Deadline-Oriented Servicing: Waiting-Time Distributions

B. WALKE AND W. ROSENBOHM

Abstract—An infinite queue single server model is considered where
requests arrive from independent Poisson streams and demand service
according to arbitrary distribution functions which may be different
for different requests. Associated with each request is an urgency nums-

>t which, together with request’s time of arrival, defines a deadline
‘or beginning its service. This relative urgency discipline has at its two
limiting cases the first-come first-serve and head of the line discipline.
In [1] the mean waiting time is computed approximately and close
bounds are derived there. Here we present simulation results, derive

close approximations for the tails of the waiting-time distribution
functions and compare them to those of the two limiting cases.

Index Terms—Computer performance evaluation, queuing analysis.

I. INTRODUCTION AND DEFINITION OF MODEL

In real-time computer-control systems it is important that
Incoming service requests from a running process be com-
pleted in time, i.e., within a given time limit. In this short
note we will consider the case of requests arriving at random
(not predictable) times. Given the randomness it is impossible
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to guarantee that all finite deadlines for beginning or ending
these requested services can be met. The best that can be done
1s to guarantee a high probability for meeting such deadlines.
Let us consider a computer model with unlimited waiting
space for incoming requests which may possess various prop-
erties (to be denoted in the following as “types’’). Further,
suppose these type-i requests (1 <i<X/N) arrive at a rate A;
from a Poisson process, have an arbitrary service-time b; accord-

beginning based on its arrival time I; and its urgency wj.
Without any loss of generality we order the types i of requests
such that

where V is the total number of types and wj is the urgency of
a type-1 request. The smaller the value of wj;, the higher the
urgency.

Fig. 1 shows a model of our system. We will be concerned
almost exclusively with the case of requests which, once ser-
vicing has begun, may not be interrupted (nonpreemptive
priority). After a request has been serviced, the request among
those waiting to be processed which has the highest dynamic
priority q;(¢) is chosen for servicing. The dynamic priority at
time ¢ is given by

(2)

where T; is the arrival time and w; the urgency. If we define
the waiting time w;(¢) at time ¢ as

q,-(t) =W; - t+ T,‘,

wi(t)=t- T; (3)
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Fig. 1. Model of a real-time computer-control system, A; = arrival rate.
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Fig. 2. Example showing the dynamic priority g;(¢) over time t (N = 2,
wy = 2, wy =4, equal and constant service times). Times of arrival
of type-i requests are marked with an indexed arrow | 1.

then the current priority 1is

(4)

and depends linearly only on the current waiting time. ASs
usual, small values of ¢;(¢) indicate a high priority. It is inter-
esting to note that in this model the priorities of all outstand-
ing requests, regardless of type, grow uniformly. Requests
of the same type are processed in the order they arrive [first-
come first-serve (FCI'S)]. Since requests are serviced accord-
ing to individual urgencies and arrival times, we speak of a
relative-urgency (RU) discipline. One possible interpretation 1s
that a request’s deadline is reached if its waiting time w;(?)
equals wj. |

Fig. 2 shows an example with N = 2 types of requests with
urgencies wy = 2, W, = 4, and constant and equal service times
By =B, =3. The ordinate shows the actual dynamic priority
q;(t) and the abscissa shows the time . At its arrival time
t = T; each request has a priority ¢;(0) = w; because w;(7) = 0.
The priority of a waiting request increases linearly [the value
of q;(t) decreases] with its waiting time w;(¢). Service re-
quests arrive at times t=1, 2, 4, 5, 6, 8, 12. Their individual
priority functions are shown. The server occupation by a ser-
vice request is shown by means of a hatched bar with intervals
denoted by i(T;), the type i, and arrival time T; of an individ-
ual request.

At t =1 a busy period starts. The next decision 1s needed at

t =4 when service of the first request is finished. At this time
both the type-2 request which arrived at ¢t = 2 and the type-1l

q;(t) = w; - w;(t)
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request which just has arrived have the same priority. Such
ties are broken by servicing the most urgent type, 1.e., type 1.
At t = 7 the next decision is needed. At this time the type-2
request which arrived at ¢ = 2 will be elected, although a type-
1 request is waiting also. This follows from a comparison of
the actual priorities at t = 7. Apparently less urgent requests
are preferred if they have waited long enough.

In addition to the nonpreemptive discipline (RU-NPRE) in
Section IV we will consider a few examples of a preemptive
discipline (RU-PRE). The following abbreviations are used

throughout:

Wi, b; random variables: waiting
and service time of a
type-i1 request;

d.f. distribution function;

waiting-time d.f. of atype-i
request;
rth moment of W;(z);

Wf(t) = P(Wi <)

wi(r), wi(l) " wi

total arrival rate of all re-
quests together;

common waiting time d.f.
of all requests together;

service-time d.f.;

rth moment of service

A= EII-V:I )\j
W(t) = N"T1Z A Wi ()

Fi(t) = P(bi <)
B, g{1) =

time d.f.;
Pi = Ai B; offered traffic of type-i
: requests;
P<i=Zj=1P; offered traffic of types 1
| toi;
P = PN total offered traffic;

common service-time d.f.
of all requests together;
rth moment of F(2);

squared coefficient of vari-

ance of F(1);
mean weighted urgencies;

variance of weighted ur-
gencies;

model with Markovian (=
Poisson) arrival process,
a distinct service-time d.f.
(A =D deterministic, A =
M Markovian, A = G gen-
eral), one server, and ser-
vice discipline B,

head of the line (static
nonpreemptive priority)
discipline. |

F(t) = N 200 N Fi (1)

) =\ TN NG
c* =g - 1

w=p~ E{"Y-—-m;‘wi
var (w) = 272, (pi/p) w} - @

M/A/1/B

HOL

The RU discipline uses dynamic priorities based on waiting
times. The problem described at the beginning of this paper
nowadays is usually treated with a service discipline which
recognizes only static priorities. Arriving requests are as-
signed a static priority i according to their type i. Among the
waiting requests the one with the highest priority (lowest i)
which has waited the longest of all requests of the same type
i (FCFS) is processed first. Here, too, the model in Fig. 1

applies, except that there i1s no urgency wj.
If one is interested in the probability of missing deadlines,

then one should know the waiting-time d.f. W; (1) = P(w; S 1).
From this the probability that the waiting time w; 1s not
greater than a given time ¢ can be obtained.

We will consider the model in Fig. 1 only in a state of equilib-
rium, which occurs only when the total offered traffic p <1.
In disciplines with static priorities, a stationary equilibrium 1s
achieved for requests with high priorities, sometimes even
when p > 1. However, we will not consider this case here.
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II. WAITING-TIME D.F.’s IN THE RU AND HOL
DISCIPLINES; EXAMPLES

Let us assume NV = 4 different types of requests, each with its
arrival rate A;, urgency wj;, and service-time d.f. F;(¢). Since
the waiting-time d.f. cannot be calculated, we will consider
two examples which were simulated. We used an M/D/1 model
with all requests having a constant service time.

Example 1: p; =p/N, f=2.39, C=0.81, w =30, var (w) =
125

i 1 2 3 4
B; 1 3 5 7
Wi 15 25 35 45

Example 2: corresponds to Example 1 but with inverse
order of the mean service time §; with regard to the type i.

] 1 2 3

B; 7 3 1
Wi 15 35 45

Note that our findings stated in the rest of this paper are also
valid for quite different load parameters of our model. This
can be seen from [4] where results of M/G/1 and M/M/1

models are presented.

From earlier investigations, cf. [1] and [2], it is known that
the smaller the variance of the urgency numbers is, the less the
mean waiting times w; of the RU-NPRE discipline differ from

the mean waiting time
Wrcrs = 1/2A8(2)/(1 - p) (5)
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cally approaches the difference in their urgencies ; and W
within the accuracy obtainable by simulation. For f< 1, this
distance is smaller than the ditference w; - wj.

Second observation: the waiting-time d.f.’s in the RU dis-
cipline only depend on the differences of the urgency num-
bers, i.e., for both parameter sets {w;, ws, " " *, wN} and
{w; +7,w, +7,"*+, wy +r} (r real number) the same d.f.’s
appear.

Third observation: the waiting-time d.f. in the FCFS disci-
pline runs parallel to the tails of the waiting-time d.f.’s in the
RU discipline. This and the two other observations seem to
be valid for every M/G/1/RU model. They are the basis for
an approximate analytical computation of the waiting-time
d.f.’s in the RU discipline.

An example: Consider an example withp=W;(t)=p=W;(t)=
0.985 and p=0.75. From Fig. 3 it can be seen that the p-

- quantile of a type-i request, for which the abbreviation Q;(p)

just has been introduced, equals the urgency number w;. Ap-
parently for any other probability f(f= p) the following ap-
proximation holds:

Qi(f)- Qi(f)=w; - wj = w; - wj.

Observe that f = P(w; <0; ()= P(W, < Q,(f))

Very large waiting times of different type requests differ by
the constant difference in their urgencies. Smaller waiting
times differ by less. The property formulated in (8) implies
that for very large waiting times w; the probability P(w; < t)
of meeting deadlines is practically independent of the type of
request, i.e., all requests are handled with equal fairness.

If the condition

min (o} >> max {8}, (1<i<N),
§

(9)

is fulfilled, then the probabilities of meeting the deadlines
P(w; S w;) are about the same, regardless of type.

B. Dependency on the Total Offered Traffic

in the first-come first-serve discipline. On the other hand if Fig. 3 shows simulation results of the waiting-time d.f.’s

the variance var (w) is very large, the RU-NPRE discipline
produces mean waiting times approximating those of the
head of the line (HOL) discipline, a discipline with static non-
preemptive priorities -

WinoL = AB(P/[2(1 - p<i)(1 - p<i)]. (6)

Laplace-Stieltjes transforms of the waiting-time d.f.’s for these
extreme cases are known and their first two moments can

easily be calculated.
Assume p(w;) to be the equilibrium probability that a type-
i request must wait no longer than w; units of time for service.

For0<f< 1, define
Q;(f)=inf {w;lp(wp)) =r}. (7)

This is the waiting time corresponfiing'to fractile f in the cu-
mulative waiting-time d.f. of type-i requests. Q;(f) usually
is called the f-quantile.

A. Observations from a Simulation Model

From a simulation model we have made three observations.

First observation: the simulation shows that the waiting-
time d.f.’s, when plotted semilogarithmically, asymptotically
approach parallel straight lines regardless of the example and
the individual parameters. This seems to indicate that for
every M/G/1/RU-NPRE model we have

Jim (0N - QN =wi=wp  (,7=1,2, " N). (8)

As the probability f approaches 1, the distance between the

waiting-time d.f.’s for type-i and type-j requests asymptoti-

for Example 1. Two different total offered traffics p = 0.75
and 0.85 are assumed. If the total offered traffic is increased,
the probabilities for meeting a given set of waiting times
{wq, w,, w3, w4} are decreased. Our observations, mentioned
above, only can be made for such offered traffics for which, 1n
fact, the RU discipline does not degenerate to the HOL disci-
pline. Such degeneration appears if the probability of more
than one request being waiting is small enough to prevent a
nonurgent request to become (during its wait) more urgent
than an urgent request which arrived later.

C. Dependency of the Waiting-Time d.f.’s on the
Variance of the Urgencies

From Fig. 4 waiting-time d.f.’s in the FCFS and RU disci-
plines can be seen. We used two sets of urgency numbers

having a different variance var(w). If var(w) is small the re-
sulting dotted curves are very much closer to the waiting-
time d.f. in the FCFS discipline than is the case for a four

times larger variance (dashed curves).

D. Dependency on the Attachment of a Set of Mean
Service Times to a Set of Urgency Numbers

Assume the model in Fig. 1 in the HOL discipline and de-
fine the common-mean waiting time W, cf. (6),

W=\" 3 A\ Wi
> AiWiHoL-

i=1

(10)

The common-mean waiting time results from weighting and
summing over the individual mean waiting times of priority



Fig. 3. Simulated waiting-time d.f.’s in the FCFS and RU disciplines, cf. Example 1. The typei and total offered traffic

p are parameters, The solid and dashed curves result from the FCFS and RU disciplines, respectively. The dotted curve
shows the common waiting-time d.f. W(z).

levels i. W equals Wgcgs, cf. (5), only if all mean service case of unequal f3;’s, if (11) is satisfied, the waiting-time d.f.
times f; are equal. This is not the case in Examples 1 and 2. P(w < ) must be better in some sense than P(WEgcFs S 1).

From [3] it is known that W can be minimized in a static The opposite should be expected if the worst possible prior-
priority model by satisfying the condition 1ty assignment is chosen, namely B; 2 B;+;. The waiting-time
d.f. P(w < t) simply is a weighted combination of the waiting-
time d.f.’s P(w;yoL = t) of the static priority model using

N
- ) ~1
w= A Z )\iwiHOL-
=1

W and Wgcrs are the means of the corresponding waiting-time
d.f.’s P(w<t) and P(Wgcps S t), respectively, then for the It follows that depending on how well or badly the relation
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Fig. 5. Waiting-time d.f.’s in the FCFS and RU disciplines, cf. Example

eters. The solid and dashed curves result
common waiting-time d.f. W(z).

in (11) is observed, the d.f. P(Wgpcfpg < t)—which is indepen-
dent of priority assignment—has a worse or better position in
the set of curves P(w; yorL <), resulting.

The assignment of urgency numbers to customers with dif-
ferent mean service times §; has the same effect as the assign-
ment of static priorities: small urgencies correspond to small
priority numbers (high priorities) while large urgencies cor-
respond to large priority numbers. In the next step define
the common waiting-time d.f. in the RU discipline.

N .
W(t)=a"" Z AN P(w; <t).

=1

Now it can be argued that assigning small urgency numbers to
customers with small mean service times §; and large w;’s to
customers with large f3;’s results in a bad position of P(wgcpg <
') compared to W(t). Just this urgency number assignment
minimizes the common-mean waiting time in the RU disci-
pline and optimizes the common waiting-time d.f. W(¢). An
Inverse urgency number assignment results in the least favor-
able set of curves P(w; < t) compared to P(Wgcopg < t).

The optimal urgency number assignment just introduced is
used in Example 1, cf. Fig. 3. It can be seen that P(wpcpg <
t) (the curve indexed FCFS) has a bad position compared to
the set of curves W;(t). This corresponds to a common wait-
ing-time d.f. W(t) being preferable to P(wpcpg) < t).

The opposite is true for Example 2: there, the smaller B; is,
the larger the urgency w;. In Fig. 5, consequently, P(wgcpg <
t) has a good position compared to the set of curves W;:(t).

56
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2. The typei and total offered traffic p are param-

from the FCFS and RU disciplines, respectively. The dotted curve shows the

disciplines are very similar for ““‘small”” waiting times, cf. Fig. 6.
But what a small waiting time is heavily depends on the total
offered traffic p and the variance of the w;’s.

One substantial difference between the HOL and the RU
disciplines can be seen by comparing the individual probabil-
ities of type-i requests in the same discipline: While the RU
discipline meets all deadlines of different requests given by
the set of the w;’s [or a comparable set, cf. the second ob-
servation following (8)] with nearly the same probability, the
corresponding probabilities P(w; < w;) may differ by factors
in the HOL discipline. In the RU discipline all requests are
handled on an equal basis while the opposite is true for the
HOL discipline.

By choosing the urgency numbers, it is possible in the RU
discipline to relate the waiting-time d.f.’s to one another in a
prescribed way which is impossible in the HOL discipline.

III. APPROXIMATION OF THE WAITING-TIME D.F.’s

A. Previously Known Results

Back in 1962 Jackson [2] considered a model with discrete
time and a nonpreemptive RU discipline. The service times of
all requests were taken from one geometric distribution, and
the requests themselves were taken from a Bernoulli arrival
process. The individual urgency w; is computed for every ar-
riving request according to a given distribution. Model M1,
which corresponds to this discrete-time model but is time con-
tinuous, would have a Poisson arrival process and negative

exponentially distributed service times which all originate

from a common d.f. Model M1 differs from the model con-

sidered in this paper in that different type requests may have
different and arbitrary service-time d.f.s. Therefore, our
model is more general.

In [2] two relations are derived for the discrete time model

E. The RU and HOL Disciplines Compared

T'he RU-NPRE discipline may be thought of as an alterna-
tive to the HOL discipline. From [1] and [2] it is known that
the greater the variance of the urgency numbers, the more the

mean waiting time W; in the RU discipline differs from Wgcpg, lim [Q;(f)- Q;(N] =w; - w;  [cf., (8)] (12)

and the more W;yoL is approximated. Now, depending on f=1

the set of w;’s, the question arises how the waiting-time d.f.’s q

in the RU and HOL disciplines will differ. First we recall that @"

only the variance of the urgency numbers plays a role. Our flim [Q;i()-QC(N]=w; - @ (13)
- 1

observation is that the waiting-time d.f.’s in the HOL and RU
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g. 6. Waiting-time d.f.’s in the FCFS, RU (solid lnes), and HOL
(dashed lines) disciplines. Parameters of Example 1, p = 0.73.
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w 1is defined by an expression which for model M1 may be
approximated by the mean weighted urgencies w, cf. list of
abbreviations. Q(f) is the f-quantile of the waiting-time d.f.
of a single-queue FCFS model.

B. Approximation of @ in (13)

Our simulation results support the suspicion that (12) and
(13) seem to be generally applicable, regardless of the service-
time d.f.’s assumed. We have found that the difference be-
tween the waiting-time d.f. in the FCFS dlscxphne and the
curves, constructed from (12) using @ instead of @ , always
remains small. Only differences up to 9 percent have been ob-
served [4]. However, these differences are considerably larger
than those observed by Jackson in his model. This 1s due to
the fact that unlike Jackson’s model the mean service times
B; in our examples are not equal, but different.

Our observation is that the difference (w - w') is, depend-
‘ng on the example, greater or smaller than zero. The reason

;r this can be plausibly explained as the dependancy of the
waiting-time d.f.’s in the RU discipline on the urgency number
assignment being optimal in Example 1 and worst in Example
2 (see Section II-D).

Note that the load to the RU model is the same in both Ex-
amples 1 and 2. Hence P(Wgcpg < 1t) is the same for both
examples which is not the case for the curves W;(f) and W(z).
Only the assignment of the same set of urgency numbers is
different, which 1s precisely the reason why w' differs from
w. Our observation is that e =w - w' for all the examples
studied was always very small (a few percent of w). There-
fore we decide to accept (13) with w' substituted by w as
an approximation which leads to

fh_lfll [Q:(f) - Q(f)] = w; - w.

(14)

C. Approximations of the Waiting-Time d.f.’s in the
+CFS and RU Discipline

From Figs. 3, 4, and 5 it can be seen for our two examples
that the waiting-time d.f.’s, when plotted semilogarithmically,
run as parallel straight lines from about f=w;(r) = 0.98 on.
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1-(1-ple”

Fig. 7. A degenerated exponential d.f.

We are now going to approximate these functions through

proper formulas.
1) The waiting-time d.f. in the FCFS discipline: The wait-

ing-time d.f. in the FCFS discipline may be computed by in-
version of their Laplace transform which can be a very dif-
ficult task. For the examples introduced in this paper it can
be shown that the d.f.’s found by simulation, especially in
the tail, can be approximated very well by a degenerated ex-
ponential d.f., cf. Fig. 7,

F(y)=1-(1-p)e*
The rth moment of a degenerated d.f. is

v =r1(1 - p)/u’.

By setting equal the first two moments of the waiting-time d.{.
in the FCFS discipline and the degenerated d.f., namely,
WrcEs = 7(1) and W%ZC)FS = 7(2), it 1s possible to compute
the two unknown parameters p and i of (15). Thereby a
degenerated d.f. is defined having the same first two moments

as the waiting-time d.f. in the FCFS discipline. Using (5) and

(15)

Wides = 2Wicrs + M13(1 - p)] (16)
if
C* = Widrs/Wcrs - 1 (17)
is the squared coefficient of variance we find
C*-1 2
P = and M= (18)

C? + 1 Wreps(l + C?)

Equations (15) and (18) define an approximation of P(Wgpcpg S
t), whose first two moments are correct and which belongs to
the family of the degenerated exponential d.f.’s

P(Wpcrs St)=P(1)=1-(1-p)e ¥ (19)

In semilogarithmic scaling this function appears as a straight
line.

We are now going to study the quahty of (19) as an approxi-
mation for P(wgcpg S t). Fig. 8 shows simulated (+) and ap-
proximated waiting-time d.f.’s in the FCFS discipline using the
parameters of Examples 1 and 2. (We have mentioned already
that both examples should produce the same waiting-time d.f.
in the FCFS discipline.) All our investigations, cf. [4], showed
that, especially in the tails of the waiting-time d.f.’s, simula-
tion and approximation fit together very well.

2) The tail of the waiting-time d.f. in the RU discipline: In
our first approximation, cf. (14), we assumed the tails of the
waiting-time d.f.’s in the FCFS and RU discipline to run paral-
lel. In our second approximation we introduced (19) to ap-
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Fig. 8. Waiting-time d.f.’s in the FCFS discipline, cf. Examples 1 and 2. Approximations by means of (19) (lines) and
simulation results (+) are shown. Parameter is the total offered traffic.

proximate the tail of the waiting-time d.f. in the FCFS "disci-

pline. Combining these two results, we find as the third

approximation in this paper a close formula to describe the

tails of the waiting-time d.f.’s in the RU discipline.
From (14) it follows immediately that for every pair of f-

quantiles (f‘* l) Q,(f) = W; and QFCFS(f) = WFCFS of the
waiting-time d.f.’s in the RU and FCFS disciplines, respectively,

one may write

Wi~ WFCFS — W; - W,

cf. (9). Recalling (19)

P(wpcps St)=1-(1-p)e™*
and inserting
WFCFS = W; -~ W; + W
<+€ have
P([w;-wij+tw] <t)=1-(1-p)e Mt

“R(t-w;+w)

Pliw;st)=1-(1-p)e (20)

This function defines the tails of the waiting-time d.f.’s in the
RU-NPRE discipline.

A comparison of (19) and (20) reveals that they differ by a
factor. We aim at an expression for the waiting-time d.f.’s in
the RU discipline which has the form of a degenerated ex-
ponential d.f., cf. (15). Instead of (20) we write

Pw;st)=1-(1-p;)e Ht (21)

and find, by setting equal the right-hand sides of (20) and
(21),

pi=1-(1-p)e

Note that p and p; are the probabilities which arise for ¢ = 0
in (15) and (21), cf. Fig. 7. From simulation experiments we
know that (21) is a good approximation, if either the total
offered traffic is large, p > 0.6, or the urgency numbers have
a small variance, or both. Otherwise, the d.f.’s in the RU
discipline appear to be similar to those of the HOL discipline
which is always the case for small waiting times ¢t. The reason

“s(w=-w;j)

t----vlu-
m---l‘uav
lllnullﬂ

\'Ht)

--IA"J‘V‘

lﬂﬂl 'lll
A T
-anm---

h-..----

5 t -+ b4

Fig. 9. Waiting-time d.f.’s in the FCFS and RU disciplines, cf. Ex-

amples 1 and 2, approximated by means of (21), (lines) and simula-
tion results (-, X). Additionally, the FCFS approximation is shown.

The total offered traffic is p = 0.75.

for this is that without the conditions mentioned, there is
only a very small probability of missing deadlines for any
type of request.

Fig. 9 shows both simulation results (-, X) and approximate
waiting-time d.f’s computed from (21), which appear as
straight lines for the examples defined in Section II. It can
be seen that for large waiting times, simulation and approxi-
mation agree very well. Deviations are typically below the

10 percent range.
In Fig. 9 we once again can study the results of a different
assignment of a set of urgency numbers w; to a set of mean
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service times f3; as defined by Examples 1 and 2. The approxi-
mate waiting-time d.f.’s are derived from the d.f. of the FCFS
discipline and therefore are the same for both Examples 1 and
2. As a consequence of the optimal urgency number assign-
ment as defined in Section II-D, which is realized in Example
I, the real d.f.’s (*) compare favorably to the computed ones
On the other hand the d.f.’s (X) of Example 2, in
which the w; are especially poorly assigned to the B;:, are less
favorable than the computed ones. Note that the approxima-
tion by (21) does not take into account the urgency-number
assignment. This should be the reason for the deviation be-
tween simulated and computed d.f.’s observed.

3) The waiting-time d.f.’s in the RU discipline for small
waiting-times: Equation (21) does not apply to small waiting
times. In [1] we used a simple approximation of the waiting-
time d.f. in the RU discipline to compute the corresponding
mean waiting time W; of type-i requests

P(w; > 1) = pe-pt/wi. (22)

T'his simple approximation only depends on the total offered
traffic p and W;. Fig. 10 shows this approximation (lines)
compared to simulation results (X) for Example 1. The most
unsatisfactory approximation appears to be for type-1 re-
quests which was not needed in [1]. It can be seen that (22)
In general cannot be called a good approximation.

Nevertheless, the error produced by this approximation has
a negligible effect on the computation of W;:; simulation re-
sults agree well with the computed values of W;, cf. [1].

D. Mean Waiting Time of Requests Which Have
Missed Their Deadlines

From (21) the approximate probability of a type-i request
missing its deadline (at ¢ = wy;), presuming a sufficiently large
t, can be computed

Pw; 2> w;)=~(1-p)ekw,

The waiting-time d.f. of requests missing their deadlines is ap-
proximately given by

Plw;st|t > w;) = [P(w; < 1)
- P(w; s w;)]/[1 - P(w; < w;)]
Pw;<t|t>w;)=1-ee"%ig-ur
Apparently a degenerated exponential d.f. arises whose mean
E(wilt>w))=E;=e"“i/yu

only depends on u and w;. Note that u can be computed from
(18). The approximate mean waiting times £; of requests hav-

ing missed their deadlines differ approximately in the factor
Wy
e i,

IV. SOME TYPICAL PROPERTIES OF THE WAITING-TIME
D.F. IN THE PREEMPTIVE RU DISCIPLINE

In the preemptive RU (RU-PRE) discipline a type-i request
may be interrupted (preempted) by a type-j request if w; < W
and Wj = wj. T'he priority g;(¢) of a request remains unchanged
once its servicing has begun. But if a preemption occurs, the
priority of the interrupted request again follows (4) with
w;(t) being the total time such a request remains in the sys-
tem without being serviced. The urgency w; represents the
time w; a request is willing to wait from its arrival T i O Its
deadline #;. For both the nonpreemptive and preemptive
versions of the RU discipline a request’s deadline may be de-
fined to be reached if w;(t) equals w;. If the waiting time W;
of a request being serviced is less than its voluntary waiting
time wj;, while another type-j request has already waited its
voluntary time wj, then the type-j request preempts the type-i

Fig. 10. Waiting-time d.f.’s in the RU discipline, cf. Example 1, ap-
proximated by means of (22), (lines) and simulation results (X).
The total offered trafficis p = 0.85.

0 6 16 2L 32 L0 LB

Fig. 11. Simulated waiting-time d.f.’s in the RU-PRE discipline for Ex-
amples 2 (solid lines) and 1 (dashed lines). The total offered traffic

1s p = 0.75. The jumps appear at t = w;.

request. The case i =; is impossible. Requests, whose ser-
vicing just barely began on time or which missed their dead-
lines, may not be interrupted. Summarizing, it can be said
that in the RU-PRE discipline only requests whose servicing
began ahead of schedule may be interrupted and only by re-
quest whose deadline has been reached.

I'he waiting-time d.f.’s in the RU-PRE discipline (presuming
the data of Examples 1 and 2) shown in Fig. 11 were deter-
mined by simulation. Comparable results using the RU-NPRE
discipline are shown in Fig. 9. It can be seen that for the same
total offered traffic distinct differences in the waiting times of



312 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 3, MAY 1980

both disciplines arise. Especially worth noting is the jump at
t = w; which results from interrupting prematurely started
servicing for such requests which would otherwise miss their
deadlines. The size of the jump exactly defines the probability
for interrupting other types of requests. It can be observed
that the waiting-time d.f.’s in the tail run parallel, as was the
case for the RU-NPRE discipline (cf. [6]). For all examples
considered the slope of these tails in the RU-PRE and RU-
NPRE disciplines was not found to be the same (the same
offered traffic p is presumed).

It appears that interruptions are useful for increasing the

probabilities of meeting deadlines if the coetficients of varni-
ance of the service-time d.f.’s are large, i.e.,C; > 1. For small
C;’s our simulation supports the conjecture that interruptions
of requests in favor of others, having a larger expected service
time, is disadvantageous for meeting deadlines. The deadlines

of some types of service requests are then met better with the
RU-NPRE discipline than with the RU-PRE discipline.
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