

1 ELSEVIER

Available online at www.sciencedirect.com

SCIENCE @ DIRECT®

2 Ad Hoc Networks xxx (2006) xxx-xxx

Ad Hoc
Networks

3 www.elsevier.com/locate/adhoc

Improving routing performance in wireless ad hoc networks using cross-layer interactions

Erik Weiss ^{a,*}, Guido Hiertz ^a, Bangnan Xu ^b, Sven Hischke ^c,
 Bernhard Walke ^a, Sebastian Gross ^a

^a *Communication Networks, Faculty 6, RWTH Aachen University, Kopernikusstr.16, D-52074 Aachen, Germany*

^b *SSC ENPS (Technologiezentrum), T-Systems, Am Kavalleriesand 3, D-64295 Darmstadt, Germany*

^c *Deutsche Telekom AG, Friedrich-Ebert-Allee 140, D-53113 Bonn, Germany*

10 Received 29 November 2004; received in revised form 3 March 2006; accepted 17 March 2006

12 Abstract

13 This article presents a combined layer two and three control loop, which allows prediction of link breakage in wireless
 14 ad hoc networks. The method monitors the physical layer transmission mode on layer two and exploits the gained knowl-
 15 edge at layer three. The mechanism bases on link adaptation, which is used in IEEE 802.11a WLAN to select the trans-
 16 mission mode according to the link quality. The process of link adaptation contains information that is useful to predict
 17 link stability and link lifetime. After introducing the IEEE 802.11a Medium Access Control (MAC) and PHY layer, we
 18 present insight to the IEEE 802.11a link adaptation behaviour in multi-hop ad hoc networks. The link adaptation algo-
 19 rithm presented here is derived from Auto RateFallback (ARF) algorithm. We survey the performance gain of two newly
 20 developed route adaptation approaches exploding the prediction results. One approach is Early Route ReArrangement
 21 (ERRA) that starts a route reconstruction procedure before link breakage. Hence, an alternative route is available before
 22 connectivity is lost. Early Route Update (ERU) is a complementing approach that enhances this process, by communica-
 23 tions among routing nodes surrounding the breaking link. The delay caused by route reconstruction can be significantly
 24 reduced if prediction and either of our new route discovery processes is used.

25 © 2006 Published by Elsevier B.V.

26 **Keywords:** Ad hoc network; Ad hoc routing; AODV; Link breakage prediction; Link adaptation; IPonAIR; ERRA; ERU; IEEE 802.11
 27 MAC

1. Introduction

* Corresponding author. Tel.: +49 241 802 8575; fax: +49 241 802 2242.

E-mail addresses: erik.weiss@comnets.rwth-aachen.de (E. Weiss), hiertz@ieee.org (G. Hiertz), Bangnan.Xu@t-systems.com (B. Xu), Sven.Hischke@telekom.de (S. Hischke), walke@comnets.rwth-aachen.de (B. Walke), Sebastian.gross@comnets.rwth-aachen.de (S. Gross).

35 support transmission rates up to 54 Mb/s. The high
 36 attenuation at 5 GHz limits the coverage area. One
 37 objective is therefore, to extend the coverage by
 38 establishing multi-hop routes. Since using wireless
 39 technology enables the user to be mobile, the net-
 40 work has to deal with effects introduced by a
 41 dynamically changing network topology.

42 High throughput and limited transmission range
 43 make WLAN systems adequate for areas with a
 44 high population density and users with the need
 45 for high data rates. Such places, like airports or fair-
 46 grounds, are called Hotspots. Covering large areas
 47 with WLAN is economically inefficient, since a con-
 48 siderable number of Access Point (AP) and routers
 49 would have to be deployed due to the limited trans-
 50 mission range. The AP density can be reduced by
 51 increasing the transmission power or enabling inter-
 52 mediate terminals to forward the data to users
 53 beyond the Access Point range. High transmit pow-
 54 ers strain the batteries of the mobile devices and
 55 increase the exposure of operators to radio waves,
 56 along with their yet undetermined health risk
 57 (Fig. 1).

58 1.1. State of the art

59 Today's solution is to expand the fixed infra-
 60 structure using multi-hop connections. Mobility
 61 and fast changing topologies are addressed by ad
 62 hoc routing protocols, which can be subdivided into
 63 proactive and reactive protocols. Reactive protocols
 64 [4,17] request a route when needed, whereas proactive
 65 protocols [15,16] permanently maintain routes
 66 to all known network members that can be used
 67 on request, therefore minimizing packet delay.
 68 Reactive protocols avoid maintaining unneeded

routes at the cost of a higher route discovery delay
 69 and packet delay. Therefore, hybrid approaches
 70 [18] have been developed to reach a trade-off
 71 between the reactive and proactive approaches.
 72

73 However, in case of a route break, all routing
 74 approaches try to recover the connection. Most
 75 routing algorithms inform the source node, which
 76 in turn starts a completely new discovery process,
 77 thereby flooding the network with a large number
 78 of signalling messages. Some routing protocols per-
 79 form a local route discovery [4] around the breakage
 80 to limit the flooding. Moreover, all aforementioned
 81 approaches solely only react when the link is already
 82 broken. This leads to a high number of lost packets
 83 as well as increased route rediscovering and packet
 84 delay.

85 The new strategy proposed in this paper is not to
 86 wait until the link breaks but to act in advance.
 87 Based on link adaptation information we predict
 88 the link state and start to rearrange the route before
 89 the link is interrupted. Lower layers, especially the
 90 link adaptation (LA), provide information that
 91 allows predicting the link conditions. We present
 92 Early Route ReArrangement (ERRA) and Early
 93 Route Update (ERU), two new route rearrange-
 94 ment protocols based on link prediction. Since the
 95 two presented approaches prevent unnecessary sig-
 96 nalling, avoid packet loss and minimize packet
 97 delays, both use the ad hoc network capacity more
 98 efficiently than existing protocols.

99 A similar work based on legacy IEEE 802.11 was
 100 presented in [2], although the prediction approach
 101 presented in paper employs the received signal
 102 strength to estimate the likelihood of a link inter-
 103 ruption. The approach in [2] is limited to informing
 104 the route's source about expected route breaks. The

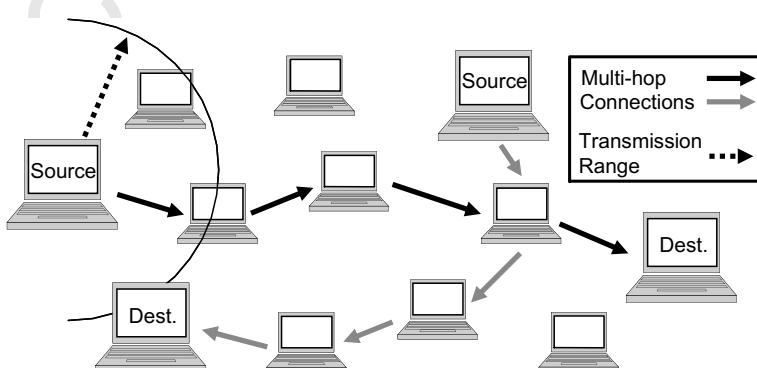


Fig. 1. Wireless ad hoc network.

105 source node has to act upon this information and
106 the source node starts flooding the network to
107 update the route using standard routing algorithms.

108 Our approach combines the idea of local route
109 rearrangement on layer three and link prediction
110 at layer two. We propose a prediction algorithm
111 that takes advantages of the link adaptation (LA)
112 actions. We use the link adaptation like a pre-pro-
113 cessing function for the evaluation of channel
114 conditions.

115 The remaining parts of the paper are organized
116 as follows: we start with a brief survey of IEEE
117 802.11. The link adaptation fundamentals are cov-
118 ered in Section 3, followed by a discussion on how
119 the link adaptation supports the necessary predic-
120 tion information in Section 4. Simulations provide
121 further information on the efficiency of the pre-
122 sented link adaptation. After giving a brief descrip-
123 tion of the ERRA and ERU signalling procedures,
124 we highlight the benefits of the new protocols in
125 Section 5. In Section 6 we present the simulation
126 results of our new route rearrangement protocols
127 ERRA and ERU. The last two sections conclude
128 our consideration and discuss further research
129 topics.

130 2. IEEE 802.11a medium access control

131 The IEEE 802.11a standard describes an OFDM
132 PHY layer at 5 GHz. The Medium Access Control
133 (MAC) layer is equal to IEEE 802.11b and legacy
134 IEEE 802.11. IEEE 802.11a mainly introduces
135 higher data rates [1,3]. IEEE 802.11a offers eight cod-
136 ing and modulation schemes, so called PHYModes
137 (cf. Table 1). The MAC protocol used in IEEE
138 802.11 is called Distributed Coordination Function
139 (DCF). IEEE 802.11 furthermore describes a Point

140 Coordination Function (PCF). The PCF is used
141 for centrally controlled access. To our knowledge,
142 it has never been implemented by any vendor.
143 The DCF is based on carrier sense multiple access
144 with collision avoidance (CSMA/CA). As mobile
145 nodes (MNs) are not able to monitor the air inter-
146 face while transmitting, the DCF uses backoff and
147 request to send/clear to send (RTS/CTS) mech-
148 anisms to avoid collisions due to the “hidden station”
149 problem. Details of the IEEE 802.11 MAC protocol
150 are given in [3].

151 2.1. IEEE 802.11a transmission modes

152 The IEEE 802.11a standard does not specify any
153 rules for selecting the transmission mode. Each ven-
154 dor implements a proprietary link adaptation
155 method. The first four bits within each packet pre-
156 ample specify the PHYMode chosen for coding
157 the data payload. Higher transmission modes are
158 capable of delivering higher data rates, but need a
159 considerably higher carrier-to-interference ratio
160 (C/I), thus limiting the bridged distance (cf. Figs.
161 2 and 3). In Table 1 all available modes are listed
162 with their respective maximum data rate, applied
163 code rate and bits per OFDM symbol [1,3].

164 Due to the channel attenuation the C/I secedes as
165 the distance between transmitter and receiver
166 increases. Thus, different areas can be dependably
167 covered with each PHYMode (cf. Fig. 2). IEEE
168 802.11a allows stepping down the transmission
169 mode when the channel quality is decreasing, e.g.,
170 due to a rising distance between source and destina-
171 tion or in case of growing interference (cf. Fig. 3).

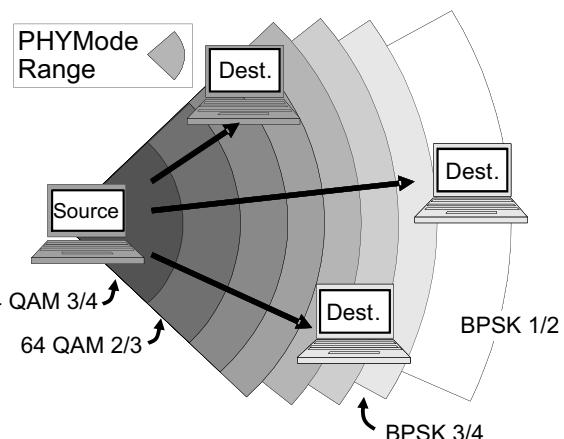


Fig. 2. PHYMode range.

Table 1
PHYMode dependent parameters

Data rate (Mb/s)	Modulation	Coding rate (R)	Data bits per symbol
6	BPSK	1/2	24
9	BPSK	3/4	36
12	QPSK	1/2	48
18	QPSK	3/4	72
24	16-QAM	1/2	96
36	16-QAM	3/4	144
48	64-QAM	2/3	192
54	64-QAM	3/4	216

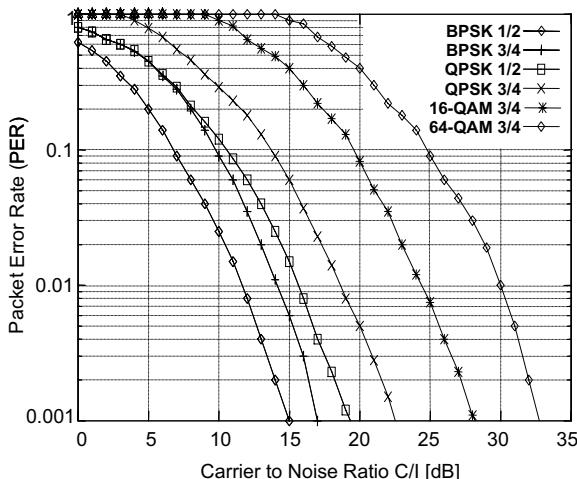


Fig. 3. Packet error rate versus C/I.

172 The IEEE 802.11a protocol allows choosing of an
 173 individual PHYMode for each connection and each
 174 data packet. Every terminal attempts to determine
 175 the PHYMode providing the best balance of
 176 throughput to packet error rate (PER). The Chair
 177 of Communication Networks, RWTH Aachen Uni-
 178 versity [12] has developed a simulation tool to in-
 179 vestigate IEEE 802.11a/e/g together with a complex IP
 180 layer. The simulation tool makes use of a two-path
 181 propagation model over a reflecting surface [1,12] as
 182 the physical channel model. It combines calculated
 183 C/I with the measured values, Fig. 3 shows exempli-
 184 arily some values [13]. The results from our simula-
 185 tion environment presented in Fig. 4 evaluate the
 186 maximum throughput per PHYMode for a packet
 187 size of 2000 B. Since the 802.11 MAC handles small
 188 sized packages very inefficiently, our simulation
 189 results present a best-case scenario. The envelope
 190 of the throughput results is formed by the upper
 191 bound of all PHYModes and represents the opti-
 192 mum balance of PER and throughput. Since termi-
 193 nals in a real system cannot distinguish between
 194 signal power and interference power, it is impossi-
 195 ble to measure the detailed C/I for each packet: Hence,
 196 each terminal only detects a certain local power
 197 level.¹

198 There are two ways to estimate the signal-to-
 199 noise ratio: Terminals can either measure the inter-

¹ This is the reason why routing protocols based on signal strength stability operate on an uncertain basis. The received signal strength changes very dynamically due to the burstiness of the traffic.

ference power within transmission pauses, or count
 200 the successfully received and lost packets. The latter
 201 one is not intricate to implement as described in Sec-
 202 tion 3. The ratio between received and lost packets,
 203 combined with the measured packet error rate
 204 (PER) per PHYMode, leads to the prevailing C/I
 205 [12,13]. The IEEE 802.11a/g/e network simulator
 206 bases on PER versus carrier-to-interference ratio
 207 measurements [12] shown in Fig. 3. Higher trans-
 208 mission modes are capable of delivering higher data
 209 rates. But nevertheless, they also need a remarkably
 210 higher C/I. Decrease of the channel quality has sev-
 211 eral reasons, like fading, obstacles and interference.
 212 Fig. 4 presents the maximum achievable data
 213 throughput of IEEE 802.11a with the DCF and
 214 RTS/CTS handshake.

215 As presented in Fig. 4 802.11a carries up to
 216 36 Mb/s when utilizing the 64-QAM 3/4 PHY-
 217 Mode. To improve the performance, a simple but
 218 efficient approach has been developed. After having
 219 successfully sent a predefined number of packets the
 220 LA of the transmitting station, steps up to a faster
 221 data rate. If a certain number of packets is lost later
 222 on, a lower transmission mode is used. This link
 223 adaptation algorithm is called Auto Rate Fallback
 224 (ARF). Further details can be found in [9]. How-
 225 ever, this algorithm is instable. Even if LA has
 226 found an optimum transmission mode it will try
 227 to switch to a less robust but higher PHYMode
 228 leading to an increased packet error. Some other
 229 LA approaches have been presented in [10,11]. They
 230 outperform ARF but require changes to the IEEE
 231 802.11 standard [3].

3. Link adaptation for multi-hop ad hoc network

233 Since IEEE 802.11 does not define any rules for
 234 an internal link adaptation (LA), each vendor
 235 implements a proprietary LA. Our prediction
 236 approach and route rearrangement protocols rely
 237 on the behaviour of the LA, thus it is mandatory
 238 to specify the used LA. Independently from the fla-
 239 vor of the LA, all algorithms are based on a similar
 240 principle that with degrading channel conditions a
 241 lower but more robust PHYMode is chosen (or a
 242 higher but less robust one, when the channel condi-
 243 tions improve).

244 To evaluate the performance of 802.11 MAC in a
 245 wireless multi-hop ad hoc network, our simulation
 246 tool has been extended with a fast and efficient
 247 LA. The developed LA can be described as an

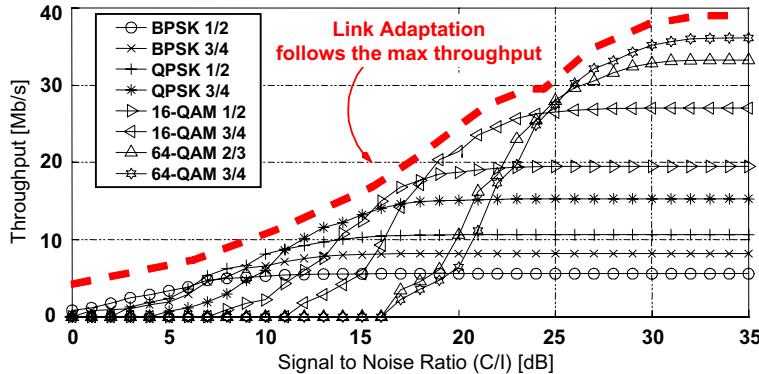


Fig. 4. Reachable throughput per PHYMode.

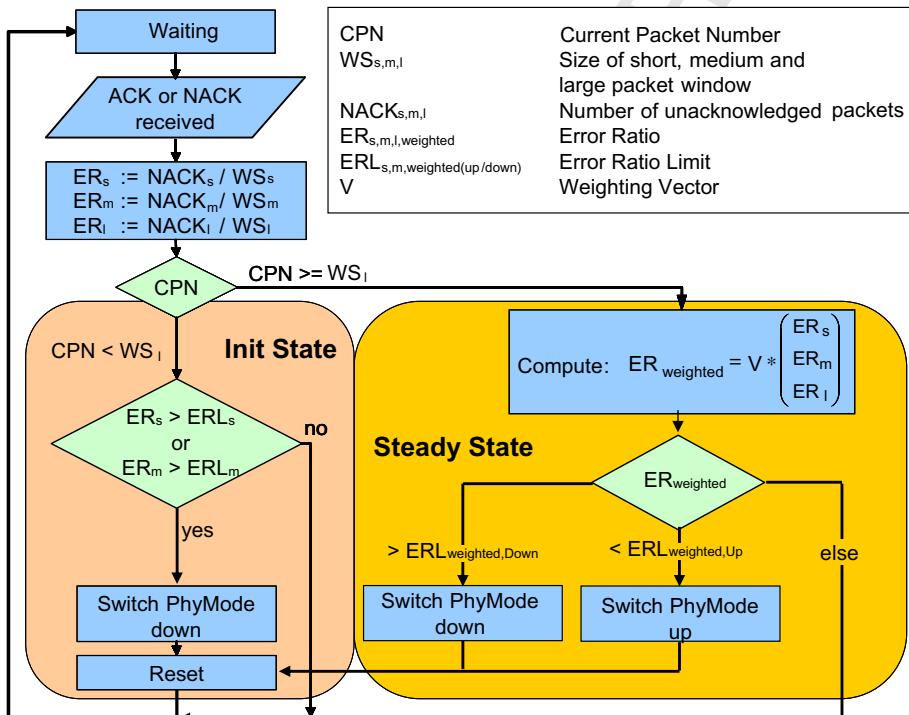


Fig. 5. Link adaptation working principle.

249 enhanced version of the Auto Rate Fallback (ARF)
250 [9] protocol. Fig. 5 shows the functional principle of
251 our LA algorithm. One LA instance serves one des-
252 tination only. The implemented version addresses
253 the following design specifications.

254 Fast reaction on channel condition changes is
255 one of the major requirements for a LA, though
256 slow variation must be considered as well. To fulfil
257 these requirements, our LA contains three different
258 lists (packet windows, PWs) of the sizes 5, 10 and
259 25 to store the PHYModes used in the past, along

260 with the information whether the respective packet
261 has been acknowledged or not. The parameter val-
262 ues are the result of various tests to find optimized
263 parameters for a large range of possible test scenar-
264 ios. As these PWs store short, medium, and long-
265 term information they are referred to as short
266 (PW_s), medium (PW_m) and long (PW_l) packet win-
267 dows (cf. (3.1)). The different window sizes (WSs)
268 are labelled as short WS_s, medium WS_m, and long
269 WS_l. The latest packet determines the current
270 packet number (CPN):

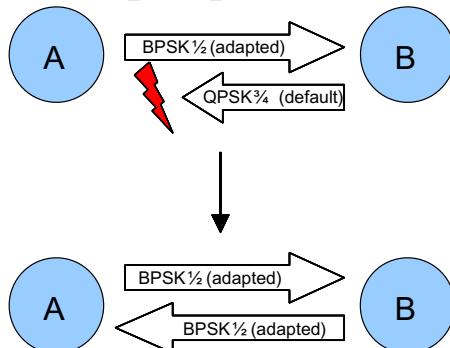
$$\begin{aligned}
 \text{PW}_s &= \{P_{\text{CPN}}, P_{\text{CPN}-1}, \dots, P_{\text{CPN}-\text{WS}_s}\}, \\
 \text{PW}_m &= \{P_{\text{CPN}}, P_{\text{CPN}-1}, \dots, P_{\text{CPN}-\text{WS}_s}, \dots, P_{\text{CPN}-\text{WS}_m}\}, \\
 \text{PW}_l &= \{P_{\text{CPN}}, P_{\text{CPN}-1}, \dots, P_{\text{CPN}-\text{WS}_s}, \dots, \\
 &\quad P_{\text{CPN}-\text{WS}_m}, \dots, P_{\text{CPN}-\text{WS}_l}\}.
 \end{aligned} \tag{3.1}$$

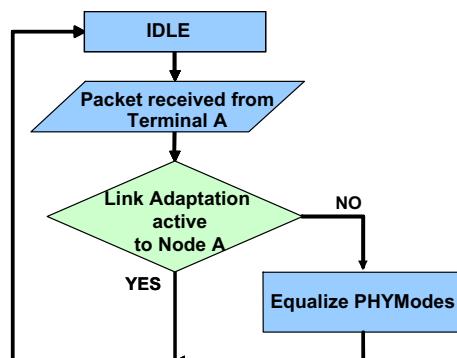
274 Each entry $P_i \in \{0, 1\}$ has two states: either the
275 packet was transmitted successfully ($P_i = 0$) or the
276 packet was not acknowledged ($P_i = 1$). Our pro-
277 cedure permanently calculates the ratio of successful
278 to unsuccessful transmissions (error ratio k , ER_k)
279 for each PW_k (cf. (3.2)).
280

$$\text{ER}_k = \frac{1}{\text{WS}_k} \sum_{\text{CPN}-\text{WS}_k}^{\text{CPN}} \text{PW}_k, \quad k \in \{s, m, l\}. \tag{3.2}$$

283 Eq. (3.2) shows how the ER_k is calculated. When-
284 ever a packet is transmitted immediately after the
285 PHYMode has been changed or if the link has been
286 idle for a certain period of time the respective LA in-
287 stance is reset. All packet windows are deleted (en-
288 tries are set to zero) and the new packet is labelled
289 as the first one (CPN is set to 1).

290 Our LA algorithm is designed to differentiate two
291 states: the ‘Init State’ and the ‘Steady State’. After
292 the creation or the reset of a LA instance, the LA
293 starts in the ‘Init State’ (cf. Fig. 5). When a new link
294 is established it is important to find an appropriate
295 PHYMode before the IEEE 802.11 protocol starts
296 discarding packets. Otherwise, the IEEE 802.11
297 retry counter may expire [3]. Therefore, the LA
298 remains in ‘Init State’ until all lists PW_k are filled.
299 In this ‘Init State’ the LA converges fast from the
300 initial PHYMode to the actual link conditions, since
301 only PW_s and PW_m are considered for the decision
302 on switching to another PHYMode . Each PW_k is
303 associated with a certain error ratio limit (ERL_k).




Fig. 6. Considering the bidirectional case.

When the LA procedure operates in the ‘Init State’ 304 and the error ratio within PW_s or PW_m exceeds the 305 corresponding ERL, the PHYMode is immediately 306 decreased (cf. (3.4) and (3.5)). The WS_s has to be 307 carefully selected. During our studies presented 308 here, the initial PHYMode was kept equal to the 309 PHYMode used for layer three broadcast transmis- 310 sions. Therefore, all layer three control packets are 311 sent using QPSK 3/4. To further enhance the LA 312 procedure, after entering the ‘Init State’ the LA 313 instance evaluates current or previous backwards 314 links if available. If a backwards link exists and its 315 PHYMode is lower than the initial default $\text{PHY}-$ 316 Mode, the PHYMode of this backwards link is used 317 as the initial one, see Fig. 6. Node A transmits using 318 BPSK 1/2 to node B. Node A has already adapted 319 the PHYMode to find the best suited one. Hence, 320 node B uses the same coding scheme of node A as 321 the initial PHYMode . This behaviour is based on 322 elevated probability that both directions have com- 323 parable propagation conditions. This educated 324 guess is used to improve the starting point for LA, 325 as described above. 326

Once all lists have been filled the LA instance 327 switches to the ‘steady state’ where all lists are 328 considered for further calculations. To differenti- 329 ate between long term and short term changes the three 330 $\text{PW}_{s,m,l}$ are weighted using a weighting vector \vec{v} (see 331 (3.3)). The weighting vector contains a weight v_i for 332 each PW_k with $v_i \in \mathbb{R} \cap [0, 1]$.
333

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \quad \text{with } v_i \in \mathbb{R} \cap [0, 1] \text{ and } \sum_i v_i = 1. \tag{3.3} \quad 336$$

The current PHYMode is taken as the current opti- 337 mum as long it remains in a predefined range. The 338

339 bounds of this range are given by $ERL_{Weighted,UP}$
 340 and $ERL_{Weighted,DOWN}$. If the weighted error ratio
 341 falls below $ERL_{Weighted,UP}$ the PHYMode is in-
 342 creased and vice versa when the weighted error ratio
 343 arises over $ERL_{Weighted,DOWN}$ the PHYMode is de-
 344 creased. Our LA switching conditions are summa-
 345 rised in Eq. (3.4) and (3.5).

Switching_{DOWN}

$$= \begin{cases} (ER_s > ERL_s) \cup (ER_m > ERL_m) & \text{for } CPN < WP_1, \\ \begin{pmatrix} v_s \\ v_m \\ v_l \end{pmatrix} \otimes (ER_s; ER_m; ER_l) > ERL_{Weighted,DOWN} & \text{for } CPN \geq WP_1. \end{cases} \quad (3.4)$$

Switching_{UP}

$$= \begin{cases} \text{non-switching up in } Init \text{ State} & \text{for } CPN < WP_1, \\ \begin{pmatrix} v_s \\ v_m \\ v_l \end{pmatrix} \otimes (ER_s; ER_m; ER_l) < ERL_{Weighted,UP} & \text{for } CPN \geq WP_1. \end{cases} \quad (3.5)$$

348

349 To be able to react to rapidly changing channel con-
 350 ditions, PW_s should be highly weighted. For the
 351 simulation results presented here the weights are
 352 set as follows: $\{v_1 = 0.5; v_2 = 0.3; v_3 = 0.2\}$. This
 353 means PW_s weighted with 50%, PW_m with 30%,
 354 and PW_1 with 20%.

The right choice for the WSs is a key requirement
 355 for a sufficient LA operation. High data rate con-
 356 nections having small packets need larger WSs than
 357 a moderate data rate connection with large packets.
 358 Therefore, an additional function at each terminal
 359 has to measure the data packet rate per link and
 360 to choose the packet window sizes independently
 361 for each link. However, in addition to the packet
 362 rate, the WS_s has to be defined small enough to
 363 avoid expiring the IEEE 802.11 retry counter [3].
 364 Therefore, during our studies a PW_s of five packets
 365 has been used to prevent packet loss in the '*Init*
 366 *State*'.

367 However, optimizing LA algorithm is out of the
 368 scope of this article. Our focus here is to increase
 369 ad hoc routing performance using cross-layer infor-
 370 mation in support of ERRA and ERU. Neverthe-
 371 less, giving a detailed description of the LA is
 372 necessary since they are none standardized LAs.
 373 Our LA turns out to be a suitable choice as basis
 374 for a prediction algorithm. The next section shows
 375 the LA behaviour and performance.

4. Link adaptation behaviour

We use two scenarios to present the stability and
 378 performance of the LA developed. The velocities
 379 used in our simulation are applicable in cases such
 380 as a walking person or a slowly moving vehicle. Fas-
 381 ter speeds would mean frequent changes of links
 382 and thus result in an inconstant link quality. Vehicle
 383

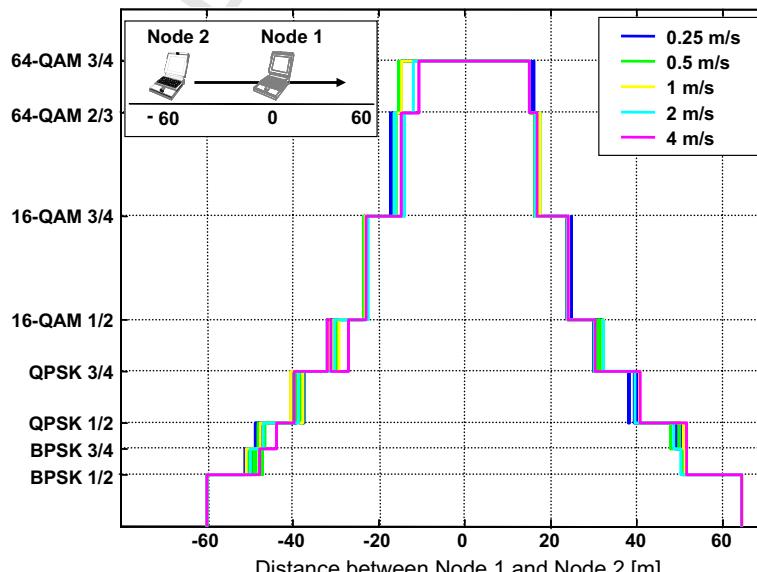


Fig. 7. Throughput results of node 2, under different velocities.

384 based scenarios do not provide a promising application
 385 for stand-alone wireless local area networks.

386 First, we investigated a basic scenarios comprising
 387 two nodes. One node remains immobile. We
 388 place the fixed node at the point of origin. The sec-
 389 ond node is placed at a distance of 60 m, it moves
 390 straight towards the fixed node and stops after leav-
 391 ing the range of node 1. The aim of this setup is to
 392 gain insights into the detailed LA reaction and to
 393 observe the stability of the LA. The scenario is
 394 shown in Fig. 7 on the upper left corner. Node 1
 395 transmits to node 2. The offered data rate was
 396 100 kb/s constant-bit-rate (CBR) with a packet size
 397 of 512 B. Both nodes transmit with a power of
 398 100 mW. The propagation coefficient of the physical
 399 model was assumed to be $\gamma = 3.0$ [1]. Realistic val-
 400 ues for γ are between 2 (free-space propagation)
 401 and 5 (strong attenuation, e.g., because of city
 402 buildings). The simulation is repeated with varying
 403 speeds of node 2.

404 Fig. 7 presents the used PHYModes for packets
 405 transmitted from node 1 to node 2. The adaptation
 406 steps can be observed for velocities from 0.25 m/s
 407 up to 4 m/s. It shows that the link adaptation is
 408 capable of swiftly adapting the PHYModes. An
 409 influence of the velocity can be stated for 2 m/s
 410 and 4 m/s, whereas all other velocities show roughly
 411 similar adaptation behaviour. The LA needs longer
 412 to increase the PHYMode when the destination sta-
 413 tion approaches faster. The downward curves are
 414 almost identical in all cases showing that the
 415 decreasing quality of the link is detected compara-
 416 bly at any simulated speed.

5. Predicting link breakages

417

Continuous switching down of PHYModes is a
 418 hint for the network layer that the link may break
 419 soon. This information triggers the routing algo-
 420 rithm instance to reconsider the route and to adapt
 421 it according to the emerging situation. Being able to
 422 predict a link breakage has large benefits. Common
 423 routing protocols react after a link is broken, while
 424 using LA information our solution acts before the
 425 breakage occurs. The channel dump in Fig. 12 pre-
 426 presents three LA behaviour examples extracting typi-
 427 cal *downstairs-patterns*. The next step is to
 428 evaluate the relation between a *downstairs-pattern*
 429 and a possible route break. 430

5.1. The rating function

431

To investigate the LA behaviour and detect
 432 *downstairs-patterns* automatically, we defined a rat-
 433 ing function $RF(t)$ shown in Fig. 8. The $RF(t)$ ranks
 434 the importance of PHYMode changes in relation to
 435 a breakage (cf. Fig. 8). A change from BPSK 3/4 to
 436 BPSK 1/2 (value 7) for example is more important
 437 for the breakage prediction than switching from
 438 16-QAM 3/4 to 16-QAM 1/2 (value 3). 439

An important issue in the context of detection
 440 rate and false alarms is the history of the previous
 441 LA decisions. A detection threshold ($DF_{threshold}$)
 442 has to be determined in accordance to these infor-
 443 mation. The time window taken into account for
 444 threshold determination is named detection interval
 445 (DI). We sum up all ratings within a limited time-
 446 frame. Switching down is valued as negative, switch-
 447

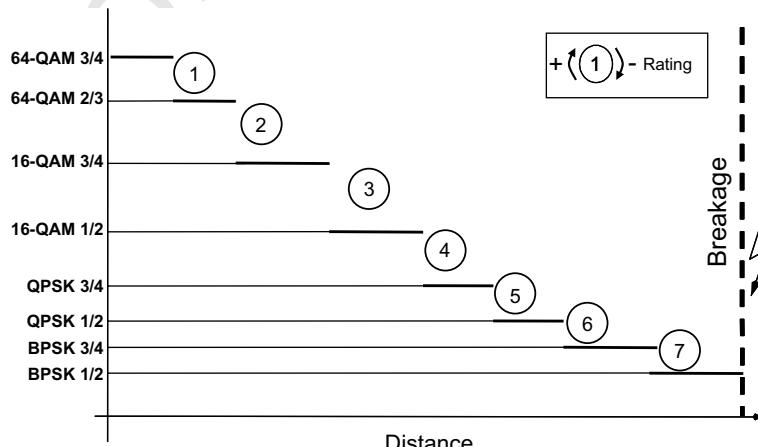


Fig. 8. Rating function.

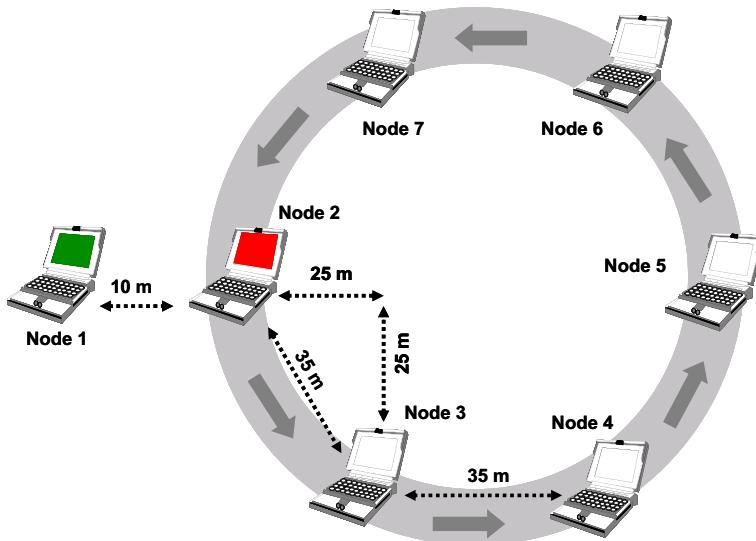


Fig. 9. Idealised demonstration use case.

448 ing up as positive. Whenever a LA algorithm
 449 advises the MAC to use the last feasible PHYMode
 450 (BPSK 1/2), the prediction method uses the $RF(t)$ to
 451 measure the link behaviour in the elapsed time-
 452 frame. The prediction algorithm sums up all valua-
 453 tions done prior to the step to BPSK 1/2. To judge
 454 the shape and speed of the downstairs pattern the
 455 sum-up results are compared to a certain detection
 456 threshold.

457 We introduce a small scenario to show an idea-
 458 lised use case for our breakage prediction and route
 459 rearrangement algorithms. The scenario is presented
 460 in Fig. 9² and includes seven nodes. It explains the
 461 major advantages of breakage prediction based on
 462 the LA for ad hoc routing. The source node 1
 463 (green) is stationary. The other nodes are arranged
 464 in a circle uniformly distributed with a distance of
 465 35 m. Node 1 is 10 m apart from the circle. Node
 466 2 is the red destination node and circularly moving
 467 with the other nodes at a predefined speed of 1 m/s.
 468 The offered traffic stream has a constant bit rate of
 469 100 kb/s. The packet size is 512 B and simulation
 470 time is 210 s. The circular setup was chosen to min-
 471 imize simulation time and number of nodes
 472 involved.

473 The movement causes all established routes to
 474 degrade in link quality and eventually (without pre-
 475 diction) to break between node 1 and its next hop

476 partner. Those breakages accompany packet loss 477 and rerouting. Our results in Fig. 10 show that 478 routes using standard AODV experiences a long 479 period of time using BPSK 1/2 before the link ulti- 480 mately breaks. After the actual route break, result- 481 ing in a loss of data packets, AODV reroutes and 482 consequently the link quality increases again. 483

Breakage prediction enables the routing algo- 483
 rithm to start this rerouting process as soon as 484
 BPSK 1/2 is reached. The new route is found and 485
 can be engaged long before the actual route break 486
 occurs. The link quality is considerably improved 487
 when using breakage prediction and more stable 488
 routes are found. Furthermore, in the prediction 489
 based case no link breaks or packet losses occur. 490

Besides the basic evaluations, we stress the LA 491
 and prediction with a larger scenario to investigate 492
 the LA performance under more realistic traffic con- 493
 ditions. A second setup shown in Fig. 11 presents an 494
 ad hoc network containing 40 nodes. Except for the 495
 source and destination node of the three routes 496
 investigated here, all nodes move according to the 497
 Random Waypoint Model (RWP) [7]. However it 498
 is important to note that a RWP [7] scenario is a 499
 worst case for breakage prediction. Any predication 500
 is based on the assumption that a measured devel- 501
 opment continues in the future. Human movement 502
 in real life situation is for the most part goal-ori- 503
 ented. Therefore, under normal circumstances the 504
 link degradation follows the assumption and can 505
 be predicted with certain reliability. A RWP mobil- 506

² For interpretation of colour in this figure, the reader is referred to the web version of this article.

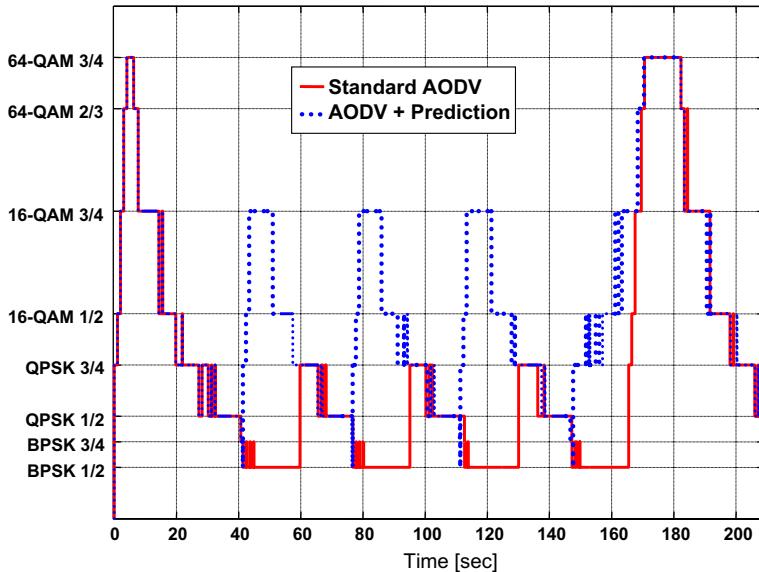


Fig. 10. Benefits of prediction based routing.

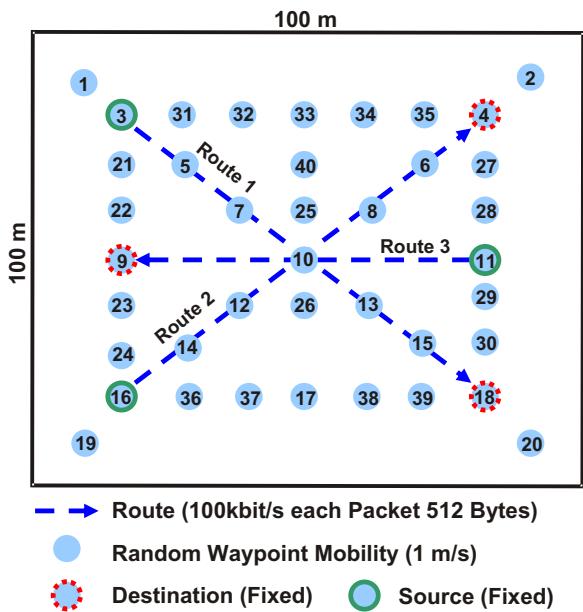


Fig. 11. Ad hoc example.

507 ity model generates just the opposite of a goal-ori-
 508 ented behaviour. We use it in our investigations
 509 because it is the commonly used model to simulate
 510 movement behaviour for ad hoc networks and to
 511 assure the superior properties of ERRA and ERU
 512 even under worst-case conditions.

513 Each source node generates a traffic of 100 kb/s
 514 using a constant-bit-rate (CBR) traffic generator.

The packet size is 512 B. The window sizes for the
 515 LA algorithm are set to $WS = \{WS_s = 5; WS_m =$
 516 10; $WS_l = 25\}$. Fig. 12 presents the correspond-
 517 ing LA behaviour for the source with the node number
 518 three. Due to the mobility of the nodes, the number
 519 of hops and the forwarding nodes change con-
 520 stantly. Fig. 12 presents the PHYMode of all pack-
 521 ets successfully sent by node 3. Node 3 as a source
 522 node is not mobile. Several route breakages can be
 523 observed along the routes (dashed lines). Thus,
 524 Fig. 12 presents the link breaks between station 3
 525 and its respective next hop-partner. Of course, link
 526 breaks may occur on different links along the whole
 527 route, too. Each link breakage results in a new route
 528 discovery process.

We emphasise three particular situations in
 530 Fig. 12 indicating a typical LA behaviour in
 531 advance to a link failure. Breakages between node
 532 3 and its next hop on the route are marked with a
 533 dashed vertical line. The node speed was set to
 534 1 m/s for all moving nodes. Fig. 12 contains three
 535 subfigures. The upper figure presents the PHY-
 536 Modes adjusted by the link adaptation process from
 537 650 s to 1350 s after the beginning of the simulation.
 538 Our LA algorithm switches several times to faster
 539 PHYModes when link conditions improve and the
 540 other way when conditions decrease. Three typical
 541 situations are highlighted (by grey blocks) and pre-
 542 sented in detail below. Subplot Fig. 12(a) presents
 543 the typical channel pattern that can be observed in

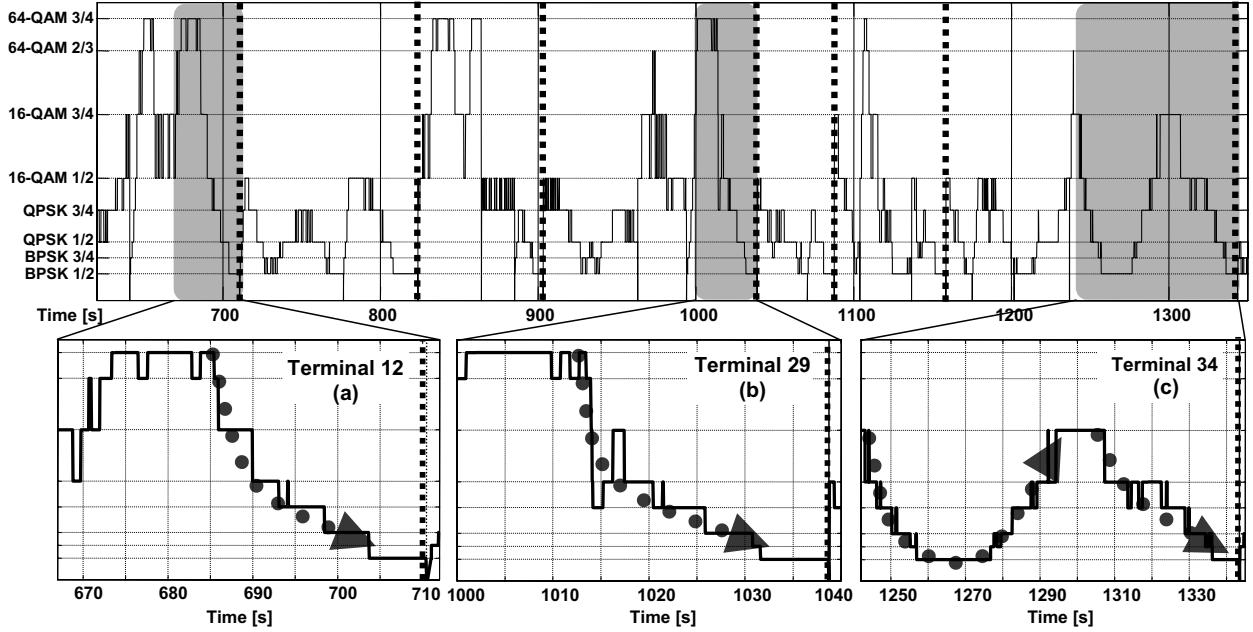


Fig. 12. PHYMode dependent channel monitoring for multi-hop ad hoc networks.

545 advance of a link breakage. Fig. 12(b) highlights the
 546 time interval [1000 s; 1040 s]. It presents an inter-
 547 ferred pattern, although the pattern can be still iden-
 548 tified. In addition, the third subplot Fig. 12(c)
 549 extracts one of the challenges our prediction algo-
 550 rithm has to deal with. The pattern of the first part
 551 of subplot (c) suggests an upcoming breakage. How-
 552 ever, no break occurs in the highlighted situation.
 553 On the contrary, our LA algorithm increases the
 554 PHYMode. This can be observed several times
 555 and depends on the mobility model used. For
 556 instances, with RWP mobility the node moves
 557 away, reaches its drawn point and returns. There-
 558 fore, the link quality decreases when moving to
 559 the far point and increase on the way back again.
 560 This is depicted in the first part of subplot (c).

561 As expected the link quality decreases with
 562 increasing distances. Our LA procedure adapts
 563 whenever necessary to avoid a connection interrupt-
 564 tion. Based on this behaviour, we are able to predict
 565 a link breakage.

566 Fig. 13 presents a histogram depicting the influ-
 567 ence of the detection interval and the detection
 568 threshold on the detection rate. The histogram
 569 shows the detection rate for the scenario presented
 570 in Fig. 11. With an increasing detection interval
 571 the detection rate rises. Based on Fig. 13 one can
 572 also state that a detection threshold lower than

573 –22 is not suitable. Applying a threshold of –18 574 and a detection interval of around 40 s, allows pre-
 575 dicting 70% of all occurring breakages. Apart from 576 the detection rate, the number of needless route 577 rearrangements is an important measure to evaluate 578 the prediction performance. Fig. 14 presents a histo- 579 gram visualizing the percentage of correctly 580 detected breaks. Under worst-case conditions, up 581 to 40% of all predictions were route breaks. The 582 remaining 60% represent false alarms identifying 583 and triggering the replacement of inefficient links. 584

585 Without link prediction, packet loss and inter- 586 ruptions cannot be avoided. However, our predic- 587 tion mechanism is able to avoid 70% of these 588 interruptions, even in this worst-case scenario. 589

590 One has to keep in mind that there are numerous 591 situations, which cannot be acquired statistically. 592 For instance, when an intermediate node leaves 593 the route and the prediction function regards one 594 of its hops as suspicious but a neighbouring hop 595 breaks first. In these situations, the update neverthe- 596 less rearranges the route and inhibits the route 597 breakage. Hence, the breakage is bypassed but this 598 does not appear in Figs. 13 and 14, since the break- 599 age was expected on a different link. 600

601 Our approach to weight the LA steps and to sum 602 up the weightings within a certain period is a very 603 elementary method. The analysis shown confirms 604

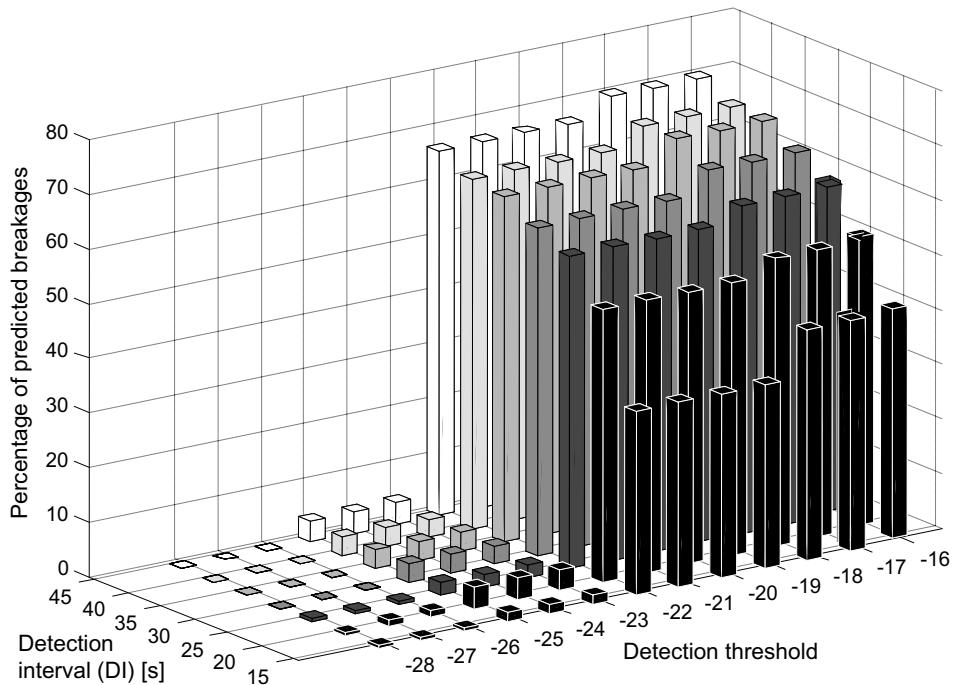


Fig. 13. Percentage of predicted breakages.

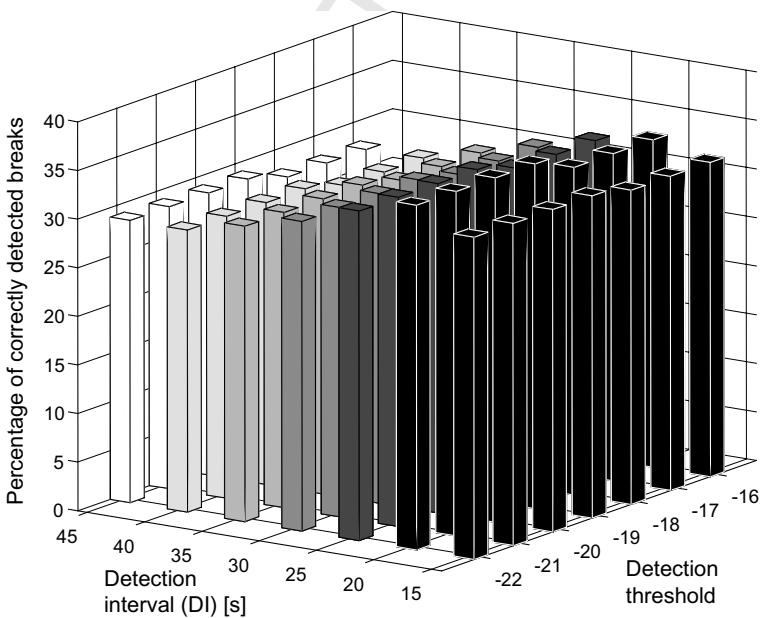


Fig. 14. Percentage of correct detections.

601 the assumption that a prediction is possible and
 602 beneficial. Approaches that are more complex may
 603 raise the detection rate of the link breakages.

604 The detection interval (DI) is chosen according
 605 to the node speed and the movement direction. It

606 is very important to select a suited value for the
 607 detection interval. However, DI strongly depends
 608 on the node speed and therefore cannot be deter-
 609 mined in advance. Consequently, we introduce an
 610 adaptive windowing approach. Our LA starts to

611 sum up all rating steps during a minimum detection
 612 interval (DI_{min}). If the prediction threshold is not
 613 exceeded, the window size is enlarged until the
 614 upper limit (DI_{max}) is reached. As long as the pre-
 615 diction results do not exceed the detection thresh-
 616 old, no breakage is foreseen. If the threshold is
 617 penetrated the network layer is informed that the
 618 link might break. The interrelationship between
 619 the dynamic detection window, detection threshold
 620 and the rating function is expressed in (5.1). Eq.
 621 (5.1) sums up different intervals. Each interval starts
 622 at a different time in the past ranging from $t-DI_{min}$
 623 to $t-DI_{max}$ and ends at the current time. Since
 624 switching down is rated negative, the infimum is cal-
 625 culated over all sums. If the infimum falls short of
 626 the applied threshold $D_{threshold}$ a link breakage is
 627 predicted.
 628

$$630 \quad D_{threshold} \leq \inf_{DI \in [DI_{min}, DI_{max}]} \left(\sum_{t=DI}^t RF(t) \right). \quad (5.1)$$

The prediction is not only feasible at the sending
 631 node, but also at the receiving node.
 632

Fig. 15 gives an overview of the different func-
 633 tionalities and their ways of cooperation. The LA
 634 adapts the PHYModes to operate each link appro-
 635 priately. The rating function reviews the different
 636 LA steps and the prediction function summarises
 637 the rating results and determines whether the link
 638 is instable or not. In case the link is expected to ter-
 639 minate the route rearrangement algorithm is
 640 instructed to look for an alternative route. Thus,
 641 the prediction enables the route rearrangement
 642 algorithms to circumvent numerous route break-
 643 ages.
 644

6. Proper actions for upcoming link break

Assuming the link adaptation delivers the neces-
 645 sary information about the link state characteristics,
 646 this information triggers appropriate actions either
 647 to rescue the link and avoid a route rediscovery or
 648

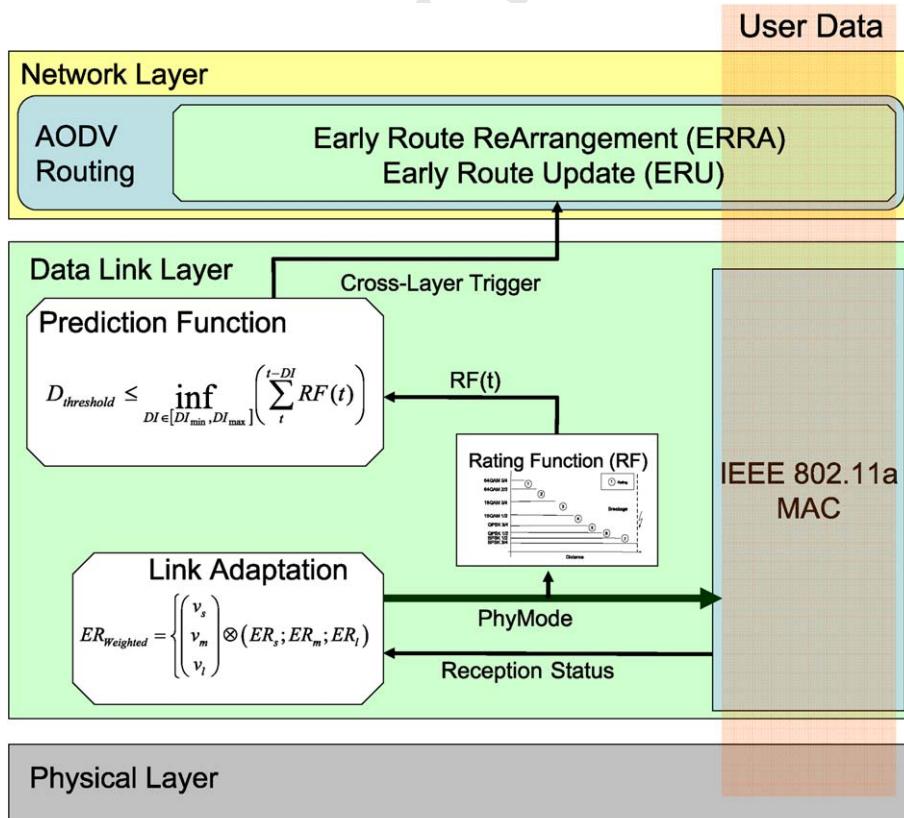


Fig. 15. Cooperation between LA, rating function, prediction and network layer.

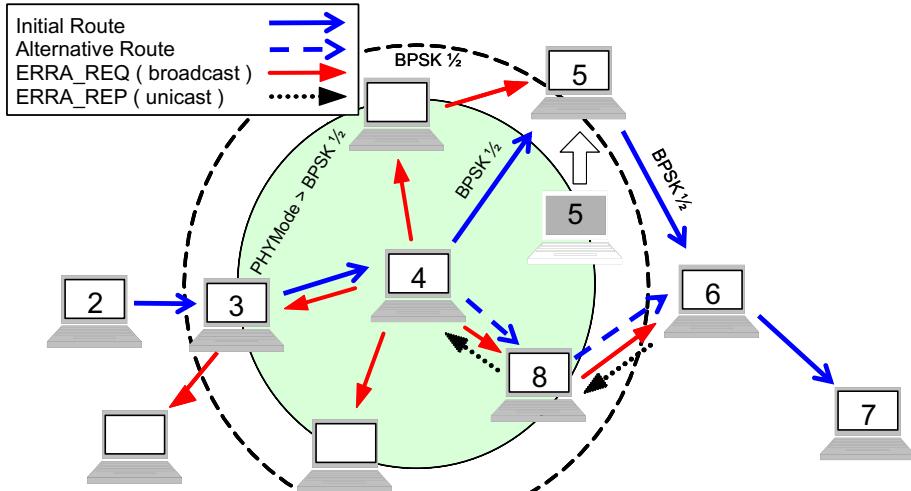


Fig. 16. ERRA signalling.

650 to provide an improved link quality by finding a
 651 new route. In any case, several proper actions are
 652 conceivable. The node that monitors incoming and
 653 outgoing connections knows if one of these links,
 654 none or both of them have changing PHYModes.
 655 This enables the node to distinguish three different
 656 cases:

- 657 1. The node recognizes that the LA for the outgoing
 658 link is adapting towards lower transmission
 659 modes but the incoming link remains stable. This
 660 is a typical situation, where the next node on the
 661 route wanders out.
- 662 2. The node recognizes that the incoming as well as
 663 the outgoing links are adapting towards lower
 664 transmission modes. This indicates movement
 665 of the node itself. Thus, the node regards itself
 666 as an instable intermediate node.
- 667 3. The LA for the incoming link has to decrease the
 668 PHYModes but the outgoing link remains constant. That is typical for a preceding node moving
 669 away.

671
 672 In the scenario depicted in Fig. 16 all the three
 673 cases³ are presented. Node 4 experiences case 1,
 674 node 5 faces case 2 and node 6 is exposed to case 3.

6.1. ERRA: Early Route ReArrangement

675 In the previous section, we explained how to
 676 forecast the degradation of a link. This section
 677 describes an approach that profits from early trig-
 678 gering. The Early Route ReArrangement (ERRA)
 679 is derived from the local repair idea, which is part
 680 of the Ad Hoc on Demand Distance Vector
 681 (AODV) routing protocol [4].

682 Unlike the local repair idea, ERRA does not wait
 683 until the link is broken. Prior to a breakage, ERRA
 684 rearranges the route to avoid disruption. In Fig. 16
 685 an example is given. The initial route starts from
 686 source node 2 to destination node 7. One interme-
 687 diate node (5) is going to wander off. Node 4 first
 688 detects the movement; since it has to adapt the
 689 PHYMode for the outgoing link to node 5. Once
 690 node 4 uses PHYMode BPSK 1/2 it starts looking
 691 for a downstairs-pattern in the elapsed timeframe.
 692 If node 4 finds an indication for such a pattern, it
 693 triggers the ERRA procedure to rearrange the
 694 route.

695 Node 4 locally broadcasts⁴ a rearrangement
 696 request (ERRA_REQ) with a PHYMode higher
 697 than the last one used for the connection and conse-
 698 quently, reducing the coverage range for the
 699 ERRA_REQ (cp. Fig. 2). This ensures that the for-
 700 mer link between nodes 4 and 5 is not selected. In

³ Obviously, the three cases can also occur when the neighbour terminals are moving; however the upcoming situation could be handled equally.

⁴ The time to life (TTL) for the broadcast is calculated according the AODV local repair rules [4].

702 **Fig. 16** the request is sent with QPSK 1/2. Therefore, node 5 does not receive the request directly. 703 Node 8 forwards the request to node 6, which is 704 aware of a route to the destination. Node 6 705 responds (ERRA REP) and provides the alternative 706 route. Afterwards, node 4 compares the hop 707 counts of the old and the new route. If the new 708 hop count is less or equal, the alternative route is 709 used immediately. Otherwise, node 4 uses the new 710 route immediately after the old connection finally 711 breaks. Further details are depicted in [6]. ERRA 712 rearranges the route to provide robust connections 713 ensuring improved route continuity that is an 714 important requirement for transport protocols. 715 However, there are ways to further improve the 716 mechanism. When a node discovers a degrading 717 link, the connection still exists and can be used for 718 the route update process. Therefore, we extend 719 ERRA and introduce the Early Route Update pro- 720 tocol in the following section. 721

722 7. ERU: Early Route Update

723 To avoid connection interruption the node with a 724 degrading outgoing link negotiates a workaround 725 with the node behind the upcoming breakage. We 726 assume that each node has an up to date list of 727 nodes in its neighbourhood. This is achieved by 728 using hello messages. **Figs. 17 and 18** illustrate the 729 ERU signalling: Again, node 5 leaves the transmis- 730 sion range. Node 4 is triggered from its prediction 731 due to the degrading link and adds a list of its neigh- 732 bouring nodes to an ordinary data packet⁵ (ERU_ 733 PATCH_INFO) that is received by node 5.

734 Since node 5 notices via the LA procedure that its 735 incoming and outgoing connection for that particu- 736 lar route is instable, it forwards the information to 737 the next hops. Stable nodes retrieve the list of neigh- 738 bours attached to the data packet. In this case, node 739 6 is stable since it has a stable outgoing link. The 740 ERU_PATCH_INFO contains a counter for the 741 number of hops from its source to the current stable 742 node. This counter represents the size of the instable 743 part of the route. We refer to this counter as the 744 breakage hop counter (BHC). Node 6, as the first 745 stable node, searches for an intersection between 746 the received neighbourhood and its own. In 747 **Fig. 17** there is no intersection between the set of

748 neighbours. Hence, node 6 broadcasts the list to 749 its neighbours. These forward the list corresponding 750 to the BHC (in our example the info is sent twice). 751 Thus, the broadcast is limited to two hops, reducing 752 the flooding to the vicinity of the disruption. **Fig. 18** 753 shows that node 11 knows node 8. Therefore, it is 754 included in the neighbour list. As a result, node 11 755 creates a reply message (ERU REP) and sends it 756 to node 4 via node 8. Node 4 applies the same rules 757 for using the new connection as mentioned for 758 ERRA. A detailed description, including some spe- 759 cial cases handling, is given in [6]. 760

8. Simulation results

761 In an approach similar to our statistical evalua- 762 tion, we present simulation results for the idealised 763 setup shown in **Fig. 9²**. In addition, we investigated 764 the worst-case scenario (see **Fig. 11**) containing 40 765 nodes and a movement following the RWP mobility 766 model. The LA algorithm and the cross-layer inter- 767 action between LA and IP routing are evaluated by 768 means of simulation. We start with an in deep 769 review of the transient behaviour of the route rear- 770 arrangement mechanisms compared to standard 771 AODV with local repair. 772

773 **Fig. 19** shows the LA steps vs. time, for the link 774 between the source node and the next hop neigh- 775 bour. The simulation shows one entire turn of the 776 circle (compare **Fig. 9²**). The simulation was 777 repeated applying standard AODV, AODV with 778 ERRA and AODV with ERU. The results are pre- 779 sented in **Fig. 19** which contains three curves. The 780 first one highlights the LA steps using standard 781 AODV and shows several drawbacks. Primarily it 782 is obvious that the link keeps BPSK 1/2 until the 783 connectivity is finally lost. During this long period 784 the link burdens the network by operating with an 785 inefficient PHYMode to transmit its data. Owing 786 to the fact that BPSK 1/2 is exhaustively used, the 787 opportunity to rearrange the route and to select a 788 better-suited node is missed. Consequently, the 789 route breaks and a certain number of packets is lost 790 and these have to be repeated. The next step is re- 791 establishing the route and choosing an intermediate 792 node, which is already fading away. Therefore, the 793 maximum PHYModes are limited to QPSK 3/4 794 after the first three breaks. After the fourth route 795 is switched towards transmitting via the incoming 796 nodes (transmitting clockwise). Hence, for a limited 797 time the next node approaches and the link quality 798 increases. Having passed the sender, it fades away 799

⁵ Assuming the IEEE 802.11 maximum packet (2304 Byte) size is not exceeded.

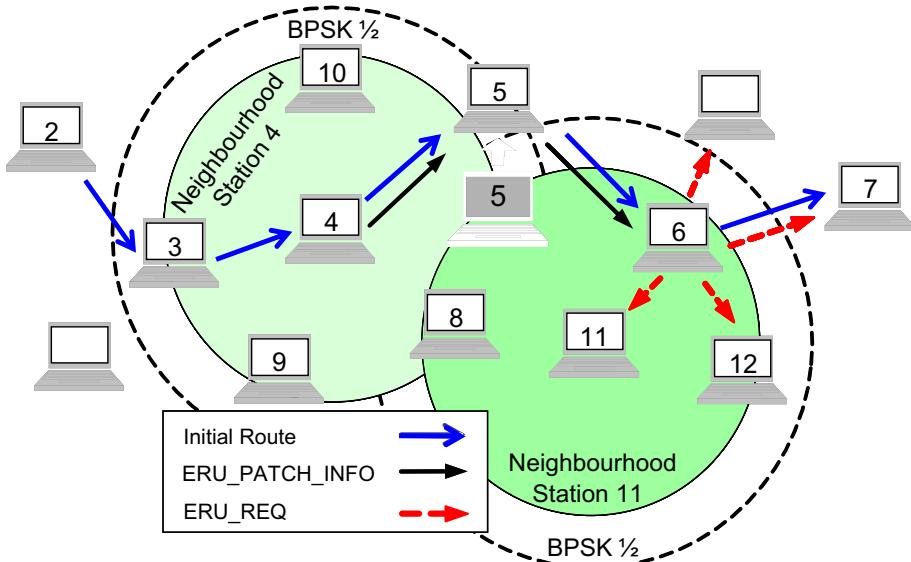


Fig. 17. ERU request signalling.

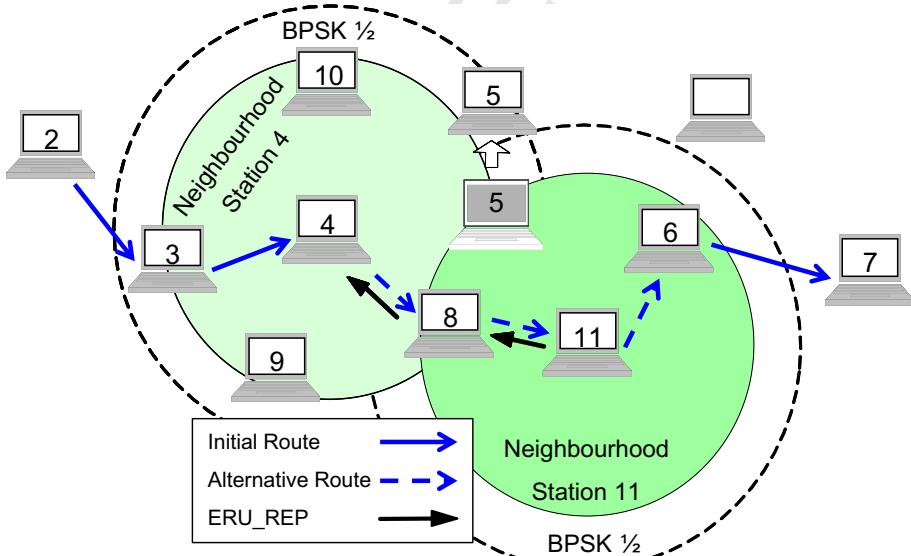


Fig. 18. ERU reply signalling.

798 again. That describes a typical behaviour found
799 while using most approaches.

800 The medium curve represents the handling of the
801 situation by ERRA. Immediately after BPSK 1/2 is
802 engaged, the rerouting process is started and ERRA
803 switches to a new route. Adapting the route with
804 ERRA is fast, which results in short peaks towards

BPSK 1/2. ERRA lost no packets on the complete 805
turn, implying five route adaptations. 806

The newly engaged routes are more stable and 807
allow higher PHYModes on the described link. 808
The higher PHYModes shorten the packet trans- 809
mission time and disburden the network capacity. 810
Similar to situation with AODV, a switch to a 811

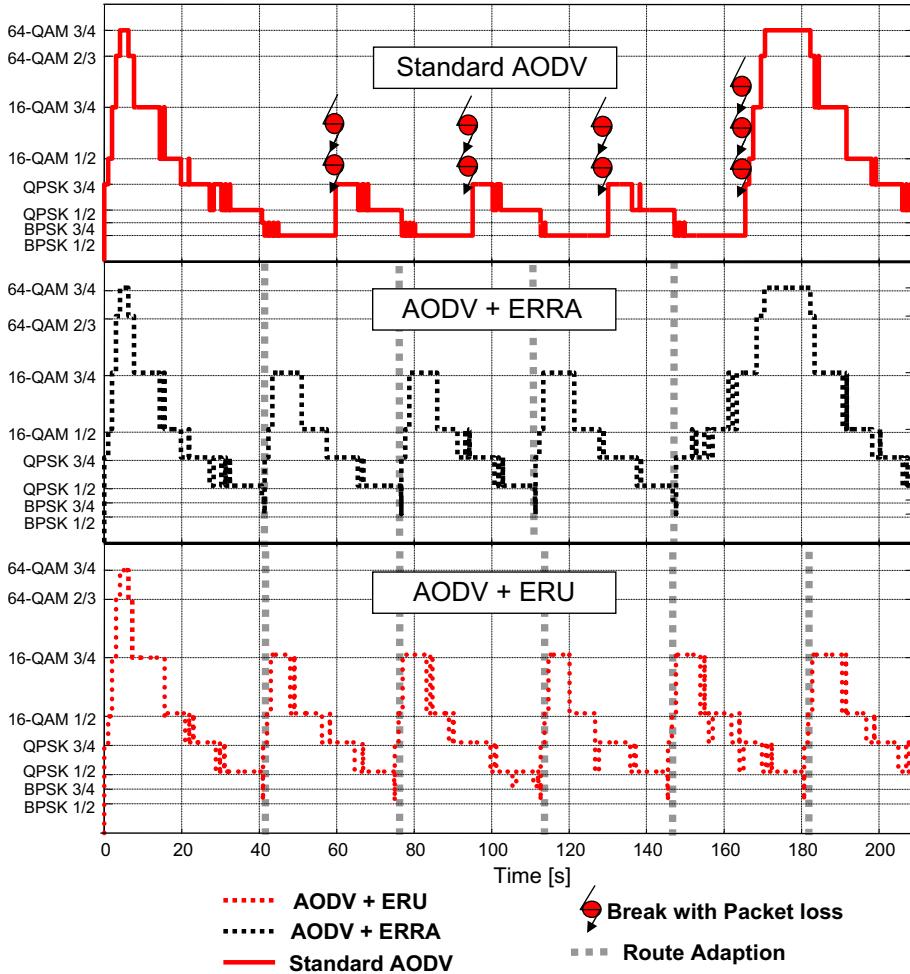


Fig. 19. Comparison of different routing behaviour.

812 clockwise direction generates increasing link quality
 813 due to an approaching next hop partner.

814 ERUs mechanism is based on locally circumventing
 815 the gap. ERU starts adapting the route from the
 816 node behind the upcoming breakage. Consequently,
 817 the gap is filled by the mechanism with the next
 818 available node. Route breaks and packet losses are
 819 avoided. The tradeoff for this is increasing route
 820 lengths. The route is not switched to a clockwise
 821 transmission at the same time like ERRA. When
 822 the destination appears, in the neighbourhood of
 823 the breakage the initial situation is re-established
 824 and the direct route is chosen.

825 Figs. 20 and 21 highlight the handling of first situation
 826 with degrading link quality with AODV and
 827 ERRA. Fig. 20 displays the situation after 60 s for
 828 AODV. The link finally breaks and two packets
 829 are lost. After the break (60 s) node 7 is inserted

830 as new intermediate node, whereas ERRA in
 831 Fig. 21 reacts earlier and rearranges after 40 s. 831
 832 The PHYMode curve in Fig. 21 clearly displays 832
 833 the predicted downstair-pattern prior to route 833
 834 switching. We present no detailed figure for ERU 834
 835 because it shows the same fast reaction as ERRA 835
 836 in this situation. 836

837 In addition, we show the detailed figures for the 837
 838 situation where AODV and ERRA switch to clock- 838
 839 wise routing (see Figs. 22 and 23). Fig. 24 shows 839
 840 that ERU keeps the route direction and fixes the 840
 841 gap locally. Both proposed protocols guarantee 841
 842 the route continuity, forfeit no packets and prevent 842
 843 route breaks. 843

844 After discussing the idealised setup, we complete 844
 845 our simulation analysis with the worst-case sce- 845
 846 nario mention in Section 5 and displayed in 846
 847 Fig. 11. 847

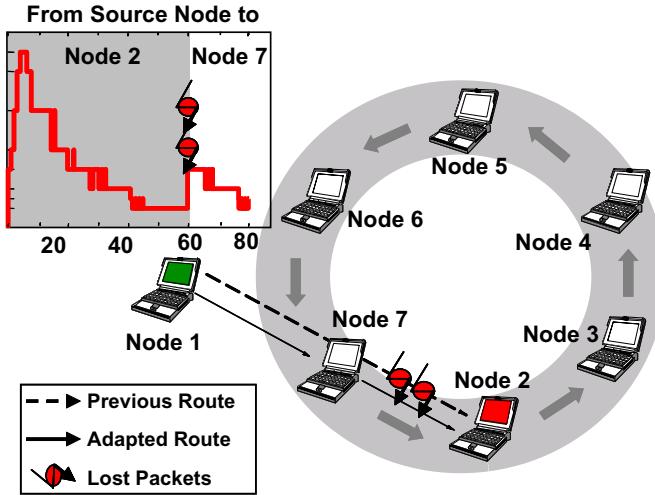


Fig. 20. AODV handles the first situation with degrading link quality.

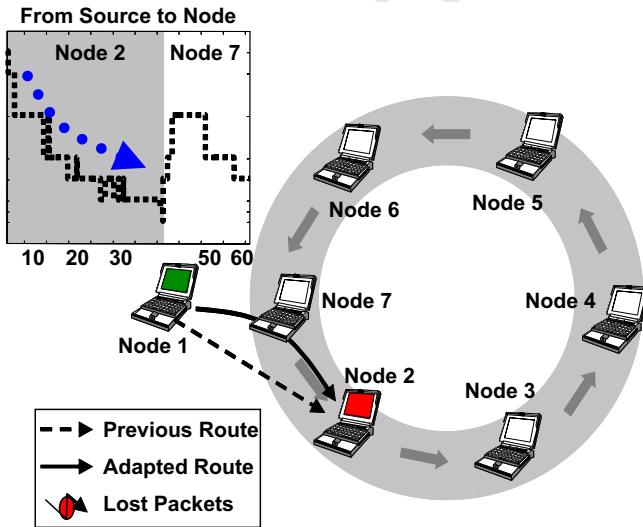


Fig. 21. ERRA handles the first situation with degrading link quality.

848 Three routes are loaded with constant-bit-rate
 849 traffic. The offered traffic increases with every simu-
 850 lation. The packet size is set to 512 B. RTS/CTS
 851 handshake is used to reduce the hidden node prob-
 852 lem. Fig. 25 presents the percentage of average
 853 throughput over all three routes. The figure com-
 854 pares ERRA and ERU with the AODV local repair
 855 mechanism. Generally, under high load conditions,
 856 the network is congested and cannot deliver all
 857 packets. It is important to see in Fig. 25 that no
 858 throughput degradation occurs using the ERRA

859 or ERU algorithms. This is because packets are only
 860 affected, if a breakage situation is foreseen. Thus,
 861 both approaches only delay a small fraction of
 862 packets.

863 In terms of additional signalling overhead ERRA
 864 and ERU are comparably efficient with local repair
 865 from AODV. ERRA uses the same amount of sig-
 866 nals and bytes per signal as local repair. However,
 867 ERRA redirects the route in advance and disbur-
 868 dens the channel, by choosing a higher PHYMode
 869 for signalling, thus producing shorter packets.

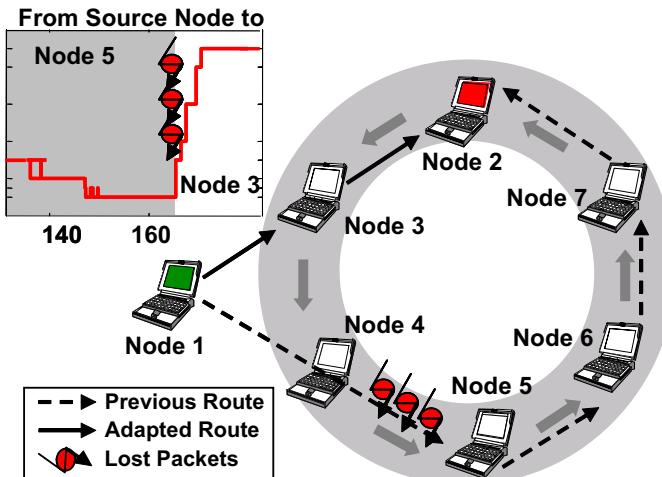


Fig. 22. AODV handles fourth route break.

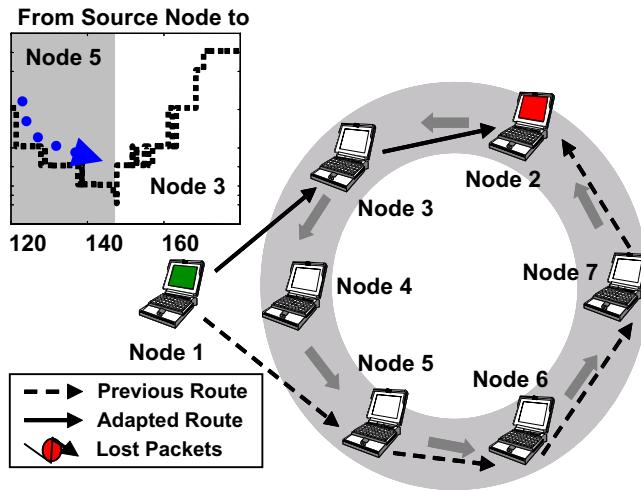


Fig. 23. Fourth route adaptation by ERRA.

870 ERU requires knowledge about the actual neighbourhood. As proposed by AODV [4] as an
 871 optional feature, nodes learn the neighbourhood
 872 using hello messages. Hello messages increase the
 873 signalling overhead, but enable ERU to smoothly
 874 adapt the routes and avoid breakages. ERRA and
 875 ERU perform beneficially unless the network is
 876 uncongested, which represents the usual case. As
 877 soon as the network cannot carry the offered traffic,
 878 routes break and the user satisfaction decreases.
 879 Neither of the two approaches can improve the sit-
 880 uation. However, both do not worsen the situation.
 881 Under overload conditions, ERRA and ERU per-

882 form similar to local repair. Figs. 25 and 27 lead
 883 to the same conclusions.

884 Fig. 26 presents the packet delay for all three
 885 routes. It shows the results for both proposed
 886 approaches in comparison with the AODV local
 887 repair procedure.

888 Apart from the typical delay characteristics orig-
 889 inated from the reactive routing protocol, it is obvi-
 890 ous that both approaches outperform the AODV
 891 local repair mechanism. When the offered traffic
 892 increases, ERRA and ERU reveal the same per-
 893 formance as local repair. The involved signalling does
 894 not negatively influence the throughput (cf. Fig. 25).
 895

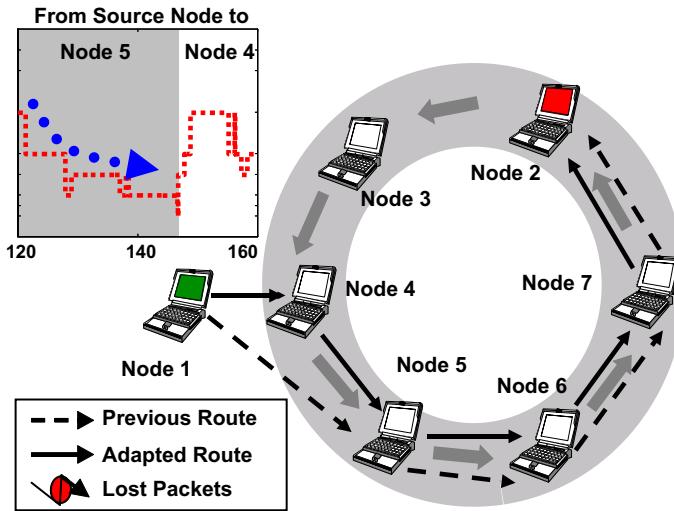


Fig. 24. Fourth route adaptation by ERU.

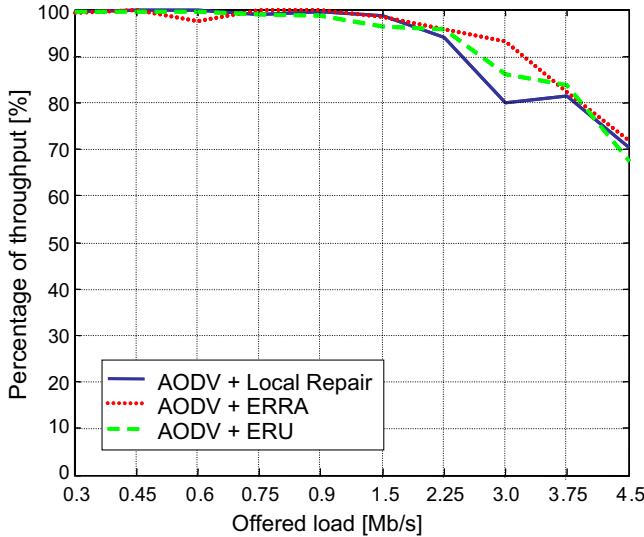


Fig. 25. Throughput percentage.

896 Under low load conditions, ERU shows the low-
 897 est delay. With the increase of the traffic load
 898 ERRA and ERU still achieve smaller delay than
 899 local repair (cf. Fig. 27). We can conclude that link
 900 prediction improves the route continuity, avoids
 901 packet losses, and decreases packet delay because
 902 of the timely and accelerated route discovery
 903 procedures.

904 9. Conclusions

905 This article explains the Early Route ReArrange-
 906 ment (ERRA) and the Early Route Update (ERU)

907 approaches based on link breakage prediction. We 908 present the idea to predict the link state based upon 909 the link adaptation behaviour. We describe a suit- 910 able link adaptation (LA) and show its functional- 911 ity. Based on link adaptation, we introduced a 912 prediction algorithm that rates the PHYMode 913 changes in terms of their importance towards an 914 upcoming route interruption. The prediction 915 enables our route rearrangement protocols to act 916 timely and prevent route breaks and packet losses. 917 In particular, ERRA and ERU are designed to ben- 918 efit by being triggered early from prediction algo- 919 rithms, acting early enables shorter and more

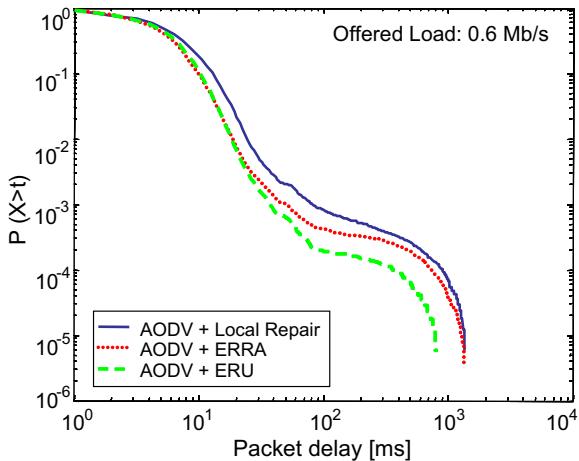


Fig. 26. Complementary cumulative distribution function (CCDF) of the packet delay.

920 stable routes. Better PHYModes result in shorter
921 packet and less transmission duration, thus reduc-

ing network congestion and disburdening network 922 capacity. Higher layer transport protocols noticeably 923 benefit from reduced packet loss and route 924 breaks. 925

This article presents an efficient control loop 926 based upon cross-layer information shared between 927 medium access and network layer. Thereby, this 928 article gives a first glimpse to the potentials of 929 cross-layer interaction. 930

10. Discussion

Evidently, our LA algorithm presented here can- 931 not distinguish between packet loss originated from 932 transmission errors or collisions. In a congested 933 channel, the LA procedure detects unacknowledged 934 packets and decreases the PHYMode. However, this 935 increases packet transmission time and worsens the 936 situation. In the scenarios described here, this 937 behaviour is unfavourable. In contrast, our current 938

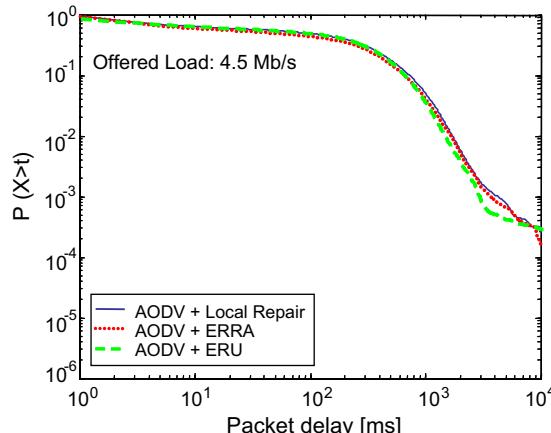
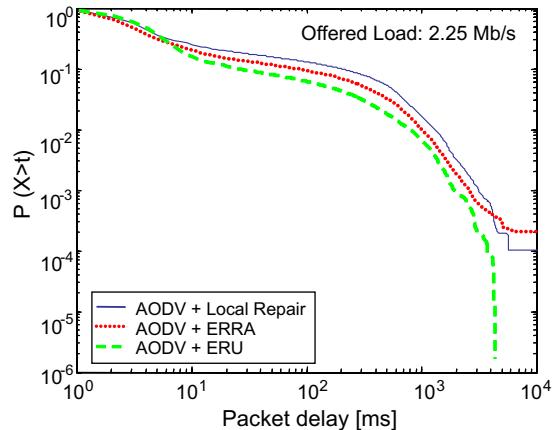
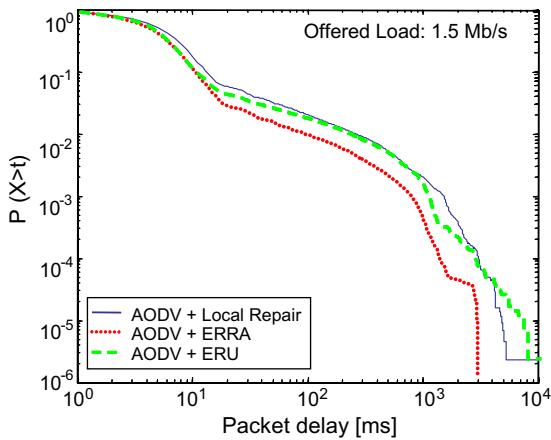




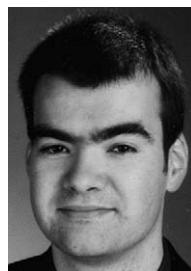
Fig. 27. Packet delay (CCDF) for an increased traffic offer.

940 work monitors the MAC queue length and enhances
 941 the LA efficiency thereby. If the channel busy time
 942 increases, monitoring MAC transmission queues
 943 reveals that congestion is more probable. Therefore,
 944 the LA algorithm decisions could be improved with
 945 MAC queue length information taken into account.
 946 While our current LA algorithm will not increase
 947 the PHYMode in case the channel is congested, an
 948 enhanced LA might advise to do so. With increased
 949 PHYMode, congestion could be reduced. Con-
 950 gested links using the fastest PHYMode need to
 951 detect and establish new routes around the local
 952 congestion.

953 11. Uncited references

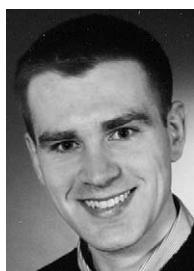
954 [5,8,14].

955 Acknowledgements


956 This work was supported by T-Systems, Deut-
 957 sche Telekom and the German research project
 958 IPonAir, funded by the German Federal Ministry
 959 of Education and Research. The authors would like
 960 to thank the members of the project for the valuable
 961 discussion. The contributions of our colleague
 962 Michael Fuhrmann are highly appreciated.

963 References

- 964 [1] B. Walke, Mobile Radio Networks, first ed., Wiley, New
 965 York, 1999.
- 966 [2] T. Goff, N.B. Abu-Ghazaleh, D.S. Phatak, R. Kahvecioglu,
 967 Preemptive routing in ad hoc networks, in: Proceedings of
 968 ACM/IEEE MobiCom, July 2001, pp. 43–52.
- 969 [3] IEEE LAN/WAN Standards Committee, Part11: Wireless
 970 LAN Medium Access Control (MAC) and physical layer
 971 (PHY) specifications: high-speed physical layer in 5 GHz
 972 band, IEEE Std 802.11a-1999, IEEE, New York, November
 973 1999.
- 974 [4] C. Perkins, E. Belding-Royer, S. Das, Ad hoc on-demand
 975 distance vector (AODV) routing, RFC 3561, IETF Network
 976 Working Group, July 2003, Category: Experimental.
- 977 [5] C.E. Perkins, Ad Hoc Networks, Addison-Wesley, New
 978 York, 2000.
- 979 [6] E. Weiss, M. Frewel, B. Xu, G. Hiertz, Improving ad hoc
 980 routing for future wireless multihop networks, in: Proceeding
 981 of European Wireless 2004, Barcelona, Spain, February
 982 2003.
- 983 [7] C. Bettstetter, H. Hartenstein, X. Pérez-Costa, Stochastic
 984 properties of the random waypoint mobility model, in:
 985 ACM/Kluwer Wireless Network, Modelling and Analysis of
 986 Mobile Networks, March 2003 (special issue).
- 987 [8] E. Weiss, G. Hiertz, S. Hischke, B. Xu, Performance analysis
 988 of AODV on top of IEEE 802.11a and the impact of the

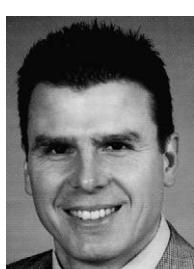

989 5 GHz channel, in: Proceedings of Wireless 2003, Calgary,
 990 Canada, July 2003.

- 991 [9] A. Kameran, L. Moneban, A high-performance wireless
 992 LAN for the unlicensed band, in: WaveLAN II, Bell Labs
 993 Technical Journal (1997) 118–133.
- 994 [10] G. Holland, N.H. Vaidya, P. Bahl, A rate-adaptive MAC
 995 protocol for multi-hop wireless networks, in: Mobile Com-
 996 puting and Networking, 2001, pp. 236–251.
- 997 [11] B. Sadeghi, V. Kanodia, A. Sabharwal, E. Knightly,
 998 Opportunistic media access for multirate ad hoc networks,
 999 in: Mobicom 2002, September 2002.
- 1000 [12] S. Mangold, S. Choi, N. Esseling, An error model for radio
 1001 transmissions of wireless LANs at 5 GHz, in: Proc. Aachen
 1002 Symposium, 2001, pp. 209–214.
- 1003 [13] J. Khun-Jush, P. Schramm, U. Wachsmann, F. Wenger,
 1004 Structure and performance of the HIPERLAN/2 physical
 1005 layer, in: Proc. IEEE VTC Fall-1999, Amsterdam, The
 1006 Netherlands, September 1999, pp. 2667–2671.
- 1007 [14] Chair of Communication Networks, RWTH Aachen Uni-
 1008 versity, Kopernikusstraße 16, 52074 Aachen, Federal Repub-
 1009 lic of Germany. Available from: <<http://www.comnets.rwth-aachen.de>>.
- 1010 [15] C.E. Perkins, Pravin Bhagwat, Highly dynamic destination-
 1011 sequenced distance vector routing (DSDV) for mobile
 1012 computers, in: Proc. SIGCOMM'94 Conference on Commu-
 1013 nication Architectures, Protocols and Applications, August
 1014 1994, pp. 234–244.
- 1015 [16] S. Murthy, J.J. Garcia-Luna-Aceves, An efficient routing
 1016 protocol for wireless networks, in: Routing in Mobile
 1017 Communication Networks, ACM Mobile Networks and
 1018 Applications Journal (1996) (special issue).
- 1019 [17] D.B. Johnson, D.A. Malz, Yih-Chun, The dynamic source
 1020 routing protocol for mobile ad hoc networks (DSR), IETF
 1021 Internet Draft, draft-ietf-manet-dsr-10.txt, in preparation.
- 1022 [18] Z. Haas, M. Pearlman, The performance of query control
 1023 schemes for the zone routing protocol, in: Proc. SIG-
 1024 COMM'98 Conference on Communications Architectures,
 1025 Protocols and Applications, September 1998.

1027 Erik P. Weiss received his diploma
 1030 degree in Electrical Engineering from
 1031 Aachen University, RWTH, Germany,
 1032 in 2001. After his studies he joined the
 1033 Chair of Communication Networks
 1034 (ComNets) at RWTH Aachen Univer-
 1035 sity, where he is working towards his
 1036 PhD degree. He participates in the
 1037 IPonAir project in cooperation with
 1038 T-Systems. His working areas are the
 1039 integration of heterogeneous systems, IP
 1040 mobility, Cross-Layer Communication, and Routing in Ad Hoc
 1041 Network. His current research interests are the development
 1042 of a common inter-system architecture, performance analysis of
 1043 vertical handover mechanisms between GSM/GPRS/UMTS and
 1044 IEEE 802.11a/g/b. At present he is involved in the European
 1045 project MYCAREVENT for vehicular diagnosis and main-
 1046 tenance and leads the work package for mobile communication
 1047 (WP4). He is a student member of IEEE, inventor/co-inventor of
 1048 several patents and has authored/co-authored several papers at
 1049 IEEE conferences.

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Guido R. Hiertz studied electrical engineering at RWTH Aachen University. During his studies he focused on communication networks, computer science and engineering. In his diploma thesis (MS) he included 802.11e functionality in an advanced simulation tool and surveyed QoS supporting procedures. Since April 2002 he is with the Chair of Communication Networks (ComNets) at RWTH Aachen University, working towards his PhD. His main research fields are support for QoS WLAN (802.11e), protocols for Gigabit (802.11n) and Mesh wireless LAN (802.11s) and PAN (802.15.5). He has been involved in and the editor of different research projects. At present, he is involved in the research project Wireless Gigabit with advanced Multimedia support (WIGWAM) that is funded by the German Federal Ministry of Education and Research. He has been involved in the design of the high speed WPAN MAC protocol of WiMedia Alliance that became ECMA standard in 2005. Since 2004 he is a voting member of IEEE 802.11, where he submitted several presentations and proposals. He is charter member of Wi-Mesh Alliance that submitted a joint proposal to 802.11s. He is the inventor/co-inventor of several patents. As student member of IEEE, he has authored/co-authored several papers at IEEE conferences.


1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

Bangnan Xu received his BSc and MSc degrees in electrical engineering from Dalian Maritime University, Dalian, China in 1986 and 1989, and PhD (Dr.-Ing.) degree in information technology from Aachen university of Technology in 2002, respectively. From 1996 to 2001, he was a research assistant at the chair of communication networks, Prof. Dr.-Ing. B. Walke, Aachen University of Technology. Since 2001, he has been with T-

Systems, Deutsche Telekom, working as R&D Fellow and Project manager in the department of Mobile and Wireless Solutions.

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1098

Sven Hischke received the diploma degree in Electrical Engineering from the University of Applied Sciences Giessen-Friedberg and the PhD degree from City University London in 1996 and 1999, respectively. From 1999 to 2003 he was with T-Systems in Darmstadt where he was responsible for different research projects in the area of broadband wireless systems and mobile networks focusing on the design of IP-based architectures. In October 2003 he joined the corporate innovation

department of Deutsche Telekom as a R&D program manager for broadband wireless access and global seamless network projects. Since May 2005 he is a senior manager innovation management of Deutsche Telekom and is working on the identification and development of group wide products and business models in the area of seamless services.

Bernhard H. Walke is running the Chair for Communication Networks (ComNets) at RWTH Aachen University, Germany, where about 30 researchers work on topics like air-interface design, development of tools for stochastic event driven simulation and analytical performance evaluation of services and protocols of XG wireless systems. Most of this work continuously has been funded from third parties' grants. He is author of the 2002 book "Mobile Radio Networks – Networking, Protocols and Traffic Performance" and co-author of the 2001 book UMTS – The Fundamentals and the forthcoming 2006 book "IEEE 802 Wireless LAN/PAN/MAN Systems: Standards, Models and Traffic Performance". He has been a board member of ITG/VDE and is Senior Member of IEEE. He has served as Programme Committee and Steering Committee Chair of various conferences like the European Wireless (EW) conference that he co-founded. In 2005, he was the Scientific Chair of IEEE-PIMRC 2005, Berlin. His group has substantially contributed to the development of standards like ETSI/GPRS, ETSI/BRAN HiperLAN2, CEN TC 278 DSRC (electronic fee collection), IEEE 802.11e, 802.16 and 802.15.3. From 2001 to 2003 he was an elected Chair of Working Group 4 (New Technologies) of the Wireless World Research Forum. Prior to joining academia, he worked for 18 years in various industry positions at AEG Telefunken (now EADS AG). He holds a Dr. degree (1975) in information engineering from University of Stuttgart, Germany.

Sebastian Gross studies towards his diploma degree in Electrical Engineering at the RWTH Aachen University. He has taken a strong interest in wireless communication and networking. After finishing his student thesis at the Chair of Communication Networks at RWTH Aachen University, he plans to write a diploma thesis in the field of wireless communication networks.

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

1152
1153
1154
1155
1156
1157
1158