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ABSTRACT

An infinite queue single-server model with N
external preemptive-resume priorities ig ana-
lysed. Customers with priority i (1 < i <N)
arrive according to a Poisson process with in-
tensity Ai, Join the ith priority level and de-
mand service according to a general distribu-
tion function. In each priority level the serv-
ice discipline may be either FCFS or MLFCFS
(multi-level FCFS). In the MLFCFS discipline
service requests are assigned to different sub-
levels within a priority level, dependent on the
amount of attained service. Between such sublev-
els the feedback discipline FBe is applied.

we compute the mean waiting time of customers
with priority number i, both with and without
condition on their service requirement. Exam-

ples are discussed for which the mean walting-
time 1s plotted.

1. INTRODUCTION

In real-time computer-control systems and time-
shared computer systems usually service demands
of different importance have to be distinguish-
ed. Reasons for such 1mportance-dependent han-

dling of service demands may be: different res-
ponse-time requirements of different subgroups

of customers which form the total workload, dif-

ferent importance of customer subgroups or dif-
ferent cost functions of service demands etc.

Usually service demands with different lmpor-
tance are assigned different extern priority
numbers which are fixed. Whenever a situation
arises, in which service demands with different
priority request service at the same time, the
highest priority (lowest priority number) de-
mand 18 serviced first.

In this paper we consider service disciplines
for only computing facilities in terms of a
queueing model. Service demands of priority i
are completely described by their interarrival
and service times, both being independent ran-
dom variables. |

From theory of scheduling (7], [8] it is Xnown
that service demands with a large squared coef-
ficient of variance 02 (variance over squared
mean), namely 02 > 1, wust be served by means
of an appropriate feedback (FB) discipline to
reach a minimum mean waiting time. This funda-
mental law is violated whenever the FCFS dis-
cipline is used to serve demands with 02 > N
2_5 1 18 satisfied.

Recalling that the FCFS discipline is nearly ge-

FCFS5 only is optimal when C

nerally used within fixed priority levels of
real-time computer-control systems one may,
without any knowledge about 02 1n such systems,
suspect that something should be done there to
clearify and possibly change this situation. One
goal of this paper is to promote the investiga-
tion process needed by presenting analytic re-
sults for different workloads to demonstrate
the advantages of time—slicing disciplines ap-
plied within extern priority levels. Such work-
loads differ in the value of C presumed.

Multi-level queueing models with static priori-
ties and FB disciplines are rarely to be found
in the literature. A recently published paper
by Babad [1] considers a so-called generalized
multi-entrance and multipriority M/G/1 time-
sharing system. In each priority level of his
model systems of queues exist. An arriving
customer Jjoins the oo priority level and there
the k' queue and is eligible to a finite or in-
finite quantum of servide. 1f the service re-

quirements of this customer are not satisfied
during this quantum, he is transferred to the

next lower priority (n+1) and there to the end
of the k'

head of the line discipline is used after fin-

queue for additional service. The

18hing a quantum to choose the nex customer to

be serviced. Preliminary papers are cited in [1]:
all of them can be characterized by a model
M/M/1 with static priorities and quantum serv-
ice. Another paper comparable to Babads paper
should be mentioned [2].

It solves for the Laplace-Stieltjes transform

of the conditional waiting time. A more recent-
ly paper [3], too, considers a model of the same
type as in [1). Typical for all these papers is
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that a service quantumyis not interruptable.
Moreover the external priority of a service de-
mand 18 not consequently observed: demands with
lower external priorities may get service before
a demand with higher external priority and
large service time requirement, due to the FB
discipline applied. All these models may be
called feedback models with arrivals not only
at the first but also subsequent levels.

Our model differs from these models in that 1)
the external priority of a service demand is
used to guarantee preferential service over all
lower priority demands, 2) the FB discipline
with finite or infinite qﬁantum size 18 used
only within each priority level, 3) preemption
(of the resume type) of service quanta within

a priority level and between different priority
levels is allowed.

The service discipline within each of the feed-
back queues 18 FCFS. Using service quanta of in-
finite length within each priority level, our
model degenerates to the well-known model with

eemtive resume priorities, first studied by
White and Christie [4] and Miller ([5].

2. THE MODEL

We consider an-infinite queue model of a com-
puter system, cf. Fig. 1, with N extern-priori-

ty levels of the preemptive resume type.

FCFS

~— [

W

Ay '

—-————-#

Fig. 1: Model with N queues one for each ex-
ternal preemptive-resume priority
level. Within each level the FCFS
discipline is applied. A, = arrival
rate.

Customers with, say, priority number i (1<i<N)
arrive from a Polsson arrival process with pa-
rameter)\i and demand service. Their service

times bi are assumed to be independent and iden-

tically distributed with general distribution
function (d.f.) and finite second moment. The
related arrival processes are assumed to be
independent, too. Apparently, we consider a
multi-entrance M/G/1 model. Small priority num-
bers denote high priorities. The service disci-
pline within priority level i is of the feedback
type with finite or infinite length service

quanta which are ifterruptable. The function-
ing of this discipline can be explained by means
of the model in Fig. 2 and by Table 1. The model
in Fig. 2 should be thought of as inserted 1in
the priority level i of the model in Fig. 1, as
18 shown in Fig. 3. The servie-time d.f. of cus-
tomers with priority number 1 is defined by
P(bi.ﬁ t) = Bi(s_t). We use the simpler model

in Fig. 2 to define the wmulti-level first come
first serve (MLFCFS) discipline.

processor

feedback

Fig. 2: Model with (n+1) feedback levels and

the FCFS discipline applied to the
k-th level (1 < k < n+1). The servic-
ing discipline for customers from the,

arrival process is callcd MLFCFS (multi-
level FCFS).

A new arriving customer Jjoins the queue number 9,
where he remains until either his service re-
quirement is fullfilled during the first quantum

of si1ize ¢t and he leaves the model or he has

g .
consumed the total quantum. Customers which need

more than the first quantum are fed back, when

the quantum has expired, to queue number 2 where

the quantum size is (¢t —ts1). Customers which

g2
need still more service are fed back again etc.

In queue number n+1 the quantum size is infinite,
cf. Table T.

level of the

queueing 1 2 . n+
system

attained

time is =t [ =Te2 | ot | STenen 7

Table I: Attained service time in queue number 1

of the model in Fig. 2.

The notion "quantum" does not mean that the serv-
ice in any of such gqueues may not be i1nterrupted.
Instead of this preemptive resume prioritites
are applied to give preferential service to high
priority (low number) queues of the model in Fig.
2. In each queue the service discipline is FCFG5,
It can easily be seen that, for an i1nfinite
quantum agsigned to customers of the first queue,
the other queues are obsolete and the simple
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FCFL queue ariges,

The following abbreviations are used throughout:

o

i Ai/gi offered traffic to priority

level 1,

N
2. ¥

1= levels 1 through N, total
offered traffic,

of fered traffic to priority

k-1

g

of fered traffic to priority

<k 1= levels 1 through k-1,
2.r th
r(r) _ J't dP(<t) r° moment of P(<t),
wgr)’,sgr) rth moment of wailting-timeand
gservice-time d.f.'s, respec-
tively
_w("),ﬁ -/3(1) . r(1) means (= first wo-

ments)

k
-
B .(<t) =), MA.B.(<t) weighted service-
=k "= £k ggﬂ 171 "= time d.f. of cus-
tomers with priori-

ties 1 through k
A M) pth

r moment of the

11 weighted service-time
d.f. B, (<t)
62 = 1(2) ~'12 variliance

coefficient of variance.

In sections 3 and 4 we compute the mean wailit-
ing time in the MLFCFS discipline for arbitra-
ry service-time d.f.'s and in section 5 we ap-

ply this discipline by means of three examples.

3. PREVIOUSLY KNOWN RESULTS

Computation of the first two moments of the
mean waiting-time of the M/G/1 wmodel in Fig.1,
presuning Poisson arrival processes, arbitrary
gervice-time d.f.'s and FCFS scheduling 1n each
is xnown (4], [5]. We recall
these results shortly in section 35.1. On the
other hand the M/G/1 model in Fig.2 has been
analysed in the MLFCFS discipline and the first
moment of the mean waiting time was found 1n (6l

priority level,

for an arbitrary number of levels, while the La-
place transform of the waiting-time d.f. for a
two-level model was found in (9 J. In literature
[6] the MLFCFS was called a processor sharing
discipline with feedback between levels and

FCFS for any level. The corresponding results

are recalled in section 3.-2.

3.1 Model with preemtive priorities and FCFGS
in each customer queue

We consider the model in Fig.1. The response
time of a test request can be combined of three
disjoint portions, namely (1) the waiting-~time
(2) the indivi-

dual service-time and (%) the waiting-time

before service of this request,

which results from interruption periods during

ITC-9

which requests with higher priorities are serv-
1ced. Usually the last two components are added
together and are called completion time. The re-
lated moments will be abbreviated by V( )(res-

ponse), l(r) (first wait) and T( r) (completlon)
The first two moments of the total walting-time

of a customer with priority i is known from [10]
to be

Wit () _plm) ot (e ) ) el 2y (30)
with
Wi = A ALS)/(2(1-2,)(1-2,.)) (3.2)
1 ‘1 €3 <ji oo
"(2) 2
e A A /(3(1-9,)(1-2.)2) 4
v (A BEH2/(2(1-2,)%(1-2,0%) (3.3)
t Ay ﬂii hl/-‘srz)/(‘?("" i)(""f<i)3)
Tl “ﬂi +ﬂl'<i / (1"'"-P<l) (5-4)
1020a A2) /(122,02 sAAL AL /(1-0.03  (3.5)

From Eqs. (%3.1), (3.2) and (3.4) we have the
mean walting-time

\Ji = Wi + T, -/li..

(5.6)

The second moment can be computed from Eqs.(3.1),

(3.3) and (3.5).

5.2 A simple model in the MLFCFS discipline

We consider the model in Fig.< where we have k
feedback levels (1<k<n+1).

time of a service request in level k is as
shown in Table 1I.

The attained service

In deriving an expression for the mean response
time for this model in the MIFCFS discipline, a
test request with a service requirement tgk—ﬂ <
t S'tsk)tﬁs considered. This request Jjust reach-
es the k level and then leaves the model. The

following argumentation is used in [6]; which we

reproduce here because a similar argumentation
18 used 1n section 4. The queue number k can be
considered in 1solation to some extent and two
facts may be used.
1) By assumption of preemptive priority of lower
level queues with numbers J, (1<j<k), 1i.e.
FB discipline between levels, it is clear
that requests in levels i>k can be ignored.
This follows since these Jobs cannot inter-
face with the servicing of the lower levels.

2) The system time (= response time) of our test
request can be thought of as occuring 1n two

parts. The first portion is the time from the
requests arrival to the first level queue un-
til the k-th level 18 serviced for the first




time after the test request has reached the from which we have

k-th level. The second portion starts with B ' ,
V(t) = (W + t) / (1=-xt, ,). (3.10)

the end of the first portion and ends when
After defining Pk to be the probability of a

this request leaves the system. Both the

first and the second portions of the requests customer's service requirement to fall between
system time can easlly be seen to be unaffect- the limits tgk—ﬂ and tgk
ed by the service discipline used in levels 1
through k-1. Therefore one can assume any con- tgk
venient discipline. In fact, all these levels P, = f dB(<t), (%.11)
can be lumped into one equivalent level which tgk-ﬂ
services customers with a service requirement and further defining Ek to be the mesd Service
t’ <t tgk—ﬂ)’ usins_any Bervice disci- time of a customer whose service requirement 18
pLiDS. _ ' between the limits tgk—ﬂ’ tgk
From (1) and (2) it follows that the mean res- +
ponse time V(t) of customers can be computed F = %?' |
that leave the system from the k-th level by k . tdB(<t) (3.12)
considering a two level system, say M1. The gl
lower level services customers with service re- it is then possible by weighting and summariz-
quirements between O and tgk-1 whereas the sec- ing to compute the mean response time of all
ond level services customers with requirements customers together
br r'een tgk—1 and tgk‘ Customers that would have n+7 b [w'+E ]
pawsed to the (k+1)-st level after receiving V = }E} Kk k Kk , With t0=0, (3.13)
a service time tgk in the original system are k=1 1'Atk_1

now assumed to leave the system at that point.
In other words the service-time d.f. 1is trun-
cated at tsk. We consider the simpler two level W=V-.3.
queueing system M1 with FCFS discipline 1in both
levels, the second level corresponding to the

From this the mean waiting time can be found

4. NEW RESULTS

k-th level in the original system! ‘ We now consider the model in Fig.3 where the
A test customer entering the system M1 will be queue ing éystem of Fig. 2 is inserted in the
delayed by the sum of the work currently in system of Fig.1 at an arbitrary priority leveli.
both levels plus any new arrivals to the lower FCFS
queue during the interval this customer 1s 1n A TITTTT
the system. These new arrivals form a Poisson L l]]]]_,.________o
process with parameter A and their contribution :
to the delay is a random variable with moments FCFS
ek - g TUE“‘““"
t](ff,)' = f trdB(f_t)"'t;k_q L"_B(-S-tgk-’l )J.(%.7) Ne i Y

° i

The traffic offered from these arrivals is

ALy _q- The sum of the work currently 1n both . Lz \7<:‘
levels exactly equals the mean waiting-time of - ] l' ll ] o

1 processor

a single-queue FCIS nmyntem, namely : : preemplive Lo o .
o hna resume

wo = atl)/(2(1-At)) (3.8) T _l ] “J

K k K)o _ (3. RN

wheras ‘Atk:ia the traffic offered to the lev- e

els 1 through k in the original system and tk EFCFS

and tl((e) can be computed from Eq.(3.})) by sub- __}__.__3_1___1' | ll J} g

stituting (k-1) by k. SR I S I O

As usual [6] the response time V(t) of a test FC;S

customer with service requirement t can be com- A\ ......HJI ..Jl ],.]
Sk e v, ol R i )

bined from w', t, and,,Atk_1V(t) to be

Fig.3%: Model with N external preemptive-resume

V(t) = wl'( + t + AV(t) t_q (3.9) priority levels and the MLFCFS and FCFS
- disciplines agplied to levels i and J#£i,
resp. (i,j€N).
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The different queues at priority level i are
indexed (i,k), (1 < k < n+1). We are interest-
ed in computing the mean waiting-time of a cus-
tomer of priority level i which leaves the
whole system from level (i,k). Inside priority
level i the MLFCFS discipline is applied.

The service-time d.f. of customers in the lev-
el 1 is assumed to be B.(< t). The service re-

quirement t of a customer being queued in queue

(i,k) is limited to be tgi,k-ﬂ < tei
where the index i refers to the external prio-

rity 1 of the related level.

We now may apply the same arguments used in
gsection 3%.2:

1) By the assumption of preemtive priority of

- - <
SR TEYSL qugupe, with puabers J, (< 9<K)
and r > 1 can be ignored. J

2) The response time of a test request with
service-time t, which enters the system at
queue number (i,1) and leaves the system

from queue number (i,k) can be thought of
as occuring in two parts.

Both portions (being the same as described in
section 3.2, parsgraph 2) are unaffected by the
service diéapline used in levels 1 through
(i,k-1). Therefore these levels can be lumped
together to form one equivalent level which
services all requests with priority nuwmbers 1

through (i-1) and those of i which reach the
level (i,k-1).

Now the two level system M~ mentioﬁed ln sec-
tion 3.2 is considered. The lower level serv-
1ces customers with service requirements bet-
ween O and tgi,k—1 and all those customers which
belong to priority levels 1 through i-1. The
second level services customers with service
requirements between tgi,k—1 and tgi,k' The
ervice-time d.f. of this level is assumed to
be truncated at tgi,k' The two levels system M~
18 considered with FCFS discipline in both lev-
els, the second level corresponding to the (i,k)
-th level in the original systemn.
We make the following definitions:
Bﬁi,k(gt) = weighted service-time d.f. of all
customers with priorities 1 through
(i-1) and those of priority i, which
leave the system from level (i,k).

-1
=1 (4.1)

Bi(gt) for 0<t <t

g1,k
1 otherwise

with P, (<t) =f

We note that the rth
defined by

moment of this d.f. is

tEi$k '
A { tT 4B, (<t) + t.
M f ir="7 " Ygi
0

. [’I-B.l(f_tg.l’k)]}]

which can be written, using Eq. (3.7),

(4.2)

The remaining course of the computation equals
that of section 3.2. Therefore we only give the
results here corresponding to Eqs.(3.8), (3.10),

(3.11), (3.12), (3.13)

(4.3)
(4.4)
Pix= J d B;(<t)=B(<tgy )-B(<tgy y 4)-
Yei, k-1 (4.5)
“gi,k
E; o = VP [ t d B, (<t) (4.6)
tgi,k-1
i+

vi = Z (Pi,k[w;,kai,k] )/(1-—Atéi’k__,]). (4.7)
k =1

As can easlly be seen, by recalling the argumen-
tation leading to the simple two level model M1,
these results remain unchanged even if in any of
the priority levels j#i of the model in Fig. 3
the MLFCFS5 instead of the FCFS discipline is ap-
plied. In fact, all priority levels may be
scheduled by means of the MLFCFS discipline with-
out changing the results for the i-th level.

The mean waiting time W. can be computed from

Wi = V3 -4

and the mean waiting time in the MLFCFS disci-
pIine, depending on the service requirement t

wl(t) - (wl,k+t Aglt‘-‘—l,k—’l)/(1_A{1tgl’k_"]) (4-8)

with tgi,k—ﬂ <t < tgi,k‘
Finally, by using the results of section 3.1. for
the model in Fig.1, the second mowment wge) of

the waiting-time d.f. of customers of pr{grity
level 1 can be computed, which have a service
requirement t(0 < t < tgi,ﬂ)' This is possible

only 1f the third moments of all - -involved serv-

ice-time d.f.'s, cf. Eq.(4.1), are finite.
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>. MEAN WAITING TIME OF CUSTOMERS WITH PRIORITY I

First we recall that for customers with a large

coefficient of variance, C>1, an appropriate
feedback discipline can be expected to gain a
smaller mean waiting time than the FCFS disci-

pline (7], [8]. If C<1 than the FCFS discipline
18 optimal.

Using the results of section 4 we are able to

compute the mean waiting time of every priority

level 1 in the model of Fig.1 using either the
FCFS or MLFCFS discipline.

It 1s common practice to approximate service-
time d.f.'s with C>1 by members of the hyperex-

ponential d.f. of order n (Hn) family which is
defined by

n .t n
P(<t) = 1-2 w, e . pi>0, wi>0, 2 wiu'l.
1=" 1="]
(5.1)
h approximationlimpiy that the FBg discipline
with infinite small service quanta must be used
to yield the minimum mean waiting time. This is
unacceptable for practical applications due to
the vast amount of switching overhead associated
with the FBg discipline. Therefore in praxis
feedback disciplines of the MLFCFS type which
are orly suboptimal are used to service custom-
ers with hyperexponential d.f.. For example

problems arise in sizing the quanta to be ap-
plied in each of the levels.

5.1 Examples

Throughout this section we assume the model in
Fig.5 having N=3 external priority levels and
equally to the levels distributed total offered
traffic, namely P, = P.‘-N/N" Moreover, we assume
the same service-time d.f. for customers of
"1l three priority levels. We consider an
o~ample 1 with a H2 service-time d.f., defined
by Eq.(5.1) with parameters w,=0.9, w,5=0.1,
u,'-’l .245-1 : n2=0.05 5_1 . ts---?_s, C=3%.5.

Using the expressions from section 4 the mean
waiting times for both disciplines FCFS and
MLFCFS, applied to customers of priority level i
(1<i<N=3), can be computed. The corresponding

results are shown inFig .4, where the meain wait-

ing time W, over the mean service ﬂi at the or-
dinate 1s plotted over the total offered traffic
Pan- The lines and broken lines show the results

of the FCFS and MLFCFS disciplines, respectively.

lhe case of saturatijon, féN>1, 18 included.
A comparison of the mean waiting times of the
FCFS5 and MLFCFS reveals that for a fixed.PéN

the difference is larger the lower the priority
18. Next we consider an

Example 2 with the same H2 d.f. as in example 1

ITC-9

Normalized mean waiting time over total
offered traffic for the model in Fig. 3
and the assumptions described in example
1, section 5.1. The curves show results
of the FCFS (lines) and MLFCFS (broken
lines) disciplines applied to priority
level 1.

tiﬂi“‘* —

Fig.4:

B - e . S E— Ir L e S T . Tl B

o R e A Y A,

e, - - e " v My

Py —0> p

T e L. b R I -

0 04 08 12 16 2
Fig.5: Normalized mean waiting time over total
offered traffic for the model in Fig. 3

and the assumptions described in example
2, section 5.1.
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in priority levels J/ﬁ but with a M-d.f. with
parameter u.=1/B., in the priority level i.

In this case the discipline FCFS and MLFCFS
both applied to the level i yield the same re-
sulte which are shown in Fig. 5 for i=1,2,3. A
comparison to the results of the first example,
cf. Fig. 4,reveals that for a fixed priority
level i the broken lines in Fig. & always are
below the lines in Fig. S. By this and other
similar examples it can be shown that the wait-
ing-time optimal discipline yields a smaller
mean waiting time, the greater the coefficient
of variance, C>1, is.

An expression for the mean waiting time W, (t)
conditioned on the service requirement t of a
customer of priority level i has also been com-
puted in section 4. Fig. 6 shows results for
the assumptions of example 1:‘w2(t) is shown
over t for three different total offered traf-
fics Pen=0-3, 0.6, 0.9. The jump at t=t=2s is
8 consequence of the two-level queueing system
used for the MLFCFS discipline with the first

level having preemptive priority over the second.

1\‘00

03

06

ice requirement t of customers

ority level 2 of the wmodel in Fig
the MLFCFS discipline.

Assumptions are those of example 1, sec-

tion 5.1. Parameter is the total offered
traffic,

of pri-
5 1in

For some épplicdfions the size of the jumps at

t.ts may be undesirable large. Instead of this a
more continous increase of wi(t) dependent on the
service time t might be appropriate. This is

simply possible by introducing more than two lev-
els in the MLFCFS discipline, cf.

Exauple 3: The same load as in example 2 but two
quanta ts1=0.253 and t32=5.83 are used. From Fig.
/7 1t can be seen that the conditioned waiting

time now has two Jjumps at t-ts1 and t=ts2, each
of smaller size than ts, whose sizes summarized

ITC-9

are greater than at ts (cf. Fig.6). Two such
Jumps better reach the goal to attain a more
continous increase of W,(t) dependent on t(with-

— t{s ]

mr———-——-—--—-

20 24

12 16

Fig.?7: 'Conditioned mean waiting time over serv-
ice requirement t of customers of priori-
ty level 2 of the model in Fig.3 in the
MLFCFS discipline. Assumptions are those

of example %, section 5.1. Parameter is
the total offered traffic.
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