
New Strategies for a Multi-System Simulator Supporting Complex
Simulation Scenarios

Ulrich Fornefeld

Aachen University of Technology� Communication Networks � Prof. Dr.-Ing. Bernhard Walke
Kopernikusstr. 16 � D-52074 Aachen � Germany

Phone: +49-2 41-80 79 16 � Fax: +49-2 41-88 88-2 42
E-mail: ulrich@fornefeld.de � WWW: http://www.fornefeld.deAbstra
t | This paper provides concepts for the per-

formance evaluation of wireless telecommunication pro-
tocols using complex simulation scenarios for a most re-
alistic interference situation. As both tasks, the simula-
tion of the protocol stack as well as the calculation of the
interference calculation are quite resource-consuming
for complex scenarios, special care has to be taken not to
exhaust the hardware limitations of the simulating ma-
chines.

I. I NTRODUCTION

Many present simulator concepts aim at either the im-
plementation of protocol stacks or the simulation of the in-
terference situation and it’s influence on the radio resource
control (RRC) algorithms. As these two concepts target
different simulator architectures, which are both very time-
consuming, a combination of both has not been possible in
the past due to lack of calculation power.

A lot of simulations of either the complex protocol
stack with few participants or the comparably simple ra-
dio resource simulation with many instances have been per-
formed. there was, however, no exact way to examine the
dependencies between the interference situation and the per-
formance parameters of the protocol stack.

Nowadays the required hardware resources are present
for a combined strategy, so an approach shall be made to
integrate both concepts into one simulator.

This system, the SDL-Generic Object-Oriented
Simulation Environment (S-GOOSE, Fig. 1), aims at
the investigation of protocol improvements for mobile
communication systems. Knowing the exact interference
situation, flow control algorithms might be added to the
system adapting the behaviour of the protocol stack to the
present interference situation.

In Sec. II, the basic concepts of the S-GOOSE are in-
troduced. Sec. III and Sec. IV explain the details of the
modelling concepts for the scenario and the protocol stack,
Sec. V explaines some helpful features for huge simulation
runs. The present state is described in Sec. VI

II. GENERAL MODELLING CONCEPTS

S-GOOSE provides an object-oriented multi-system
simulation environment, containing a defined interface
to the Specification and Description Language(SDL). It
is based on the C++ class library System PErformance
Evaluation Tool Class Library (SPEETCL),[1].

Terminals

Complexity of
algorithm

Number of

S-GOOSE

Available

Protocol
Simulators

RRC
Simulators

calculation power

Figure 1: Common protocol- and RRC-simulators vs.
S-GOOSE

Time consuming algorithms like C/I calculation are im-
plemented in C++ whereas algorithms demanding a high
flexibility and intuitive understanding are specified in SDL.
As both, the C++ language as well as SDL, are well-known
in the telecommunication area, a high acceptance level of
the new structure is expected.

The specifications designed in SDL are trans-
lated to SPEETCL classes using the code generator
SDL2SPEETCL [2]. The generated C++ classes will be
linked together with the classes manually written in C++.
The non-generated classes form, in terms of SDL, the
environment of the systems which can be reached via
signals.

There is no restriction to a single telecommunication
system. Multiple systems might be instanciated at run-
time to perform coexistence investigations. The necessary
system-dependent algorithms are added by loadable mod-
ules for a high flexibility, Fig. 2. When a module is not
needed, it is not loaded and therefore memory resources are
saved.

Many simulators are based on the two concepts men-
tioned above, so it is possible to establish a fixed central part
for future simulators, that can be reused and that is common
to all simulators. This part is completed by user-defined
modules. In this way, man-power is saved using this con-
cept.

III. C ONCEPTS FORSCENARIO MODELLING

The kind of choosen scenario has a remarkable influence
on the accuracy of the obtained results as well as on the run-
time of the simulation. Therefore, the scenario model has
to be highly adaptable, which demands a large amount of
modules and it has to be implemented run-time optimized.



Protocol 
Stack

Traffic
Generation

Interference
Engine

Propagation 
Model

Fixed Part

− Simulation Control
− Event Handling
− Module Templates
− SDL Connectivity
− Message Handling
− Persistence

Mobility
Model

Base Station
−GSM
−EGPRS
−UMTS
− ...

Mobile
−GSM
−EGPRS
−UMTS
− ...

Figure 2: S-GOOSE: Fixed part and selectable modules

This is achieved by implementing the scenario in C++classes
manually.

A detailed channel model is used to find out the current
interference situation. A variety of different interference
calculation methods allows the selection of a performance-
optimized or a more accurate simulation run considering
aspects like co channel interference and adjacent channel
interference, background noise or (for multi-system exami-
nations) general interference models. An interferer admin-
istration is not applied as this would result in an increased
run time when frequency hopping is applied.

The propagation model might be selected from differ-
ent analytical models (e.g. Hata-Okumura) or might be ob-
tained from a map created by a frequency planning tool.
Different shadowing and fading effects might be added, the
influence of several antenna types, directed and omnidirec-
tional, might be observed as well. For signal quality mea-
surements, a mapping from the C/I ratio to bit errors is ap-
plied. Different mapping methods like polynom calculation,
look-up from a table or stochastic methods are available.

IV. CONCEPTS FORPROTOCOL MODELLING

The Specification and Description Language (SDL) has
become a powerful instrument for protocol and algorithm
specification for telecommunication developments. Present
ETSI standards are providing algorithms and algorithm
parts as SDL code, e.g. HIPERLAN/2. To support the SDL
language, an interface for the usage of SDL specifications is
provided. The specified algorithms are highly comprehen-
sive because of their graphical representation. They can be
adapted very easily without getting in contact with a textual
programming language.

For a most flexible architecture, only the skeleton of the
OSI stack is implemented fixed and the selected algorithms
are loaded at runtime into the generic protocol stack, Fig. 3.
The layer manager generates the module instances when the
instanciated system demands the module to exist in the spe-
cific layer. The module entity loads the demanded algorithm
type. In this way, a module is not fixed to a layer. This is
necessary as, e.g. the mobility management is not located
within the same layer in all standards. In addition, once
a layer is selected for a module, every available algorithm
might be loaded and a reuse is possible as well.

As an example, Fig. 4 shows the loadable algorithms for
the power control. Management instances will route the in-
coming signals to the existing algorithm instances. In this
way, the management instances assert the existence of the

algorithms, the environment of the algorithm is independent
of the choosen algorithm type.

Layer 2

Layer
Manager

Layer
Manager

SAP

MM Entity

SAPLayer 3

Algorithm
Entity

Algorithm
Manager

MM Entity

Algorithm
Entity

Algorithm
Manager

Figure 3: Generic layer structure

redefined block type btPowerControl

/* Please extend for more algorithms */

prPCManager

prPowerControlGSM0508(0,1):
ptPowerControlGSM0508

prPowerControlUserDef1(0,1):
ptPowerControlUserDef1

gPCHOM srPCHOM0

(slPCHO)

gPCHOM
gPowerC

srPow0(slPCout)

gPowerC gPC srPC0

(slPCMout)

gPC

gPCHOM srPCHOM1

(slPCHO)

gPCHOM
gPowerC

srPow1
(slPCout)

gPowerC gPC
srPC1

(slPCMout)

gPC

Figure 4: Loadable algorithms for the radio resource man-
agement, Power Control

The provided SDL code might be adapted by the user,
further algorithm types might be added. The compilation
to SPEETCL-Classes using the SDL2SPEETCL compiler
allows easy linking to the simulator kernel.



Interference

Base
Station

Traffic
Generator

Mobility

Measurement

Power

ChannelsEngine

Control

Mobile

per SACCH

120ms

per burst:
FH update

Frames,
SACCH cycles

Sessions,
DTX

per Frame

per Frame

Figure 5: Frequent events in a GSM system

V. HELPFUL FEATURES

A. Event-Driven Simulation

The simulation time advance is organized by sending
events to an event scheduler. This central module of the
simulator manages the incoming events. Each event is send
to a certain time in future provided during the event gener-
ation. When the simulation time reaches this arrival time,
the scheduler will send the event to the receiving module,
the event arrives. Each module is able to receive certain
events and to handle them. As SPEETCL is a pure event-
driven tool, there are no processes defined. Processes spec-
ified in SDL will be translated to events and methods by
SDL2SPEETCL. The clearness of this concept - providing
only events for the time advance - is not only very compre-
hensive but also allows a simple implementation in C++.

Event handling The basic stucture in Fig. 5 displays the
cyclic events for the GSM system. They form the func-
tional skeleton of the simulator, advancing bursts, frames
and other regular events. Each module manages it’s own
regular events, mostly in an abstract base class, so there
is hardly any coordination necessary between the modules.
This simplifies the support of different systems.

If selected, the S-GOOSE modules will generate a mes-
sage for each received event containing a time stamp and the
source location. This option can be selected per module.

B. Persistency

For rare event simulations beeing quite time consum-
ing, a method of repetition of rare events, called RESTART
algorithm (REpetitive Simulation After Reaching Thresh-
olds, [3]), has been investigated. This method shortens the
rare event simulation remarkable. When observing a vari-
able with rare event character, a threshold for a seldom but
not rare state will be defined. A simulation run determines
the probability of the seldom state. In addition, whenever
the seldom state is reached, the state of the simulator is
saved. From the saved states, a state is randomly selected
and the simulation is restarted with a new, randomly deter-
mined seed for the central random number generator. In this
way, the probability of reaching the rare state from the sel-
dom state can be determined. The absolute probability of
the rare state is obtained by multiplying the two probabil-
ities determined above. This algorithm might be extended
to multiple thresholds. The optimum number of threshold
levels can be calculated. For this approach, a feature called
persistency is necessary, allowing to save all internal states
of the simulator to a file and to restore the state in a further

simulation run. Every object provides a method for the stor-
age process and one for the restore process, besides it has
to be marked with a unique object id to support the restore
process. When the save process is initiated, the persistency
control will save the objects existing at this simulation time.
When restarted, the restore process will reate all objects and
initialise them with the saved states.

As a side effect, persistency allows to handle with a
bundle of problems that might interrupt a long simulation
run, e.g. lack of memory, timeouts of the queueing systems,
bugs, hardware problems or power cuts. The persistency
prevents from a loss of a long simulation run. In case of an
interruption, the simulation can be restarted at the last saved
state when frequent saves were performed.

C. Evaluation Methods

SDL is a specification language, that does not provide
methods for performance evaluation such as recording and
evaluation of stochastical data. To avoid this obstacle, ad-
ditional features have been introduced to SDL. As the addi-
tions are not standardised yet, they are defined using com-
ment symbols in the specification. The SDL2SPEETCL
compiler will understand the MSG directive for the creation
of debug output messages and the PROBE directive for a
probe concept collecting data and doing statistical evalua-
tion.

The possibility of writing probes from the SDL spec-
ification allows a comfortable way of performance analy-
sis. Probes might record either values, collected at one SDL
symbol of the specification, or time advances between two
different SDL symbols. Therefore different probe types are
defined that can be evaluated in several ways for the best
results presentation. Simple evaluation methods like a cal-
culation of the moments might be used as well as sophisti-
cated methods like a probability density function, asserted
with a Batch Means algorithm or a Limited Relative Error
(LRE, [4]) algorithm. Messages can be sent as debug infor-
mation using a predefined message channel. In addition, a
message sequence chart (MSC) can be generated. A MSC
shows the sequence of signals, states and actions and makes
the specification very comprehensive.

VI. CONCLUSIONS

In this paper a multi-system simulation environment has
been developed in order to allow extended protocol inves-
tigations. A detailed scenario model will provide the nec-
essary information about the interference situation. The ca-
pabilities of the protocol to handle with the interference is
observed within the generic protocol stack.

A GSM system has been implemented to proof func-
tionality, already providing the basis for the GPRS proto-
col stack that will follow soon. The attemp to create a
generic protocol stack has shown many overlaying func-
tionality common to several wireless systems, that is reused
within the simulation environment.

SGOOSE and SPEETCL are available at AIXCOM
Gesellschaft für Telekommunikations-Dienstleistungen
mbH (www.aixcom.com) which is a spin-off of the chair
of communication networks (ComNets). Both have been
tested with Solaris 2.6, 2.7 and Linux 2.2.16 using the gcc
compilers 2.8.1 and 2.95.2.



VII. R EFERENCES

[1] M. Steppler, SPEETCL — SDL Performance
Evaluation Tool Class Library. AixCom GmbH
(www.aixcom.com), Apr. 2000.

[2] M. Steppler,SDL2SPEETCL — An SDL to C++ code
generator. AixCom GmbH (www.aixcom.com), Apr.
2000.

[3] F. Schreiber and C. Görg, “Rare event simulation: a
modified restart-method using the lre-algorithm,”ac-
cepted contribution to the 14th Int. Teletraffic Congress,
June 1994.

[4] F. Schreiber and C. Görg, “Stochastic simulation: a sim-
plified lre-algorithm for discrete random sequences.,”
AEÜ, 50, pp. 233–239, 1996.


