
THE RESTART/LRE METHOD FOR RARE EVENT SIMULATIONCarmelita G�orgFriedrich SchreiberCommunication NetworksAachen University of TechnologyD-52056 Aachen, Germany[cgjfschr]@comnets.rwth-aachen.deABSTRACTUsing the LRE-algorithm for the evaluation of simu-lated data yields the stationary distribution functionof an investigated random sequence and additionallythe so-called local correlation coe�cient, which rep-resents relevant correlation evidence to be includedin the error measure for controlling the simulationrun time. In this paper a simpli�ed LRE-algorithmis used to evaluate discrete sequences like the occu-pancy of �nite bu�er queueing systems G/G/1/N . Itis shown how this algorithm is combined with the RE-START-method for an e�cient rare event simulation.A multi-stage RESTART/LRE-algorithmhas beenimplemented as part of a stochastic simulation sys-tem and its performance has been veri�ed by exten-sive simulations of the reference system M/M/1/N ,whose properties including the local correlation coef-�cient can be described by analytical formulas. Ap-proximate formulas for the optimal number of stagesand the number of trials are given. The new algorithmhas been successfully applied to several �nite buf-fer queueing systems, including the SSMP(2)/D/1/Nsystem with a correlated input stream, in order togain by simulation the distribution function of the oc-cupancy including very low loss probabilities in theorder of 10�9 and even 10�21, which are relevantfor the performance of switching nodes in the ATMbroadband network.1 INTRODUCTIONThe quantitative investigation of random systems bystochastic simulation is an important tool for telecom-munication engineers. How to assure the reliability ofsimulated results is a problem of interest and dependson the statistical evaluation method used to controlthe simulation run time. Since run time is always lim-ited, there are limitations for locating in a simulated

sequence a rare event with su�cient accuracy.This problem has become an issue of current in-terest in the performance investigation of switchingnodes of the ATM broadband network, which can bemodeled by a single server, �nite bu�er queueing sys-temG/D/1/N with a correlated general input process\G". System design has to guarantee that the event\cell loss" is a rare event with a probability in therange of 10�9 � � �10�10 (Le Boudec 1991). How canthis requirement be investigated and veri�ed by sim-ulation without excessive run time?The relevant sub�eld within the various methodsfor variance reduction, see (Kleijnen 1974) and (Sha-habuddin1995), is importance sampling which ori-ginated as a method for more e�cient Monte Carlointegration (Kahn 1953) and has been applied in aquite di�erent way, also called importance splitting in(Shahabuddin1995), to the statistical investigation ofMarkovian sequences by (Bayes 1970) and has beenfurther developed and made known under the nameRESTART by (Vill�en 1991) (\REpetitive SimulationTrials After Reaching Threshold").As shown in (Schreiber and G�org 1994) this meth-od can be combined with the so-called LRE-method(LRE: Limited Relative Error), see (Schreiber 1988and 1996) which has been designed to resolve the of-ten debated problem how to evaluate correlated se-quences, see (Bratley et al. 1987). This combinationof two methods { named the RESTART/LRE-method{ provides rare event simulation with a reliable errorand run length control.In this paper the RESTART/LRE-method withmultiple stages is investigated and it is shown howthe optimal number of stages provide a dramatic in-crease of speed-up in comparison to straightforwardand single stage simulations. Examples are given ofsimulations that would have taken several years andeven millions of years that could now be reduced togive good results within one day.



%1 = %B = 0:44%max = 0:880 5 10 15 20 25 351:00:60:40:20:0 x%(x) 6 -6Figure 1: Queueing system M/M/1/34:Local c.c. %(x) of occupancy x (� = 0:8)2 REFERENCE MODEL M/M/1/NIt is absolutely necessary to verify a new simulationmethod using reference queueing models, whose rel-evant properties can be described by analytically de-rived exact formulas. A basic reference model forthe rare event simulation is the single server queueingsystem M/M/1/N -FIFO with a �nite bu�er size N ,whose local correlation properties have been recentlyinvestigated (Schreiber 1994). With � denoting thetra�c load and the maximumoccupancy B=N+1, thediscrete random variable \occupancy �" is describedby the following equations for the stationary comple-mentary distribution function (compl. d.f.) G(x) =1 � F (x), for the loss probability PL, and the localcorrelation coe�cient (local c.c.) %(x) for the intervali � 1�x<i and i=1; � � � ; B , see (Schreiber 1994):G(x) = Gi = BX�=iP (�) = �i � �B+11� �B+1 ;G0 = 1; GB = PL = �B(1 � �)1� �B+1 ; 9>>>=>>>; (1)%(x)=%i=1� (1� �)(1� �B+1) �i(1 + �)(1 � �i)(�i � �B+1) : � (2)Analytical investigations and simulations of other,less elementary single server queueing systems with�nite bu�er size have shown that the character of theat maximum curve %(x) of system M/M/1/N is rep-resentative for several �nite systems, see Fig. 1.3 THE LRE-ALGORITHMThe LRE-algorithm (LRE: Limited Relative Error)has been designed to establish the distribution func-tion (d.f.) F (x) and the local correlation coe�cient(local c.c.) %(x) of a stationary x-sequence with a pri-ori unknown properties. The LRE-algorithm II given

in (Schreiber 1988) is an extension of the �rst LRE-algorithmI, which was de�ned for the evaluation of in-dependent sequences. The algorithm requires, amongother things, the �nding of the location and size of thex-intervals and the detection of discrete points. Theprocedure for performing automatically this general,rather complicated evaluation task can be substan-tially simpli�ed by applying the LRE-algorithm III(Schreiber et al. 1996), whose evaluation task has beenrestricted to the measurement of discrete random se-quences. When, for instance, the occupancy and lossprobabilities of a queueing system G/G/1/N are tobe investigated, the discrete character of the randomvariable \occupancy �" with bu�er size N , maximumoccupancy B=N+1, and the exact range �=0; � � � ; Bis known.For deriving the complementary distribution func-tion G(x) = 1 � F (x) of the arrival occupancy � ofa system G/G/1/N , the values of � are registeredexclusively prior to the end of each interarrival time�a, that is at all instants \immediately before a newitem arrives". By applying this rule the random statebehavior of the system is associated to an embeddedSemi-Markov chain with B+1 nodes.3.1 The local correlation coe�cient %(x)We now assume that � is generated by the randomstate sequence of a recurrent (k+1)-node Markov chainwith k=B=N+1, whose complementary d.f. G(x)=1�F (x) exists as shown by Fig. 2. Then we can splitat any point x on the real axis this chain into twoparts and de�ne an \F (x)-equivalent" 2-node Markovchain, whose transition probabilities p0(x) and p1(x)determine its correlation coe�cient %(x)=1�[p0(x)+p1(x)] for i � 1�x<i.According to Eq. (6a,b) in (Schreiber 1987b) thefunction %(x) represents a well de�ned (�rst order)correlation measure for the (k + 1)-node chain and iscalled the local c.c. %(x) due to its dependence on thelocation x (Ding1990). After the chain has performedn state changes (trials) the posterior mean ~%(x) canbe obtained by relating the number of transitions aiand ci � ai, respectively, across the separation lineat x to the total number of observed events ri in theleft range � = 0; 1; � � � ; i � 1 resp. vi = n � ri in theright range � = i; i+2; � � � ; B , see Eq. (4). If the largesample conditions (Schreiber 1987a):n � 103; (ri; vi) � 102; (ai; ci; ri � ai; vi � ci) � 10(3)are ful�lled the following posterior formulas expressthe posterior compl. d.f. ~G(x) , the posterior mean oc-cupancy ~� , the posterior local c.c. ~%(x) with correla-tion factor cf(x), and the relative error dG(x) � d(x)



Figure 2: Discrete (k+1)-Node Markov Chain and the \G(x)-equivalent" 2-Node Markov Chain (Schreiber 1987b)concerning the posterior statement ~G(x) for i � 1 �x < i ; i = 1; � � � ; B, see (Schreiber 1987b/1988):~G(x) = ~Gi = vi=n ; ~� = 1n BXi=1 vi ;~%(x) = ~%i = 1� ci=vi1� vi=n ;cf(x) = cfi = (1 + ~%i)=(1� ~%i) ;d(x) = di = �1� vi=nvi � cfi�1=2 : 9>>>>>>>>>>=>>>>>>>>>>; (4)Compared to conventional batch means and con-�dence interval methods, the relative error d(x) hasthe great advantage that it contains correlation evid-ence, namely the measured values ~%i, and that it canbe continuously reduced by evaluating the evidence ofas many more trials as are needed to meet the errorcondition di� dmax, with dmax being the prescribederror limit. The total needed number of trials n is de-termined by dmax and by the smallest G-value to beestablished, namely Gmin = ~GB in the present case;with dB=dmax we obtain from Eq. (4)n = (1� ~GB) cfB~GB d 2max � cfB~GB d 2max ; cfB = 1+ ~%B1� ~%B :(5)4 THE RESTART/LRE-ALGORITHMVerifying the loss probability PL = GB = 8:1�10�5of the reference system M/M/1/34 for � = 0:8 by

simulation would a�ord n = 3:2� 106 trials for anerror limit of dmax = 0:1 and, assuming a productionrate of 104 trials per second, a simulation run timeof T = 5:3 minutes. By raising the bu�er size fromN = 34 to N = 85 we achieve for � = 0:8 a lossprobability PL = 9:26�10�10 and a simulation withagain dmax = 0:1 would now a�ord n = 2:8� 1011trials and the (prohibitive) run time T = 324 days.The demand of a reduced 5 % error limit dmax=0:05would increase the simulation run time for N = 34 toT =21:4 minutes and for N=85 to T =3:56 years.This is the typical situation where straightforwardsimulation is no longer possible and must be replacedby a simulation based on the so-called RESTART-principle (Vill�en1991). In the following this principlewill be combined with the evaluation and error controlmethods of LRE-algorithm III.The main object of simulation will be the distribu-tion function of the occupancy � of system G/G/1/Nwith the \rare event" being given by the loss case� =N+1=B and the discrete (B+1)-node Markovchain Fig. 2 representing a model for generating therandom �-sequence to be investigated. The main ideais to identify intermediate states or stages of the sim-ulation and to restart the simulation in these statesthus obtaining conditional probabilities that can beconverted to the original distribution function usingresults of the previous stage.The following three subsections describe the RE-START/LRE-algorithm with one stage, the general-ization to m stages or intermediate points is given in



section 5.4.1 LRE-Evaluation for one stageIn its simplest version the RESTART/LRE-algorithmfor one stage is performed by two sequential LRE-runs.First LRE-Run: The �rst LRE-run establishes theleft part of G(x) up to a certain \Intermediate Point"i = I. The level GI = P (� � I) of this interval be-longs to a \less rare event" � � I compared to thelevel GB = P (� =B) = P (� >N ) = PL of the \rareevent" �=B: 1�GI�GB : To perform the restart-feature of the second LRE-run correctly informationabout the intermediate state has to be collected. Forinstance, when a transition I�1!I is registered, thevalue of the residual service time �R of the job or mes-sage in service is stored and used as a �R-generatorfor producing a random variable �R according to thedistribution expressed by ~F (�R) in the second LRE-run.To execute the �rst LRE-run an error limit d1maxhas to be prescribed and a level G0I of the interme-diate point I resp. interval I � 1 � x < I has to bedetermined in accordance with section 4.3. G0I canbe given as a parameter or it can be approximated bythe program. Alternatively the intermediate point Ican also be given as a parameter.The �rst LRE-run needs n1 number of trials:n1 = (1� ~GI) cfI~GI d21max � cfI~GI d21max ; cfI = 1 + ~%I1� ~%I : (6)The intermediate point I is related to the followingposterior quantities for I�1 � x < I and the stoppingcriterion dI�d1max , compare Eq. (4):~GI = vI=n1 ; ~GI � G0I ;~%I = 1� cI=vI1� vI=n1 : 9=; (7)Second LRE-Run: The second LRE-run establishesthe right part of G(x) for i � I \under condition�� I " to be enforced by the RESTART-mechanism.This means that we deal now with the conditionalcompl. d.f. G(xj� � I), which is related to the un-conditional compl. d.f. G(x) for i � 1 � x < i ; i =I+1; � � � ; B as follows:G(x) = GI �G(xj� � I) = Gi = GI �Gij��I : (8)The advantage of this expression is that the con-ditional levels Gij��I are raised by the factor G�1I

(e.g.G�1I = 104) compared to the unconditional levelsGi of the original function G(x): Gij��I=Gi�G�1I andit is this e�ect, which enables us to measure success-fully the rare event tail of the compl. d.f. G(x).The application of the RESTART-mechanism isquite simple: whenever the \next �-value" �n repre-sents a state �n < I, a reset �n := I and after thata restart in state I is enforced. Unavoidably, theserestarts cause deviations from the original randomprocess involved, but any detrimental e�ects on thesimulation result can be assumed as negligible due tothe applied \service time correction": for each restartthe current service time �b is replaced by a randomlychosen value of the residual service �R associated totransitions I�1 ! I, whose empirical d.f. ~F (�R) hasbeen derived during the �rst LRE-run.With the simpli�ed notation ~%B := ~%Bj��I we ob-tain in correspondence to Eq. (7) statements for theposterior conditional loss probability for B�1�x<Band the stopping criterion dBj��I�d2max:~PLj��I = ~GBj��I = vB=n2 ;~%B = 1� cB=vB1� vB=n2 : 9=; (9)This simpli�cation is justi�ed by the fact that theposterior value ~%B of the local c.c.%(x) of intervalB � 1�x<B at the right end is practically the samefor simulation with or without RESTART. The num-ber of restarts need no special consideration, becauseit represents a random quantity being controlled bythe second LRE-run. Assuming ~GBj��I � 1 the �-nal number of trials n2 for the second LRE-run is,compare Eq. (6):n2 � cfB~GBj��I d22max ; cfB = 1 + ~%B1� ~%B : (10)4.2 Error ConsiderationsAfter both LRE-runs have been performed the levels~Gi of the unconditional compl.d.f. ~G(x), see Eq. (8),for i=I+1; � � � ; B are:~Gi = ~GI ~Gij��I ; ~PL = ~GB = ~GI ~GBj��I : (11)A careful investigation of the correct error expres-sion for the posterior statements ~Gi must take intoaccount that all levels ~Gi of the �rst LRE-run and~Gij��I of the second LRE-run represent mean valuesof the posterior random variables Gi and Gij��I , re-spectively, which � under the present large sampleconditions (Schreiber 1987a) � are normally distrib-uted. A straightforward analysis proves that the rel-ative error di of the unconditional level ~Gi Eq. (11) is



given by:d2i = d2I + d 2ij��I = d 21max + d 2ij��I : (12)Due to the stopping criterion Eq. (7) we have sethere with good approximationdI=d1max. In the sameway we can set dBj��I = d2max due to the stoppingcriterion Eq. (9) and �nd for i=B the relative error dBof the unconditional loss probability ~PL = ~GB , whichmust be equal to a prescribed error limit dmax for theresult ~GB :d2B = d 2max = d 2I + d 2Bj��I = d 21max + d 22max : (13)The error limits d1max and d2max of the �rst andsecond LRE-run must be chosen in accordance withthis equation. The error control in both LRE-runssafeguards that the condition di�dmax is ful�lled forall levels ~Gi; i = 1; � � � ; B including the unconditionallevels ~Gi Eq. (11). This means that the prescribedvalue dmax is the e�ective error limit for the wholeRESTART/LRE-algorithm.4.3 Minimal Simulation Run TimeWe replace in Eq. (6) and Eq. (10) the measured pos-terior quantities ~GI ; ~%I and ~GBj��I ; ~%B by the cor-responding variables GI; %I and GBj��I ; %B . Apply-ing the relation GBj��I = GB=GI; GB � GI whichfollows from Eq. (8) for i =B, we may therefore ex-press the total number of trials n = n1+n2 of bothLRE-runs as a function of level GI associated to theintermediate point I.Using identical error limits for both LRE-runs:d1max = d2max = dSmax, we obtain the number oftrials from dB=dmax=p2dSmax ,n(GI) = n1 + n2 = 2d 2max � cfIGI + cfB(GB=GI)� ;cfI = 1+ %I1� %I ; cfB = 1 + %B1� %B : 9>>>=>>>;(14)This function assumes its minimum nmin at the\optimal value" G?I of the variable GIG?I = r cfIcfB � pGB ;nmin = n(G?I) = 4pcfI cfBpGB d 2max : 9>>=>>; (15)In case of system M/M/1/N with N = 85 and� = 0:8 we have GB = 9:26 � 10�10; %B = 0:44and cfB = 2:6 ; due to the at maximum of the func-tion %(x) in Fig. 1 the local c.c. is nearly constant%I � %max = 0:89 and therefore also the correlation

factor is nearly constant cfI = 17:2 . For dmax = 0:1we compute from Eq. (15): G?I = 2:56pGB = 7:78�10�5 , nmin = 8:7� 107 trials, and the optimal inter-mediate point Iopt = ln[G?I+�B+1(1�G?I)]= ln(�)�42from Eq. (1).Assuming a production rate of 104 trials per secondthe minimal simulation run time would be Tmin �2:4 hours. By comparing these values of nmin andTmin to n = 2:8 � 1011 trials and T = 324 days,which have been computed for a straightforward sim-ulation of the same problem at the beginning of thissection, we recognize the enormous potential of simu-lation speed-up by the RESTART/LRE-method.The level G0I of the intermediate point I to beprescribed in advance of the �rst LRE-run, should bechosen as close as possible to the value of G?I. But,under the conditions of normal simulation tasks, theoptimal value G?I in Eq. (15) is a priori usually un-known because it depends on the values of the cor-relation factors cfI , cfB and of the loss probabilityPL = GB itself, which become available only a pos-teriori as results of the statistical evaluation. For aseries of RESTART/LRE-runs concerning the samesimulation object the value of G0I for each subsequentrun can often be chosen closer to the optimum, be-cause the values of cfI and cfB become known withincreasing accuracy by the evaluation results of theprevious runs. Therefore level G0I must be chosen asa more or less good estimation of G?I and the needednumber of trials will usually be n > nmin. In case thatnothing is a priori known, it is recommended to usein Eq. (15) the values cfI = (1+%max)=(1�%max) andcfB = (1+%B)=(1�%B) of queueing system M/M/1/N ,which can be computed for a given tra�c load � fromEq. (2). Nevertheless, even in case of a relatively un-favorable choice of G0I the essential simulation speed-up advantage of the RESTART-method is maintained;see also section 5.2 in (Vill�en 1991).5 THE MULTI-STAGE APPROACHThe extension of the RESTART/LRE-algorithm tom intermediate points I0; I1; � � � ; Im�1 with G-levels:1 � GI0 � GI1 � � � �GIm�1 � GB is a natural ex-tension of the above described algorithmwith a singlestage. Them intermediate points are also called stagesleading to m+1 LRE-runs. This type of extension hasalso been envisaged in (Vill�en 1991) and (Vill�en1994aand 1994b). The decisive advantage of the combina-tion with the LRE-algorithm is that analytical formu-las can be derived.This leads under very general assumptions to thefollowing minimal number of trials nmin and optimal



G-levels G?Ii for i = 0; � � � ;m� 1:nmin(GB) = m+ 1d2Smax 1GB mYi=0 cfIi!1=(m+1) (16)G?Ii(GB) = 0BBBBB@ iYj=0 cfIjm�imYj=i+1 cfIji+1Gi+1B 1CCCCCA1=(m+1) : (17)To derive an approximation for the optimal num-ber of stages mopt , the correlation factor cfIj for j =0; � � � ;m�1 in Eq. (16) is approximated by a �xedcorrelation factor named cfM . The function cf (x) =(1+ %(x))=(1� %(x)) is also a at maximum curvewith the maximum cfmax , if this is true for %(x) asshown in Fig. 1, so that choosing the maximum forcfM (cfM := cfmax ) is a good approximation and up-per limit at the same time. Similar considerations asgiven in section 4.2 lead to an approximation of theerror limit dSmax in each run as a function of theoverall error limit dmax :d2Smax = (d2max + 1)1=(m+1) � 1 � d2maxm+ 1 : (18)Using these approximations the optimal numberof stages mopt follows from the necessary condition(@n=@m = 0) for an optimum of nmin of which thenearest integer is taken for simulation runs:mopt � 12 ln� cfBcfMGB�� 1 : (19)Fig. 3 shows the approximationof the optimalnum-ber of trials n(m) on a logarithmic scale as a functionof the number of stages m for the reference systemM/M/1/N . The approximation is also an upper limit.Additionally a lower limit is shown.It should be noted from Eq. (19) that the optimalnumber of stages does not depend on the maximumer-ror level dmax . For smaller values of dmax the numberof trials increases, but the optimum remains �xed.A signi�cant gain in terms of the total number oftrials needed is already achieved for one intermediatepoint (m=1), which can be seen from the comparisonof values with a straightforward simulation (m= 0).Further improvements can be achieved when using theoptimal number of stages. In the example in Fig. 3 therelative speed-up n(0)=n(1) is about 11 when compar-ing the straightforward simulation to the simulationwith one intermediate point. In comparison with theoptimal number of intermediate points (mopt = 3 inFig. 3) a relative speed-up n(0)=n(3) of about 18 is

lower limitand upper limit abs. min.(I0; I1; I2) = (8; 16; 25)approximation
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Figure 3: Queueing System M/M/1/34:total number of trials n(m)versus number of intermediate points m(tra�c load � = 0:8 ; max. error dmax = 0:01)achieved. For this example it was possible to calculatethe absolute minimum by exhaustive search, which isalso given in Fig. 3. For systems with very low lossprobabilities the speed-up is much higher, so that nowsystems with, e.g. a loss probability of 10�20 can besimulated in a�ordable time, see section 6.6 SIMULATION RESULTSThe LRE III and the RESTART/LRE-algorithmwereimplemented as part of a simulation system (G�orget al. 1991). Comprehensive RESTART/LRE simula-tion runs were performed and checked against theoret-ical and straightforward simulation results. Queueingsystems of the type M/G/1/N -FIFO and G/D/1/N -FIFO were investigated.In ATM simulations the service time is determin-istic, so that systems of the type G/D/1/N are ofinterest. Fig. 4 shows the systems M/D/1/N andM/M/1/N compared to a system SSMP(2)/D/1/Nwith a correlated Special Semi-Markov input ProcessSSMP(2) described in (Ding et al. 1990), (Ding1991),and (Herrmann 1993 and 1994). The SSMP(2) distin-guishes two states, in each of these states geometric-ally distributed interarrival times are generated withparameter q1 and q2. The transition probabilitiesbetween the states are indirectly given by the correla-tion coe�cient � and the stationary state probabilityP1. In the example system SSMP(2) the followingparameters were used: q1 = 0:9, q2 = 0:3, � = 0:6,



Table 1: Comparison of Simulated and Theoretical Values for � = 0:4 and dmax = 0:03M/M/1/21 M/M/1/50sim.: m = 1 sim.: mopt = 9 theoretical sim.: m = 5 sim.: mopt = 22 theoretical~GB resp. GB 1:091 10�9 1:031 10�9 1:056 10�9 2:98 10�21 3:02 10�21 3:04 10�21~%B resp. %B 0:291 0:280 0:286 0:292 0:256 0:286~n (n straightforward) 3:42 108 2:70 106 (18:94 1011) 5:14 108 1:39 107 (6:57 1023)Speed-Up n=~n 5:5 103 701 103 { 1:3 1015 473 1015 {
M/D/1/12 M/M/1/21SSMP(2)/D/1/360 5 10 15 20 25 30 40

10010�410�610�810�10 x~G(x) -6
Figure 4: RESTART/LRE Simulation:compl.d.f. ~G(x) of occupancy x(m = 1, � = 0:4 , GB = PL � 10�9 , dmax = 0:03)D = 3, and P1 was adapted according to the tra�cload �, see (Ding 1991) and (Herrmann 1993).The inuence of the arrival and service time dis-tributions on the compl. d.f. G(x) of the occupancy xand the loss probability PL = GB for a �xed tra�cload of � = 0:4 is shown in Fig. 4. The bu�er size Nfor each system was chosen in such a way that the lossprobability is approximately 10�9 for all systems. TheM/D/1 system only needs a bu�er size of N =12 toful�ll the requirement of PL � 10�9, the M/M/1 sys-tem needs N = 21, whereas the SSMP(2)/D/1 systemneeds N = 36 due to the strong e�ect of correlatedarrivals. The simulated compl. d.f. ~G(x) of systemM/M/1/N is in full agreement with the theoreticalfunction G(x) Eq. (1). The SSMP(2)/D/1/N resultswere also checked successfully against the theoreticalresults given by (Herrmann 1993). The di�erences aretoo small to be shown in the diagram in both cases.Table 1 compares two reference systems with aloss probability of about 10�9 and 10�21. The num-ber of trials needed for the multi-stage simulations incomparison with the straightforward and single stage

simulation are given. The simulation results are com-pared to the theoretical values. The main result con-cerning the loss probability ~PL = ~GB resp. PL = GBshows the conformity of simulation and theory.If the quotient of B=m is small (e.g. B=m<3) theresulting values for ~%Ii are lower than in the originalprocess which reduces the number of trials ~n in theactual simulation. n gives the theoretically needednumber of trials for a straightforward simulation. Thespeed-up factor is n=~n. As mentioned in section 4 astraightforward simulationof these cases is practicallyimpossible. Assuming 104 trials/sec results in 6 and2 � 1012 years for the examples in Table 1. Withthe RESTART/LRE speed-up the simulations wereall performed within one day.7 FINAL REMARKSIn this paper the multi-stage RESTART/LRE-algo-rithm was described and the speed-up in comparisonto straightforward and single stage simulations wasdiscussed for representative examples.The RESTART/LRE-algorithm as described herecan be extended and adapted to other application�elds, e.g. multi-server systems G/G/s/N . Anotherextension is the investigation of rare event details ofmore general stationary x-sequences having a purecontinuous or a mixed continuous and discrete char-acter. For this purpose the (more complicated) LRE-algorithm II (Schreiber 1988a) must be combined withthe RESTART-method.Considering complex systems, such as queueingnetworks, several open issues need to be resolved.The RESTART/LRE-method needs well de�ned inter-mediate states, an algorithm to generate these states,and the statistics for evaluating the original distribu-tion function.The results using the RESTART/LRE-algorithmare well established and will be further investigatedto make them available in practical simulation tools.
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