2b) and relative error dg(x) eq. (4b) (“straightforward
sorting™).

2 In this and other formulae eq. (...a) is associated to
the d.f. F,(x). The corresponding eq. (...b) associated to
the c.d.f. G,(x) is given by replacing as far as applicable:

F!rnn_’cmma dme_’dGmax- Fn('\'] i Gn{'t)v
de(x) = dg(x), r—=r.
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Fig. 2. Number of trials np, egs. (5a.b), which are at least -

necessary to fulfill the requirements 2.3a) and b). Curve
parameter: maximum relative error demay reSp. dgmax-

If we assume e.g. Fpin= 107> and dpmax= 107" then
due to Fig. 2 we must execute npiy = 10° trials: this
is unavoidable. But we must also sort this number
of measured x-values in order to obtain the ordered
vector (x,) eq. (1) and this would cause a prohibi-
tively high consumption of computertime for a
sorting effort which yields an unneeded extremely
low relative error df(x) in a large part of the
empirical distribution function.

3. The LRE-Algorithm 3

3.1. The desired algorithm for handling the evalu-
ation of simulated data should yield a balanced rela-
tive error curve dr(x) within a given region of
F,(x) and should also allow an essential reduction
of computertime for sorting. For this purpose we
combine egs. (2a,b) with eqgs. (4a,b) eliminating n
and express the relative error in the form

[ = (6a,b)2
e 1 - Fp(x) , i
“O=drmiT o ] =g

see Fig. 3. From this equation we conclude that in
order to stay below a given maximum relative error
drmax TeSp. dgmax W€ may at any point x of the
simulated curve F,(x) resp. G,(x) limit the number
r resp. v of measured x-values in the range = x resp.
> x according to the formula

r=ENTIER (dfga) — 1,
v =ENTIER (dg3.) — 1 .

We also conclude from egs. (6a,b) that if we apply
an algorithm keeping r resp. v constant then as

3 LRE 2 Limited Relative Error.
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Fig. 3. Relative error dr(x) resp. dg(x) egs. (6a,b). Curve

parameter: maximum relative error demay TeSP. 6 max-

=
s
i

shown in Fig. 3 we have in the range F,(x) < 107!
resp. G,(x) < 107! (which is of predominant inter-
est in simulation) a practically constant relative
error dr(X) = drmax 1eSp. dg{(X) £ dgmax. This then
is in effect the desired balanced error curve.

@) 4L Al @® c.d.f Gylal

F-resp. 6-Sorting memory

@ Xlrj = Xlrj ol @

X5j B Xy
Sy | Xy | === Xred fo— B il TR Kaceat /53
direction of sorting
F-resp. 6-Result memnf'y
f B X X B iy
Y o |———] Xy L R s
F,;,txfl === | hlxd | Gl | Glry) | Glxgl | === | Gyleg)

Fig. 4. Structure of memories to be implemented in the
evaluation program for the LRE-algorithm, see Section
2 :

3.2. As shown in Fig. 4 the evaluation program
for performing the LRE-algorithm proposed here
must provide a F-Sorting memory FS resp. G-
Sorting memory GS and a F-Result memory FR
resp. G-Result memory GR. The i-th result x;
(i=1,2,...) stored in FR resp. GR is obtained after
a number of trials n; has been executed which is
unknown in advance. This indicates the main
feature of the balanced error-algorithm: instead of
having n = const and r resp. v a measured variable
as in Fig. 1 according to the straightforward use of
egs. (2a,b) and (4a,b) we have now r = const resp.
r=const egs. (7a,b) whereas the number of trials
n=n; is a measured variable. We will describe the
algorithm now step by step for the general case that
F,(x) and/or G,(x) have to be determined.

3.2.1. Initial phase

a) Given the desired maximum relative error
dFmax resp. dgmax compute the integers » resp. v egs.
(7a,b).
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 many further trials m+1, ni+2,...
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b) Execute ny=r+1 resp. my=v+1 trials, sort
the produced. random x-values into FS resp. GS

- yielding the initial ordered vector

(XF1y XF2s-ees XFrel) s X EXEje1. = 12000

resp.

(-\'Glsx(-"’
c) Store the first result x; = xf,+; and Fp(x,) eq.

(2a) in FR resp. x;=xg; and G,(x)) eq (2b) in

GR.¢

3.2.2. Recursive phase

a) After the i-th result x;, at a total number of n;
trials (/=1,2,...), has been obtained execute as
until, at a
certain number of trials n;y; > n;, the generated x-
value fulfills for the first time the relation
X = Xppe) IESP. X = XG)-

b) Sort x into FS resp. GS thereby eliminating
the previous largest value xr,,, resp. smallest value
XGl-

¢) Store the (i+1)-st result x;.;=Xxr+; and
F,(xi+1) eq. (2a) in FR resp. Xx;+;=Xxg; and
G,(xi+1) €q. (2b) in GR.*

d) Assuming the lowest value Fry, resp. Gnmin
according to 2.3a) to be known check the relation
Fy(Xi+1) < Frojn 1€8P. Gp(Xi4+1) < Gmin!

e if this relation is false set i:=i+1 and go back
to 3.2.2a);
e if it is true stop simulation and continue with

3.2.3. The final number of measured values

stored in FR resp. GR will be

fresp. g;
the final number of trials
npresp. ng
is in practice slightly above the value np, com-
puted by eqgs. (5a,b). :
3.2.3. Output phase

The contents of FR resp. GR determine the plot
of the empirical d.f. resp. c.d.f.

Fp(x)=Fa(x;), x;=xs=x-,
im]1,2,..., 1 Xo= Xxq,

Gr(x)=Gn(x), X EX=X;,
i=1,2,...,9: Xp= X

where the nonmeasured points xg are assumed to be
unknown, see Section 2.1.

S XGr+1) s XGiEXGj+1, J=1,2,...,0.

(8a,b)

Remarks

a) With the LRE-algorithm the objective state-
ments on basis of egs. (2a,b) are restricted to the
points x; stored in FR resp. GR. because only for
these points the integer r resp. ¢ and the number of
trials nn; are known quantities. Between two consecu-
tive points x;, X;,.; we are principally free to inter-
polate in accordance with the fundamental char-
acter of a distribution function. But taking into

4 Eqs. (2a,b) have to be used here with n=n; and
r= const resp. r = const according to egs. (7a.b).
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account the pOSSIbllll)' that the a priori unknown
d.f. F(x)=1— G(x) may contain steps it is advis-
able to plot at first the above conservarive empirical
step functions egs. (82,b) and to inspect these func-
tions carefully before any extra- and interpolation
takes place, see section 4 in [6].

b) By introducing egs. (8a,b) in egs. (6a.b) the
relative error dr(x) resp. dg(x) can be plotted for
control purposes. In practical applications this is not
necessary because the error is guaranteed 1o be
below the given maximum value AFmax T€SP. dGmaxs
see Section 3.1.

4, Measurement Results

The LRE-algorithm is demonstrated by three ex-
amples. In all cases the same parameter values were
chosen: drmaxs domax=10""% Fimin» Gmin= 1073, see
Section 2.3. Due to egs. (5a,b) this leads inevitably
to a final number of trials in the order of magnitude
nr, ng = 10°

In order to judge the quality of the approxima-
tions the ideal function F(x) resp. G (x) has been
added to each diagram; in normal practice of course
this oompanson cannot be made becausc F(x)=
1— G(x) is unknown.

4.1. In Fig. 5 the LRE-algorithm has been applied
to the Es-distribution. Compared to the diagram
Fig. 1 obtained by the straightforward application
of eq. (2b) we note in Fig. 5 that the logarithmic
step sizes of G,(x) do not increase toward the tail of
the curve. This is a typical feature of all LRE-
diagrams with logarithmic ordinate.

4.2. The measurement Fig. 6 shows an example
where the LRE-algorithm has traced a generalized
cd.f. G,(x) with continuous sections and steps,

10" —=r

| \ . const. rel. error

i S Y

fdﬁm G[zi\ﬁ.[z?

dglx), 6,lx), 6lx)

A\
i 3' p #n \_l'

Fig. 5. Ec-distribution: empirical c.d.f. G,(x) eg. (8b) and
associated relative error dg(x) eq. (6b) gained by the
LRE-algorithm. compare Fig. 1.
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steps as defined in Appendix

drmgyy ‘Lm"ﬂ 4

A.1 [6]): empirical c.d.f. G, (x) T, g = 4
eq. (8b) and associated error i ! f‘ L }
01 dg(x)eq. (6b). -
0 07 s
i \ﬂJ e ! faf

B

i

Flg 7. Mixed .Eg-. E45,-distri-
bution (see Appendix): em-
pirical d.f. F,(x) and cd.f.
G,(x) egs. (8a.b) and asso-
ciated relative error dp(x)

dlxl, d;lx); Flx), £ lx). Glx), G,lx)

resp. dg(x) egs. (4a.b) and not the absolute error
o(x) eq. (3) is relevant for the control of the
evaluation.

5. Reduced Expense for Sorting

The total computertime for performing a certain
simulation resp. statistical evaluation program will
contain a certain amount T, for sorting the
measured random x-values. If the speed of a com-
puter is roughly characterized by its average
number of operations per time unit (“operation
intensity™) pop[MOp/s), then the normalized sorting
time sop Tson [MOp] is the average number of opera-

o daet bee s . e dg(x) egs. (6a.b). The
d:-a 9 j rare event detail has been
g = ——— detected by the LRE-algo-
; n = .ggm } : : rithm as part of the F,(x)- / | [ \ |
m-il 2 curve. g3 j ! j
] 2 f § 8 10 0 5 6 20 %
~ T — N i
- compare the straightforward evaluation of the same  tions for performing a specified sorting job and
. random process in [6]. represents a sorting expense measure which is to
: : i some extent independent of a special computer.
4.3. The measurement Fig. 7 is of special interest  paceq o mcasurell;ent of Tiom thepquanuty #f T
because it demonstrates that the LRE-algorithm is  }.¢ peen depicted in Fig. 8 as a function of L}F
well suited to detect rare event details of a random resp. dg G
process: in this example a mixed Eg-, Eys-distribu- e :
tion with a two peak p.d.f. f(x) where the first peak  2) for straightforward sorting of al/ measured x-
is very weak compared to the second, see Fig.9. values as in Fig. I, 3
Indeed once the resolution level Fpy resp. Gmin (and b) for selected sorting according to the LRE-algo-
the maximum relative error) have been set then the rithm as in Fig. 5 to Fig. 7.
LRE-algorithm will trace automatically all details 10— = ;
within this level. Theoretically rare event details \ N |
could also be detected by the straightforward ap- MO ; L |
plication of egs. (2a.b) but this would fail in \ Mok
practice because of the excessive expense for 12 > = = e
sorting, see Section 5. e o
In FIE 7 the rare event detail is displayed within . - : :
the left tail of the d.f. F, (x) and cannot be detected e W ST'GM frsad dady I
within the c.d.f. G,(x). From this we conclude that B 3 ;
P the rare event analysis of both tails of a truly un- =F \ \ |
" ° 7 known distribution function requires the applica- 107 AN |
S~ tion of the LRE-algorithm for both empirical func- 10° : .‘
tions: the d.f. F,(x) and the c.d.f. G,(x). Using all LRE - algorithm il
memory devices in Fig. 4 simultaneously this can be ‘
achieved in a single evaluation run. %
We also conclude that the relative error dr(x) LB I 12

A may TESP. Bymay —
Fig. 8. Typical sorting times T,,, measured on a computer
Siemens 4004/151 with po,=0.25MOp/s. Curve pa-
rameter: resolution Fp;, resp. Guin-

Using egs. (5a.b) it is found in case a) that
Ton ~ n*> with good approximation. By application
of more effective sorting techniques [8] we could
achieve at best Tn ~ nloga(n) but even this .af-
fords a high expense of compulcrnmc for e.g.
n=10°or n = 10° trials.

The LRE-algorithm on the other hand keeps Teort
comparatively low. It can be shown in case b) that a
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simple sorting technique with right-side input into
memory FS resp. left-side input into GS in Fig. 4 is
practically optimal because the contents of FS resp.
GS represent sorted x-values of the left resp. right
tail of the distribution function in each interim state

i=1,2,...,Ngresp. Ng.
6. Final Remarks

6.1. The LRE-algorithm based on the considera-
tions [4], [5] and [6] is not confined to the evaluation
of simulated random data but represents a general
method in statistics to obtain an a priori unknown
distribution function F(x) from measured data
under control of an objective error measure. For ex-
ample the large volume data obtained by traffic
measurements in telephone or data networks [9], [10]
could be evaluated favorably by means of the LRE-
algorithm, provided that the independence require-
ment is fulfilled, see Section 6.3.

6.2. The LRE-algorithm can be developed further
to perform a window-mechanism: given the pa-
rameters Fpin, drmax W€ might be interested to
observe the details of a certain segment F; to F>
(Fain < F) < F, < 1) of the curve F,(x) with higher
accuracy, i.e. with a reduced maximum relative error
dfmex < drmax. This can be achieved if the evalua-
tion program opens the window at F, by switching
the integer r from the value eq. (7a) to the value

r=ENTIER (d#n2) -1 )

and closes it at F; by switching r back to eq. (7a).
This concept can be generalized to allow for several
windows along F, (x) resp. Gp(x).

6.3. Simulation of and traffic measurement in
queueing networks usually leads often to correlated
i.e. dependent random values [11] and it is therefore
of great practical importance to evaluate such cor-
related data by statistical methods which avoid
“information loss” as it is associated e.g. with the
batch mean method [2). In [12] Bayes-methods have
been applied to teletraffic birth death processes and
it can be generally assumed that the objective
statistics of Markov- resp. Semimarkov-processes
and of certain elementary multiparameter problems
such as given by the multinomial distribution will
be needed to deal with many types of correlated
random variables.

Appendix

A random process with two mixed E,-distribu-
tions is described by the p.d.f.

= ky=1
f(x)=P,a;’ '{(\Aﬁﬁ]—},‘ exp (— x/a)) +
g H
& (x/az)**! : 4
+(1=P)a; -(A—Z_—T}T‘ exp (— x/as) .

In order to gain a process with a rare event detail
for the measurement Fig. 7 we have used the pa-
rameter set of the density f(x) Fig. 9 where the left

AEU. Band 38
[1984]. Heft 2

10t ; ; , =

N

0%

flx}) — =

weak peak

HEA

1 : 3 '
: e

Fig. 9. Mixed E;-, Es-distribution: p.d.f. f(x) cq: (10) with
ay=1/2,k; = 8,a>= 1/3, ky = 45, P, = 0.008.

peak is much weaker than the right peak (logarith-
mic scale!). In a previous paper the same parameter
set has been used except P; = 0.3 yielding a density
f(x) with two peaks of comparable “strength”, see
Fig. 9 in [5]. For details of the software random
generators see the appendices in [5] and [6].
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