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A STATIC PRIORITY QUEUE WITH PIECEWISE MARWUOVIAN DISTRIBUTED
SERVICE TIME AND WAITING-TIME OPTIMAL DISUCIFPLINE

Hernhard Walke

AEG-TELEFUNKEN, Research Institute Ulm,
SedanstraBe 10, D-7900 Ulm, Germany

An 1ntfilnite gueue single-server model with preemptive resume
priorities is considered. Customers with priority i(1€i<N)
arrive according to a Poisson process, Jjoln the i-th prior-
ity level and demand service according to a general distrib-
ution tunction. In each level the service discilpline may be
either FCOFS of MLFCFS (multi-level FCFS). In the MLFCFS dis-
cipline customers are assigned to different important sub-
levels within a priority level, dependent on the amount of
attailned service. Ihe customer of a more i1mportant sublevel
has preemptive priority over customers of all less important
sublevels of the same priority level. The PM (piecewise
Markovian) d.f. is introduced as a possible approximation
for general d.f.'s . Usling this approximation for service
time wlith a large coeffilcilient of varlance the MLFCFS discil-
pline gains the minimum mean walting time.

Lomputation of mean walting time, both with and without con-
ditlon on a customers service requirement, 1s demonstrated
by means of examples. The appendix glves a sketch of the
proot for the optimality of the used discipline.

1. INTRODUCTION

In real-time computer systems sometimes concurrent customers of different 1mpor-
tance have to be serviced. lhis 1s, usually, taken into account by assigning static -
priority numbers to customers and serving the highest priority (lowest priority
number) customers first.

In this paper we consider service disciplines in terms of a gueueing model. Cus-
tomers with priority i are completely described by thelr interarrival and service
times. From theoryof scheduling /7,8/ it is know that customers with a, large

.. : l . . .
squared coefficient of variance C~ (variance over sguared mean) of their service-

time distribution, namely E2>’h must be serviced by means of an appropriate feed-
back (FB) discipline to reach a minimum mean waiting time. We observe this law by
applying to customers of each priority level such a multi-level FB discipline that
their mean waiting time is minimized.

Multi-level gqueuelng models with static priorities and FB disciplines are rarely
to be found in the literature /1, 2, 3/. Typical for these papers is that serviée

gquanta are used which are not 1nterruptable. Moreover the external priority
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of a customer is not consequently observed there: a customer with lower external
priority may get service before another with higher external priority and large
service time requifement, due to the FB disciplines applied. These models may be
called multi-level feedback models with arrivals not only at the first but alsc
subsequent levels.

Our model differs from these models in that 1) the external priority of a customer
is used to guarantee preferential service over all lower priority customers, 2) the
FB discipline with finite or infinite guantum size is used only within each priori-
ty level, 3) preemption (of the resume type) of service guanta within a priority
level and between different priority levels 1s allowed. The service discipline with-
1n each of the feedback gueues 1s FLUFo. Using service guanta of infinlite lenght
withln each priority level, our model degenerates to the well-known model with
preemptive resume priorities, first studied by White and Christie /4/ and Miller
/57 .

In sectioné 2 and 5 we introduce the model and define the mean walting time in the

MLFOUFS discipline, respectively. In section 4 we present the application to cus-

tomers with piecewise Markovian (PM) service-time distribution.

2. 'THE MUDEL

We consider an infinite gqueue model of a computer system, cf. Fig. 1, with N static-

priority levels of the preemptive resume type.

Customers with, say, prio-

FCFS rity number i (1=i=N) ar-

A1 :D]:IID_O rive from a Poisson arriv-
. al process wlth parameter
S T
- preemptive and indentically distri-
Ax priority | |
buted with general dis-

queves 1 to N tribution function (d.f.)

Ai and demand service.

Thelir service times are

processor
assumed to be 1ndependent

arrival
processes

and finite second moment.
The related arrival pro-

cesses are assumed to be

Fig. 1: Model with N gueues one for each external independent, too. Apparent-

preemtlve—resume_prlarlty level ly, we consider a multi-

entrance M/G/1 model. Small

priority numbers denote high priorities. Within priority level i we use the multi-
level first come first serve (MLFCFS) dicipline which uses interruptable service

guanta. The functioning of this discipline can be explained by means of the model

in Fig. 2 and by Table I.



M/G/1] Prio model with piecewise Markovian service time 287

In the MLFCFS5 discipline a new

A, lll Il I . arriving customer of priority

i joins the queue number 1, 1,

FC%S . where he remains until elther
Ain | —o his service requirement is ful-
NP i 1 filled during the first guan-
A |

o N tum of size t . and he leaves
01, _

the model or he has consumed

7<- the total gquantum. Customers

preemptive which need more than the first
resume

guantum are fed back, when the

gquantum has expired, to gueue

S—— — s number i,2where the guantum size

Nis .::]:[I_{I:F___' ) is (tgi,Z_tgi,1)' Customers
which need still more service

are fed back to gueue number

AN :::I]:I]:I}______O 1,5, where the guantum size 1S

(tgi B_tgi 2), and so on. In

queue number i, n+71 the guan-

rig. 2: Model with N external preemtive-resume
priority levels and the MLFCFS and FCFS tum size is infinite, cf.

disclplines applied to levels 1 and J#i,
: .. - Table I.
respectively (i, jeN).

level of the . . :
. | 1, 1,2 coe 1, N+
gueuelng system

attalned service
time t 1s in the
interval

T _. =t<t _. =
gl,n g1, N+

Table I: Attained service time in gqueue number i,k of the model in Fig. Z

Upon its arrival a customer with lower priority index j<1 interrupts immediately

any other customer of priority i. Moreover service of gueues number (i,k), (2£€k£n+1),
is interrupted in favour of a new arriving customer in gueue number (i,1). Preemted
service 1s resumed later on at the same sublevel. Inside each gueue the service
discipline 1s FCFS. It can easlily be seen that, for an infinite quantum assigned

to customers of the first gueue (i, 1) of priority i, the other gueues inside this

level are obsolete and a simple FCFS gueue remains there.

5. PREVIOUSLY KNOWN RESULTS

Computation of the first two moments of the mean waiting time of the M/G/1 model

in Fig. 1, presuming Poisson arrival processes, arbitrary service-time d.f.'s and
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FCFS scheduling in each priority level, is known /4,5/. The feedback model inserted
in level i in Fig. 2 has been analysed separately in the MLFLFS discipline and the
first moment of the mean waiting time was found in /6/ for an arbitrary number of
levels. The complete model in Fig. 2 has been analysed in/10/. The main results are

shortly repeated in section 3.1.

3.1 Results of the static preemtive-resume priority model with MLFCFS in priority

level 1

b

First note that the waiting time of customers in level 1 does not depend on the
service disciplines applied to levels j#i. This follows from the assumption of pre-
emptive-resume priority for levels j, (j=1,2,...N), in the model in Fig. 2. There-
fore 1t 1s sufficlent to know the results for only one level 1>1.

The different gqueues at priority level i are indexed (i,k) with (1=k=n+1) and are
called sublevels.

The followlng abbreviations are used thoughout:

1
)Li = 2—-‘Aj arrival rate up to and 1ncluding level 1,
J="
Pi =,Ai/3i traffic offered to priority level i,
. offered traffic to priority level 1
£=) o, /
=] through N, total offered traffic,
mir) ’/ggr) rth moment of waiting time and service time
d.f.'s, respectively
mi = means (= first moments)
Bi(t) — P(bift) probability of a service-time bi not to exceed t;
service-time d.f. of customers of level 1
B‘i k(t) weighted service-time d.f. of all customers with

priorities 1 through (i-1) and those of priority i,

which leave the system from sublevel (i,k) or lower.

. -1 1-1 |
By (B = A {qu AB.(8) + A, P (0]
(3.1)

Bi(t) for UO=t=+t . y
with Pi(t) = o+
{ otherwlise
(r) th t) .
tfi,k T moment aof Béi,k( )
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t(r) I }_L:J ALA (r)+)\ t(r) (3.9)
=i,k fi{j_,] 3773 i i,kE '
(1) th moment of B.(t) truncated at t = t _.
P T 1 01, K
1,k
t(r) = }:gi,k t* dB, (t) + t- { 1-B, (& ) §
ik ué ' i gi, K i gi,k
(r) (1)
rfi,k tfi,kAﬁ-i )

Using these expressions the mean waiting time mi(t) of customers depending on thelr

service reguirementt and the meanwaiting time W, are

1
Wi (8 = (mi,k+ tréi,k-—’l)/m_b)éi,k—’l) (3.5)
ror tgi,k-’l T £ tgl,k
el llJ:'L K Yii)k /{2(1_"?<i_ )‘iti k)}

, :2_ Lk Lok ) oA (3.5)

Yeo: L 1
7 <1,k="
with Pl,k = B(tgl,k) - B(tgl,k-1) (3.5)
L 1.k
E. = /P, (77 tdB, (1) (3.6)
1,k 1,k A 1 .

4, MINIMUM WAITING TIME OF CUSTOMERS WITH PM d.f.

First we recall that for customers with a large coefficlent of variance, L>1, an
appropriate feedback discipline gains a smaller mean walting time than the FOFS
discipline. If C<1 than FCF5 1s an optimal discipline.

It is common practice to approximate service-time d.f.'s with L>1 by members of the
hyperexponential d.f. family which 1s defilned by

N N
£ _ _ _‘Jt _
P{2t) = 1 i;q w, e "1 }_Ii> 0, W, > 0, iZ_/I W, = 1. (4.1)

ouch approximations imply that the FBa]dicipline with (in some situations) infinite

small service guanta must be used to yield the minimum mean waiting time /7,8/, cf. the
appendix. Suchsmall guanta are unacceptable for practical applications due to the

vast amount of swlitching overhead assoclated with the FBﬂjdiscipline. Therefore 1n
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practice suboptimal feedback disciplines with finite sized guanta, are used. For
example problems arise in sizing the guanta to be applied. In the next section we
use another family of d.f.'s to approximate service-time d.f.'s with arbitrary C.
This family is useful to approximate d.f.'s with C>1 in that the MLFCFS discipline
(with finite sized guanta) then minimizes the mean waiting time, cf. the appendix.
Moreover, it will be seen later on that the approximation selected defines the num-

ber of feedback levels and the sizes of the service guanta.

4.1 Piecewise Markovian d.f.'s

During this section we drop the static priority index i, i.e. we consider B(t) in-
stead of Bi(t). A piecewise exponential d.f. (PM-d.f.) firstly was used ink”9j’tn
demonstrate the optimality of a two level MLFCFS discipline. The family of the PM
d.f.'s is introduced in /11 where the mean waiting time for a two and three-level
MLFLFS discipline is computed. The optimal choice of the sizes of guanta to service

customers with PM service-time d.f. was studied and solved in /Q/ and /11 .

Lompared to other efforts to approximate service-time d.f.'s by means of piecewise
functions, e.Q. /ﬁZ/', our approach has as a mailn advantage that the markovian
property 1s sustained during the intervals of the service time t, (t ctet ),

Ok=-" Ok
which form the pieces. In contrary to the M d.f.

P(t) = 1 - exp(-ut)

where the departure rate p of a customer being serviced in a server remains con-
stant, 1ndependent of the attained service-time t, this rate is H for customers

with attained service t in the interval 40 = th-<t£5t91} , Mo for customers with
attained service in the interval {t91~<t £‘t92}-, and so on until finally the tail

of the PM d.f. is reached, which has a ratE'pn+1 and simply is a M d.f. The PM d.f.
of order (n+1) is defined by (cf. /117 )

J
P(t) = 1 - EXD-{—fE% tgi(”i_”i+1) —ﬂj+1t f (4.3)
for & £ ¢+ =2 ¢
sy g j+1
i=0,1,e0e,n; 0=t <t . ...ct - 00
00 0 gn+ 1

A PM d.f. of first order is a M d.f. By choosing appropriate parameter values tgi
andi“i and a sufficient number of pieces almost general d.f.'s can be approximated,

see F1g. 3. By including zero and infinite service rates also step functions are

possible.

We aim here at demonstrating the usefulness of PM d.f.'s to approximate service-time

d.T.'s with C>1 and decide to consider only the subfamily defined by the relation

Hi<Ho& eoe Hoowaal fo o o (L.b)
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Just this subfamily is comparable to the hyperexponential d.f.'s.

The parameters tgj in Eg (4.3)

form the 1nterval limits for the

| Plst | Pl MLFCFS discipline, cf. Table I.
- - Using results of /777, cf . the appen-
dix,it is showninBJthat a combi-
tgl tg2 tg3 tg2 —t nation of the FCFS5 discipline,
applied to customers witha serv-
! P(st) ! Pi<t) ice requirement belonging to

| 1
the same interval, and the pre-
emtive resume priority disci-
| _ pline applied to customers be-

0 tgi tg2 —=t g longing to different intervals,

minimizes the mean waiting time.

Fig. 5: Examples of piecewise markovian Thereby customers with attained
(PM) d.f.'s -

service time in the interval ]
have the preemtive priority j as long as they are member of level J. Discussing the
MLFCFS discipline we use the term level instead of service interval to point out
that an 1ndividual priority number is associated with each interval. The related
model is that of level i in Fig. 2 with an input process only to the first gueue of
the gueueing system, as is shown there. The term level instead of interval will be
used throughout section 4.1, where we assume the model in Fig. 2 with only one ex-
ternal priority, namely the isolated level i. In section 4.2 we consider the case
of more than one external priority, i.e. N>»1. Then the term level as used hitherto
becomes sublevel and level is used to define én external priority level.

The reason for the MLFCFS discipline being optimal is 1) that the remaining service
time t of a customer belonging to level j follows a M d.f. with rate‘uj, as long as
t does not exceed tgj' From /7/ it can be derived that 2) FCFS is an optimal disci-
pline to service customers belonging to the same level j, cf. the appendix. A well-
known special case is that the total service time of all customers follows a M d.f.
which may be looked at as a degenerated PM d.f. with only one (the first) level. For
this special case undoubtedly FCFS is an optimal discipline. From 1) and 2) it fol-
lows that the MLFCFS discipline yields the minimum mean waiting time for customers
with PM service-time d.f. if the levels are chosen according to Table I. Deviations
between the level structure prescribed by a given PM d.f. and/or the assignment of
different service guanta can result in a disastrous increase of the mean waiting
time {11 . L

We find it appropriate to facilitate the application of the PM d.t. family by giv-
1ng here expressions which apply to the total subfamily defined by Eg.(4.4). These
expressions are needed to make use of the results of section 3.1. The first three

moments of the service-time d.f. truncated at tgk are
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) _
t, = %é—-’l P /By (4.5)

420 }l(_: P . JuS + kiq ot . §1-BCt_ DY (T, -pT -2t /p 41-B(t )] (4.6)

I et T R e 0™ Hie1 Hi T gk Pk SR '
£ i 6P /723 kz_/l t . 41-B(t_ )Y (2/ps-2/ vt /uat )=

K = gh ~ Hi7Hie1t gy H i g i F g+
- 3tgk/pk{1-8(tgk)} (2/p +t g0 - (L.7)
with P, as difined by Fg.(3.5)¢

k=1

P = exp{'-éz% tgj(pj-uj+1)}{Exp(-tgk_qpk)—exp(tgkpkl} (4.8)

and

B(t .) = P(b. <t .) with t = t . (cf. abbreviations in section 3.1).
g.J] 1 N 0]

The first and second moments of customers with service requirements t’(tgk-1<t£t )

Ok
are, cf. Eg.(3.6)
E, = 1/pk+ftgk_1Zﬂ-B(tgk_q)]+tgkZ1-B(tgk)1}/Pk, , (4.9)

(2) 2 o f
£, = E 0BG - Chg g+ 2E /BB

- (4.10)
[1-8Ct,, )] (t§k+2tgk/pk+2/p§)} /P, .

Fgs.(4.8), (4.9) and (4.10) are applicable for k=1,2,...n+7.

Fas.(4.5), (4.6) and (4.7) are applicable for k=0,1,2...n+1, mhere'pD¢E]cEH1be
chosen arbitrarily. The last summands of Egs.(4.5) to (4.7) equal zero 1f k=n+1.
) equal the moments /S(r) of the related PM d.T.

{
As an example we Qiven here the first three moments of a FM-Z d.f. (with two expo-

Just in this case the moments t§£

nential pieces, i.e. n=1):

(1) -1 1oy Ml
/3 = H, + (H; -p, ) B .
2 2 o1 -, THatg o
P Tt T I C I T Tl
(3) 3 Mgz, o1 2 2., -3 -3
B0 = 6£p1 +e 3[t /2(Ho =], )+tg(P2_P1 )+(H," =1, ] . (4.11)

Finally, it should be mentioned that d.f.'s witn C<£1, too, can be approximated Dy

the PM d.f., but this is only possible without observing the relation given 1n
Eg.(4.b).
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L, 2 Examples

IThroughout this section we assume the model in Fig. 2 having N=3 static priority
levels and equally to the levels distributed total offered traffic, namely Pi=,s’/N.
Moreover, we assume the same PM service-time d.f. for customers of all three prior-
1ty levels.

We consider an

Example 1 with a PM-2 service-time d.f., defined by

1-p 0 £ t £ tg
8. (t) = B(t) -j
-, —p )t —p ot
BN= 1727 g7 tg( t

1.24 8_1,1M2 = 0.0485 8_1, t = 2s5. For this parameter values

wlth parameters,u1

one computes C = 3.46, t,l = 0.739, ts == 2.L66, tEZ) 79.03, t23): 1.42, téz)z
L8514, P1 = 0.916, E1 = 0.625, E2 = 22.62, E22)= 0.64, Egz): J936.72.

Using the expressions from section 3.1 the mean waiting times for both disciplines
FCFS and MLFSFC, applied to customers of priority level i (1 € i = N = 3), can be
computed. The corresponding results are shown in Fig. & where the mean waiting time
mi normalized by the mean service time/ﬂi at the ordinate 1s plotted over the total
of fered traffic £. The lines and broken lines show the results of the FCFS and
MLFCFS disciplines, respectively. The case of saturation, £>1, is included.

A comparison of the mean waiting times of the FCFS and MLFCFS disciplines, applied
to customers of the same priority level, reveals that for a fixed &# the difference
1s the larger the lower the priority number is. For a total offered traffic¥ = 0.5
the mean walting time of the MLFCFS discipline is only a percentage x of that of
FUFS according to Tabgl II.

For a larger traffic # than .in Table II,x becomes substantially smaller.

o prioeitylevel i [ 12 | 5

nercentage x =-mlﬁEEEE§—* 100 % | 12.8 | 52.3 | 61.8
{FOFS

Table II: Mean waiting time in the MLFCFS discipline in percent of the mean
walting time of FCFS for an offered traffic &= 0.5.

Next we consider an Example 2 with customer's service times of all three priority

levels following the same PM-1 d.f., namely a M d.f. with parameter p = H. = ’\/ﬁvi.

In this case the disciplines FCFS and MLFCFS both applied to customers of level 1
yield the same results which are shown in Fig. 5 for i=1,2,3. A comparison with

the results of Example 1, cf. Fig. 4,reveals that for a fixed priority level i the
broken lines in Fig. 4 always are below the lines in Fig. 5. This and other similar

examples, we studied, show that the waiting-time optimal discipline yields a smaller
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mean waiting time, the greater the coefficient of varianve, C 2 1, of the service-

time d.f. 15.

* 36
<
>

Y.
28

24

20

l N

16

N
SR

N
—

0 A 08 1.2 ]
Fig. 4: Normalized mean walting time Fig. 5: Normalized mean waiting time
over total offered traffic for the mod- over total offered traffic for the model
el in Fig. 2 and the assumptlons de- in Fig. 2 and the assumptions described
scribed in Example 1, section 4.Z2. The in Example 2, section 4.Z.

curves show results of the FCFS (lines)
and MLFCFS (broken lines) disciplines

applied to priority level 1.

An expression for the mean waiting time mi(t) conditioned on the service require-
ment t of a customer of priority level i has also been presented in section 3.7.

Fig. 6 shows results for the assumptions of example 1 : mz(t) is shown over t for
three different total offered traffics = 0.3, 0.6, 0.9. The Jjump at t=t _=Zs1s a

g
consequence of the two-level gueueing system needed for the MLFCFS discipline with

the first level having preemptive priority over the second.

For some applications the size of the jumps at t = tg may be undesirable large.

Instead of this a more continous increase of mi(t) dependent on the service time

t might be appropriate.
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That this is possible is shown by an

Example 3: The service-time d.f.'s of customers of all three priority levels are
presumed to be taken from the same PM-3 d.f. with parameters p1=3, u2=D.h, u3=D.Dh,
tgq=D.25, t92=5.8. The first and second moments are/3=2.5(§gd H(Z)zBB.A, respec-
tively, and nearly the same as in Example 1, cf. t2 and t2 . In other words we
have approximated the same service-time d.f. by two different PM d.f.'s namely one

of second order (Example 1) and one of third order (Example 3).

100
? Fig. b: Conditioned mean waiting
- time over service requirement t of
"~ 50 0.3 | customers of priority level 2 of

tal offered traffic.

= the model in Fig. 2 in the MLFCFS
- - discipline.
e Assumptions are those of Example 1,
section 4.2. Parameter 1s the to-
0 —-———'“"——

Fig. 7: Conditioned mean waiting
time over service requirement t of
customers of priority level 2 of
the model in Fig. 2 in the MLFLFS
discipline. Assumptions are those
of Example 3, section 4.Z2. Parame-

ter is the total offered traffic.

W,(t)[s?] —
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From Fig. 7 1t can be seen that the conditioned waiting time now has two jumps at

tztgq and t:tgz, each of smaller size than at tg in Fig. 6, whose sizes summarized

are greater that at tg' lwo such jJumps better reach the goal to attain a more con-
tinous increase of mi(t) dependent on t (without large sized jumps), than is the

case with only one jump.

Apparently, by using PM-(n+1) d.f.'s one implicitely chooses the number of jumps
for mi(t) to be n and thereby directly influences the continuity of the increase
of mi(t) dependent on t. Ubviously for n approaching infinity a completely contin-

ous function mi(t) would arise as would be the case for the FB discipline, cf./6/

Note that the number of exponential pieces (n+1) directly defines the number of
interruptable sublevels in level i, cf. Fig. Z, and thereby the amount of switch-

1ng overhead. The mean walting time mi for both examples 1 and 3 nearly remains

the same.

It should be mentioned that, by slightly modifying the MLFCFS discipline, the sizes

of the jumps at t:tgi can be lowered distinctly without increasing the mean walting

time. Instead of consequently applying the discipline FCFS within level (i,k), cf.

Fig. 2, exeptions are permitted whenever a customer, beinag the only one 1in level
(i,k=-1), is switched over to level (i,k) where other concurrent customers are wait-
1ing. In this situation the switched over customer 1s not fed back to the end of the

gueue in level (i,k) but remains in service. The other customers in level (i,k)are

serviced after this customer. Remember that the service-time d.f. of all customers
within a distinct level (i,k) is the same M d.f., presupposed a PM d.f. is used for

customers of priority level 1. Therefore every discipline applied to customers of

such a level (i.k) yields the same mean waiting time. We are free to prescribe in-

stead of FCFS inside a level (i,k), as is done by the MLFCFS discipline, other dis-

ciplines which take into account our demands concerning mi(t). To accomplish de-
mands for small sized jumps, the last come first serve (LCFS) discipline inside a
level (i,k), without preemptions, 1s appropriate. Together with the feedback dis-
cipline between levels a MLLCFS discipline for priority level 1 arises which mini-
mizes switching overhead for any given number of feedback levels. While the mean
walting time mi remains unaffected, 1t 1s an open problem to solve tor wi(t) in the
MLLCFS discipline. Another paper recently has appeared /13/ which, too, uses the

PM d.f. and discusses the related advantages compared to other modelling approaches.
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AEEendix

This appendix contains a sketch of the voluminous proof in /7/ and contains the
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- criterion which easily can be applied to construct waiting-time optimal disci-

plines. Assumptions and outline of the proof:
- Model A/G/1, A = homogenious arrival process.
- Analysis of a single busy period is sufficient.

- Cost function gi(t) with Dégi(t)£E>D, dependent on the consumed
service time t of request i (i,t) is used to characterize such

a reqguest.
- Discrete service-time (s.t.) d.F.'Bi(bif[I)::1,[llarge, finite.

- olotted time axis, slot size A. This assumption is dropped later

ONe

- For each slot the request, to be served among those waiting, is

selected according to the request's rank r(i,t).

- A rank scale is an ordered sequence of falling rank numbers, one
for each waiting request. A rank number gives a request's impor-

tance for being serviced during the next slot.

- At any time during the running busy period the rank scale is to
be constructed such that the expected cost K of all, say N, re-
N
quests together to be served, is minimized, K = E{¥ g.(t) Luj}

i=1"J

with wj being the actual waiting time of request j.

- The existence of an optimal rank scale is proofed by deriving an

upper bound for HA.

- The rest of the proof demonstrates that it is sufficient to consider
the differences in cost of rank scales, in which two regquests are

interchanged pairwise.

- Define at the beginning of each time slot two random variahbles

GCi,t,n) = {D request th finished in n future slots

Qi(t) is
l.e. the cost of a macro interval of length n slots (not necess-

arily uninterrupted) for a request (i, t).

T(i,t,n) service time during this macro interval (the reqguest

might be finlished before the end of that interval)

- Define expection E{..] and a request's merit function

max E4G(i,t,n)3
n E4{T(i,t,n)3

- The proof /7/ shows that for any two requests (i,ti), (j,tj),

L(1i,t) = (discrete case)

not necessarily 1 # ]
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(1,8, { 2 Er(j,tj) i FF L(i,ti>{2$uj,tj>

l.e. the rank fora request is computable from it's merit function.
A linear (not combinatoric) pairwise comparison of merit values of
request 1s sufficient to decide, which request is to be served du-

ring the next slot.

- In the 1limit A—+0, the merit function is the guotient of

ethe expected cost of a service interval of length o

| t+d
3 {ki} = { ki(x,t)dx with ki(x,t):gi(x) bi(x)/(’l-Bi(t)), (x=1)

l1.e. the weighted finishing rate of request i with

bi(x) = d Bi(x)/dx density of the s.t.d.f. of reguest i

¢ the expected consumed portion of the interval of length o

t+d 0
E(dY =L [ (x=t)b,(x)dx + Jf b, (x)dx]/(1-B,(x)) .
t . t+d *

(continuous case)

EDnseguences

The permanent application of the merit function as decision criterion to decide,

which request 1s to be served, results in a waiting-time optimal discipline. Sevcic
has derived the same result for a much simpler model, in which all jobs to be exe-
cuted are assumed to be in the system at time zero (i.e. no further arrivals) /14/.

Apparently, the above given results are much more general.
It 1s very instructive to consider some special cases of general gueueing models:

It the weilghted finishing rate ki(x,t) 15 monotonic increasing in t, then the merit -
function can be simplified to

o0
tdfgi(x)bi(x)dx due to the fact that ¢ = o0 gains the maximum of

L(1,t) = L(i,t).

tfm(x—t)bi(x)dx

If ki(x,t) is monotonic decreasing in t, then L(i,t) equals ki(t,t).

Such monotonicity properties can be observed for all s.t.d.f.'s usually appliedin
gqueueing models. BE.G. for gi(t) = O, the finishing rates are monotonic for M, Hk’
Ek’ n-point and special cases of PM and GE (general Erlang) d.f.'s.

Ihe overhead consumed to make decisions based on the merit functions of waiting
requests depends on the monotonicity of ki(x,t):

If all request have monotonic increasing or nondecreasing finishing rates (e.g. M,
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Ek s.t. d.f.'s) then a decision based on L(i,t) is needed only just after the ar-
rival of a new request and just after having finished service of a reguest. At
this situations the next request is to be selected and will be served until min (next
arrival, next departure). The overhead needed for decision 1n this special case

can be very small.

If some (or all) reguest have monotonic decreasing finishing rates, due to the
assumption of a Hk s.t.d.f. then periods may arise, during which the value of the
merit function of a request in service after a very small time period Jd-0 is in-
Feriur'to the merit-function value of one or more other waiting reguests. The re-
sulting discipline is comparable to processor sharing among those requests and the
decision and switching overhead needed exceeds any limit. Just in such situations
it is adviseable to work with PM instead of HI< s.t.d.f.'s, which results in pilece-
wise constant finishing rates (no need for preemptions during exponential pleces
without arrivals) and as a consequence results in time periods d»0 and thereby a

very small overhead.

In /15/ examples are given which demonstrate, how to serve requests with different
s.t.d.f.'s. The resulting waiting-time optimal disciplines differ from those usu-

ally applied in time-sharing systems. Their analysis remains for further research.
Results of such analysis may serve to derive a basis useful tO evaluate service

disciplines,currently 1n use.
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