
Performance of mobile Web Service Access using the Wireless
Application Protocol (WAP)

Guido Gehlen, Ralf G. R. Bergs
Aachen University

Communication Networks
Kopernikusstr. 16, 52074 Aachen
guge@comnets.rwth-aachen.de

Abstract

Accessing XML Web Services from mobile clients is
a flexible and promising concept to build complex mo-
bile business applications. Due to the computing con-
straints of mobile clients and bandwidth limitations of
mobile communication systems performance considera-
tions are essential.

Usually Web Services are accessible through standard
internet protocols like HTTP, but within mobile com-
munication networks it is quite inefficient. The Wireless
Application Protocol (WAP) suite provides protocols op-
timized for packet oriented communication over mobile
links. The interconnection to existing HTTP Web Ser-
vices is achieved by the use of a WAP gateway.

This article presents a realization to access Web Ser-
vices from J2ME mobile devices using WAP. For this, a
Java Wireless Session Protocol (WSP) implementation
has been developed. The performance of this WAP based
access compared to HTTP is analyzed in terms of crite-
ria as latency, data transfer volume, memory footprint
and CPU power requirements.

1. Introduction

The Internet enables quick access to information and
a variety of services in the form of Web Pages. These
Web Pages offer one graphic user interface accessible
through a web browser. Recently, it has been observed
that Web Pages evolve to Web Services, which are user
interface independent and enable applications to inte-
grate Internet-specific services.

Mobile devices with their hardware limitations are
generally not suitable to use Internet Services via Web
Pages. The separation of user interface and service logic
offered by Web Services are a new chance to bring in-
ternet services to mobile devices. Applications running

on mobile devices, providing access to Web Services,
can thereby be adapted to the specific device capabili-
ties.

With the integration of Web Service technologies
in mobile devices one has to consider the special re-
strictions of these devices and the mobile communica-
tion system. Mobile devices suffer from several limita-
tions, such as slow Central Processing Units (CPUs),
small memories, primitive operating systems and small
displays. Mobile communication systems, especially
GPRS and UMTS, imply limited bandwidth and high
latencies.

This paper aims at presenting an alternative solu-
tion to access Web Services from Mobile Clients using
WAP, as well as a performance analysis of this solu-
tion compared to access via Hypertext Transport Pro-
tocol (HTTP) from Java-capable mobile phones.

In section 2, the Web Service technologies are ex-
plained, and the concept of accessing Web Services
from mobile Java phones is introduced. Section 3 illus-
trates the WAP access implementation for Java phones,
which is used for the performance analysis presented in
section 4.

2. Mobile Web Services

Predominantly, the technologies used by Web Ser-
vices [2] are based on the Extensible Markup Lan-
guage (XML) [15, 8], like the Simple Object Access
Protocol (SOAP) [4, 11], the Web Service Description
Language (WSDL) [7] and the Universal Discovery De-
scription and Integration (UDDI) [22]. The dependen-
cies of these technologies are depicted in figure 1 in
Unified Modeling Language (UML) notation.

WSDL [7], a specialization of XML, describes the
Web Service interface, its operations, data formats,
transport bindings and endpoints (e.g. a URL).

Web Services can be published by service providers
and located by service requestors by means of the
UDDI [9]. It is a directory model, the so-called yellow
pages of Web Services, whose entries consist of three
parts. The ”white pages” contain information about
the Web Service provider, the ”yellow pages” include
industrial categories based on standard taxonomies and
the ”green pages” describe the interface of the service,
e.g. by integrating the WSDL file.

The Web Service instances are communicating via a
protocol called SOAP [11]. It is based upon messages
encoded in XML, transmitted by arbitrary transport
protocols, usually HTTP, and allows clients to perform
Remote Procedure Calls (RPCs), among other things.

Figure 1. Web Services Technologies and their
dependencies in UML notation

To Access Web Services from mobile clients
a SOAP implementation and a transport imple-
mentation is needed. For this performance analy-
sis solely Java implementations are used, since most
of the mobile devices support a Java Virtual Ma-
chine (JVM). Currently, two SOAP client implementa-
tions for Java2 Micro Edition (J2ME)-capable devices
are known, Wingfoot SOAP and kSOAP. Here, Wing-
foot SOAP is used, since it enables the integration of
further transport protocols in addition to the stan-
dard HTTP implementation.

For mobile access the protocol suite HTTP using
Transport Control Protocol (TCP) is not an ideal so-

lution due to a great protocol overhead. WAP [24] finds
a remedy by reducing header information and protocol
overhead. Since it is impossible to access the phone’s
native WAP implementation from inside the JVM, a
Java implementation of the WAP has been developed.

Paying tribute to the limited resources available on
mobile clients, the connectionless WSP [23] has been
implemented. The advantage of this is the avoidance of
the TCP three way handshake, header volume reduc-
tion and optionally reduction of the payload data vol-
ume using the binary XML encoding WBXML. Wire-
less Binary XML (WBXML) [25] was developed mainly
for low bandwidth networks and restricted Central Pro-
cessing Unit (CPU) power, and seems appropriate for
mobile XML messaging. One further advantage is that
mobile clients transmitting SOAP messages via WAP
can access all existing Web Services using the usual
HTTP binding, since the WAP gateway converts WAP
into HTTP and vice versa.

3. WAP Transport Implementation

The WAP implementation has been split in several
parts: On the lowest level the software package has
the ability to construct request Protocol Data Units
(PDUs) and to determine the octet stream for encoded
PDUs, and vice versa to reconstruct reply PDUs from
an octet stream received via the network. Optionally,
the payload can be encoded in WBXML, if it is sup-
ported by the WAP Gateway.

One level above is the ability to send request PDUs
and to receive reply PDUs to and from the network
using User Datagram Protocol (UDP) packets. These
PDUs have a field called Transaction ID (TID) used
to associate replies with corresponding requests. Thus,
this field can be used to detect lost packets.

On the highest level is the implementation of a
SOAP transport to be used to convey SOAP data from
the mobile application to the web service and vice
versa.

3.1. WBXML Encoding

The binary format WBXML was designed to allow
compact transmission with no loss of functionality or
semantic information, enabling more effective use of
XML data on narrowband communication channels.

A binary XML document is composed of a sequence
of elements. Each element may have zero or more
attributes and may contain embedded content. This
structure is very general and does not have explicit
knowledge of XML element structure or semantics.
This generality allows user agents and other consumers

of the binary format to skip elements and data that are
not understood.

All WBXML documents contain a specification ver-
sion in their initial byte. The version number is fol-
lowed by a representation of the XML document pub-
lic identifier. This is used to identify the well-known
document type contained within the WBXML entity.
Moreover, the binary XML format contains a represen-
tation of the XML document character encoding.

Immediately after the charset a binary XML docu-
ment must include a string table. Minimally, the string
table consists of the encoded string table length in
bytes, not including the length field (e.g., a string table
containing a two-byte string is encoded with a length of
two). If the length is non-zero, one or more strings fol-
low.

Various tokens encode references to the contents of
the string table. These references are encoded as scalar
byte offsets from the first byte of the first string in the
string table.

Finally, the body of the binary XML document
follows. The body consists of an element optionally
headed and/or followed by processing instructions. An
element itself consists of a start tag, optionally one or
more attributes terminated by an END token, and op-
tional content which can, among others, be an element
again or a string.

To illustrate the data reduction possible by using
WBXML encoding, a SOAP call to the BabelFish
translation Web Service of 508 bytes length is en-
coded in WBXML. The resulting encoded message has
a length of 326 bytes, i.e. the original length has been
reduced by 35%.

4. Performance Analysis

The performance of mobile applications is a signif-
icant aspect, since mobile devices have only limited
CPU power and main memory, as well as the mo-
bile communication network offers only a limited band-
width. The application speed, i.e. how quickly the ap-
plication responds to user actions, is a crucial factor
for the acceptance of these applications and for a com-
mercial use.

In this context the performance criteria latency, data
transfer volume, memory footprint and CPU power re-
quirements have been considered. Latency is caused by
different points, as creation of objects, network setup,
transmission of data, parsing of request and response
data objects and response time of the server.

To measure these performance criteria a reference
Web Service is used. It offers three methods for bench-
marking, plus two methods which are used prior to the

actual benchmarking to set up size and contents of the
payload. This approach was chosen to reduce the pro-
cessing time of the benchmarking methods on the web
server to an absolute minimum, so as not to falsify the
measurements.

The three benchmark methods are the following:

nop() This method does nothing, so
it can be used to measure the
latency incurred solely for the
invocation of a SOAP message.

getString() This method transfers a
String of pre-determined size.

getIntArray() This method transfers an
int[] with a pre-determined
number of elements.

To be able to run the benchmarking measurements
from a J2ME emulator or from a real device, a MI-
Dlet1 that instantiates and invokes the benchmarking
methods has been created.

4.1. Data Transfer Volume

The total volume of protocol data – payload plus
protocol overhead, such as headers – transferred for a
given payload varies depending on which transport pro-
tocol is chosen.

In HTTP, the header fields are not encoded, but
transmitted ”in cleartext”. In contrast, the WSP de-
fines compact binary encodings for the well-known
headers, thus the protocol overhead can effectively be
reduced.

The protocol overhead, which basically is the size of
the headers added to the payload, can be reduced by
more than a third by simply choosing WSP instead of
HTTP to transport the SOAP messages.

Further reduction, about 35%, of data volume could
be obtained by encoding the XML data using WBXML
as described in section 3.1, but the reduction factor
highly varies depending on the content transmitted.

4.2. Memory Footprint

Fig. 3 shows the components that make up
the MIDlet. The SOAP WSP transport class
(comnets.soap.transport.WSPTransport) and
the two packages comnets.wap.wsp.encoding and
comnets.wap.wsp.transport are only needed in the
case of WSP being used for communications, thus, the

comnets.wap.wsp.transport

comnets.wap.wsp.encoding

comnets.util

WSPTransport

Figure 2. Sizes of MIDlet components (WSP
support being optional)

size of the MIDlet using HTTP is 54 K and the size of
the MIDlet using WSP 89 K.

4.3. CPU Power

To be able to roughly assess the computing power
of the mobile phone used for some of the performance
tests (a Siemens S55), a benchmarking MIDlet named
“TaylorBench”2, version 1.1, was used. The default op-
tions were kept when running the MIDlet.

Table 1 on p. 103 shows the results obtained from
running TaylorBench.

Test performed PC S55
5000 1000-byte array copies 70 ms 7,407 ms
5000 VM tests 40 ms -a

5000 random ints 40 ms -a

5000 1000-byte controls 30 ms 464 ms

a Device failed to execute test

Table 1. Results obtained from running “Taylor-
Bench” on a PC using the WTK Emulator and
on a Siemens S55 mobile phone

Considering these figures, it can be expected that
the PC runs MIDlets about 10–100 times faster than
the mobile phone.

1 MIDlet - An application that conforms to the Mobile Informa-
tion Device Profile

2 http://www.poqit.com/midp/bench/

4.4. Latency

For all latency measurements the total latency tinv

to invoke one reference method is divided into tSOAP

and tcall. The time tSOAP represents the time used for
parsing SOAP messasges, tcall is the roundtrip time for
the message transmission.

First, the latency performance of the MIDlet run-
ning on a Siemens S55 mobile phone is compared to
the case where the MIDlet runs on a mobile phone Em-
ulator.

In both scenarios, HTTP was used as a SOAP trans-
port protocol. Also, the Web Service ran on a remote
machine in both cases. Finally, in the case of the MI-
Dlet running on the emulator, the client machine was
connected to the Internet with an ADSL line, adding
about 85 ms per packet round-trip. Thus, the latencies
that were incurred by the characteristics of the physi-
cal connection (ADSL in one case, GPRS in the other
case), are roughly comparable.

0

2000

4000

6000

8000

10000

Str:500Str:200Str:100Str:50Str:10Str:1nop

t in
v

[m
s]

Method Invocation

Average

t S
O

A
P

t ca
ll

S
55

E
m

ul
at

or

Figure 3. Benchmark Results (tinv), nop() and
getString() method invocations
right: MIDlet on S55, using HTTP over GPRS
left: S55 Emulator, using HTTP over ADSL

Fig. 4 and 5 show the benchmark results of the two
series. The results of the MIDlet running on the S55
are shown on the left columns, the emulator results are
shown on the right columns.

What was to be expected by the results of running
TaylorBench (section 4.3), now has been confirmed
by running the SOAP client MIDlet. The S55 mobile
phone is at least a magnitude slower than the PC, re-
sulting in latency values that are about ten times as
large for the S55 as for the emulator.

http://www.poqit.com/midp/bench/

0

2000

4000

6000

8000

10000

Int:75Int:50Int:20Int:15Int:10Int:5Int:1

t in
v

[m
s]

Method Invocation

Average

t S
O

A
P

t ca
ll

S
55

E
m

ul
at

or

Figure 4. Benchmark Results (tinv),
getIntArray() method invocations
right: MIDlet on S55, using HTTP over GPRS
left: S55 Emulator, using HTTP over ADSL

Second, the latency differences of SOAP calls us-
ing WAP and HTTP are presented. In both cases,
client and service were running on the local host. The
only difference was the SOAP transport protocol used:
HTTP in the first case, connectionless WSP in the sec-
ond case.

0

200

400

600

800

1000

Str:500Str:200Str:100Str:50Str:10Str:1nop

t in
v

[m
s]

Method Invocation

Average

t S
O

A
P

t ca
ll

H
T

T
P

W
S

P

Figure 5. Benchmark Results (tinv), nop() and
getString() method invocations, MIDlet run-
ning on Emulator, using WSP (right) and HTTP
(left) over ADSL

From this follows that the samples for tcall, HTTP

(about 250 ms average) are considerably larger than
tcall, WSP (about 160 ms average). Thus, time for trans-

0

200

400

600

800

1000

Int:75Int:50Int:20Int:15Int:10Int:5Int:1

t in
v

[m
s]

Method Invocation

Average

t S
O

A
P

t ca
ll

Figure 6. Benchmark Results (tinv),
getIntArray() method invocations, MI-
Dlet running on Emulator, using WSP (right)
and HTTP (left) over ADSL

mission of the SOAP messages (request and response)
can be reduced by about a third by choosing connec-
tionless WSP instead of HTTP.

5. Conclusions

Applications on mobile devices accessing Web Ser-
vices via the Simple Object Access Protocol (SOAP)
are even possible on current mobile phones. But the
performance of these applications is bad, since a sim-
ple SOAP method invocation from a Siemens S55 mo-
bile phone over HTTP and GPRS takes about 6 to 8
seconds.

This work shows that the performance in term of la-
tency can be increased using a WAP binding to SOAP.
With WAP it is possible to access all existing HTTP
Web Services. The SOAP messages are reduced by a
third using the WBXML encoding. The connectionless
WSP avoids TCP’s three way handshake and reduces
the protocol data overhead by more than a third com-
pared to the HTTP overhead.

A Java WSP implementation has been developed
since it was not possible to access the phone’s native
WAP implementation, due to Java’s sandbox model. It
is expected that performance considerably increases if
this native implementation can be used.

References

[1] V. Bansal and A. Dalton. A performance analysis of
web services on wireless pdas. Published on the inter-
net.AvailableatURLhttp://www.cs.duke.edu/~vkb/

advnw/project/, May 2002.

[2] A. Brown and H. Haas. Web services glossary. Pub-
lished on the internet. Available at URL http://www.

w3.org/TR/2002/WD-ws-gloss-20021114/, Nov. 2002.
2

[3] L. Clement. Uddi overview presentation. Published on
the internet. Available at URL http://www.uddi.org/

pubs/UDDI_Overview_Presentation.ppt, Sept. 2000.

[4] T. Clements. Overview of soap. Pub-
lished on the internet. Available at URL
http://developer.java.sun.com/developer/

technicalArticles/xml/webservices/, Jan. 2002. 2

[5] B. Day. J2me faq. Published on the internet. Available
at URL http://www.jguru.com/faq/J2ME, July 2003.

[6] Enhydra.org. kxml javadoc. Published on the in-
ternet. Available at URL http://kxml.enhydra.org/

software/documentation/apidocs/, Feb. 2002.

[7] R.C. et al. Web servicesdescription language (wsdl) ver-
sion 1.2. Published on the internet. Available at URL
http://www.w3.org/TR/wsdl12, June 2003. 2

[8] T. B. et al. Extensible markup language (xml) 1.0 (sec-
ond edition). Published on the internet. Available at
URL http://www.w3.org/TR/REC-xml, Oct. 2000. 2

[9] T. B. et al. Uddi version 3.0. Published on the inter-
net. Available at URL http://uddi.org/pubs/uddi_

v3.htm, July 2002. 2

[10] J. Knudsen. Parsing xml in j2me - xml in a
midp environment. Published on the internet. Avail-
able at URL http://wireless.java.sun.com/midp/

articles/parsingxml/, Mar. 2002.

[11] N. Mitra. Soap version 1.2 part 0: Primer. Published
on the internet. Available at URL http://www.w3.org/

TR/soap12-part0/, June 2003. 2

[12] B. Morgan. Deliver mobile services using xml
and soap. Published on the internet. Available
at URL http://www.wirelessdevnet.com/columns/

feb2001/editor14.html, Feb. 2001.

[13] V. N. Padmanabhan and J. C. Mogul. Improv-
ing http latency. Published on the internet. Avail-
able at http://archive.ncsa.uiuc.edu/SDG/IT94/

Proceedings/DDay/mogul/HTTPLatency.html, Oct.
1994.

[14] S. Seely. Documenting your web service.
Published on the internet. Available at URL
http://msdn.microsoft.com/library/default.

asp?url=/library/en-us/dnservice/html/

service07182001.asp, July 2001.

[15] S. Seely. An xml overview towards understanding soap.
Published on the internet. Available at URL http:

//msdn.microsoft.com/library/default.asp?url=

/library/en-us/dnwebsrv/html/xmloverchap2.asp,
Nov. 2001. 2

[16] A. Skonnard. Understanding xml namespaces.
Published on the internet. Available at URL
http://msdn.microsoft.com/library/default.

asp?url=/msdnmag/issues/01/07/xml/TOC.asp, July
2001.

[17] D. Srinivas. Soap faq. Published on the internet. Avail-
able at URL http://www.jguru.com/faq/SOAP, Jan.
2002.

[18] I. Sun Microsystems. Midp style guide. Pub-
lished on the internet. Available at URL
http://java.sun.com/j2me/docs/alt-html/

midp-style-guide7/index.html, Aug. 2002.

[19] Mobile information device profile (jsr-37), java 2 plat-
form, micro edition, version 1.0. Published on the in-
ternet. Available at URL http://jcp.org/aboutJava/

communityprocess/final/jsr037/index.html, Sept.
2000.

[20] Personaljava application environment specification ver-
sion 1.2a. Published on the internet. Available at
URL http://java.sun.com/products/personaljava,
2000.

[21] C. C. Tapang. Web services description language
(wsdl) explained. Published on the internet. Avail-
able at URL http://msdn.microsoft.com/library/

default.asp?url=/library/en-us/dnwebsrv/html/

wsdlexplained.asp, July 2001.

[22] uddi.org. Uddi data structure reference v1.0. Published
on the internet. Available at http://uddi.org/pubs/

DataStructure-V1.00-Published-20020628.pdf,
Jun 2002. 2

[23] WAP Forum. Wireless Application Protocol. Wireless
Session Protocol Specification, July 2001. 2

[24] Wireless applicationprotocol architecture specification.
wap-100-waparch. Published on the internet. Available
at URL http://www.wapforum.org, Apr. 1998. 2

[25] WAPForum. Binary xml content format specification.
version 1.3, wap-192-wbxml-20010725-a. Published on
the internet. Available at URL http://www.wapforum.

org, July 2001. 2

[26] Wireless markup language specification. Published on
the internet. Available at URL http://www.wapforum.

org, Feb. 2000.

[27] R. Wolter. Xml web services basics. Published on the in-
ternet. Available at URL http://msdn.microsoft.

com/library/default.asp?url=/library/en-us/

dnwebsrv/html/webservbasics.asp, Dec. 2001.

http://www.cs.duke.edu/~vkb/advnw/project/
http://www.cs.duke.edu/~vkb/advnw/project/
http://www.w3.org/TR/2002/WD-ws-gloss-20021114/
http://www.w3.org/TR/2002/WD-ws-gloss-20021114/
http://www.uddi.org/pubs/UDDI_Overview_Presentation.ppt
http://www.uddi.org/pubs/UDDI_Overview_Presentation.ppt
http://developer.java.sun.com/developer/technicalArticles/xml/webservices/
http://developer.java.sun.com/developer/technicalArticles/xml/webservices/
http://www.jguru.com/faq/J2ME
http://kxml.enhydra.org/software/documentation/apidocs/
http://kxml.enhydra.org/software/documentation/apidocs/
http://www.w3.org/TR/wsdl12
http://www.w3.org/TR/REC-xml
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://wireless.java.sun.com/midp/articles/parsingxml/
http://wireless.java.sun.com/midp/articles/parsingxml/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/
http://www.wirelessdevnet.com/columns/feb2001/editor14.html
http://www.wirelessdevnet.com/columns/feb2001/editor14.html
http://archive.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html
http://archive.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service07182001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service07182001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service07182001.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/xmloverchap2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/xmloverchap2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/xmloverchap2.asp
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/01/07/xml/TOC.asp
http://msdn.microsoft.com/library/default.asp?url=/msdnmag/issues/01/07/xml/TOC.asp
http://www.jguru.com/faq/SOAP
http://java.sun.com/j2me/docs/alt-html/midp-style-guide7/index.html
http://java.sun.com/j2me/docs/alt-html/midp-style-guide7/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr037/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr037/index.html
http://java.sun.com/products/personaljava
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/wsdlexplained.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/wsdlexplained.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/wsdlexplained.asp
http://uddi.org/pubs/DataStructure-V1.00-Published-20020628.pdf
http://uddi.org/pubs/DataStructure-V1.00-Published-20020628.pdf
http://www.wapforum.org
http://www.wapforum.org
http://www.wapforum.org
http://www.wapforum.org
http://www.wapforum.org
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/webservbasics.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/webservbasics.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/webservbasics.asp

	1 Introduction
	2 Mobile Web Services
	3 WAP Transport Implementation
	3.1 WBXML Encoding

	4 Performance Analysis
	4.1 Data Transfer Volume
	4.2 Memory Footprint
	4.3 CPU Power
	4.4 Latency

	5 Conclusions

