
Protocol Implementation for a 5 GHz OFDM-Testbed

H.Wijaya2,3, N.Esseling2, O.Klein2, A.Vidal2, W.Zirwas

1

1 = Siemens AG, 2 = ComNets, RWTH Aachen, 3 = AixCom GmbH

Ph.: + 49 241 80 27 954, Fax: + 49 241 80 22 242, Kopernikusstr.16 – 52056 Aachen - Germany

e-mail: hari@comnets.rwth-aachen.de

ABSTRACT
This paper provides a comprehensive overview of the
development of performance critical communication
systems such as HiperLAN/2(H/2), the corresponding
timing concepts for H/2 Mobile Terminal (MT) and
Access Point (AP) protocols and the protocol
implementation in a hard real time system. Moreover,
the paper introduces some concepts to optimize the
processing power sharing among real time and non
real time tasks.

1. INTRODUCTION
The project COVERAGE (Cellular OFDM system with
Extension Points for increased transmission RAnGE),
supported by the German Ministry of Education and
Research (BMBF), was initiated by the Siemens AG.
The main objective of this project is to observe and to
develop Multi-Hop networks [6][7]. For this purpose,
an OFDM (Orthogonal Frequency Division
Multiplexing) testbed that operates in the 5 GHz
frequency band, is being developed.
The Quality of Service supporting H/2 protocol based
on the ETSI Broadband Radio Access Network
(BRAN) standard [16][17] has been chosen to run on
this testbed. The protocols for both AP and MT will be
formally specified in SDL (Specification and
Description Language) [13][14]. Timing issues are the
most critical part in the H/2 protocol development.
Therefore, this paper provides implementation
concepts to run the H/2 SDL protocol in the Real Time
(RT) Linux kernel space as real time module being part
of the real time operating system. Using RT Linux, the
H/2 protocol has lower delay and lower interrupt
latency. Thus it is of substantial interest to figure out
the best way how to share the computing power
between the time critical tasks and the non time critical
tasks which should not be blocked at all.

2. TESTBED ARCHITECTURE
The generic architecture of the testbed is shown in
figure 1. A similar hardware/software co-design for
broadband systems has already been proven in [18].
The OFDM part of the testbed depicted as the lower
block contains the modem as well as the transceiver
and receiver. The upper block includes a hardware and
a software component. The hardware can be used to
implement the most time critical parts of the protocol.
The software comprises the remaining parts of the

protocol stack as well as the Modem Interface
Software (MIS).

Figure 1: Generic Architecture of the Testbed.

The MIS is responsible for the communication flow
between the different parts of the protocol stack
located in soft- and hardware.
Figure 2 shows the final target architecture of the
testbed running the H/2 protocol including the
functional entities in the H/2-Protocol Engine (PE).

Modem H/2 PHY 1Tranceiver PHY 2

H/2-Protocol Engine

Control Plane User Plane

����������	�
�����
��	��

Radio Link Control

RLC

Radio
Resource
Control

Association
Control

DLC
Connection

Control

Rosa Box

Modem Board

O
S

 D
ev

ic
e

D
ri

ve
rs

 Ethernet
Card

Twisted
 Pair

Higher Layers

Convergence Layer

DLC Control SAP DLC User SAP

Data Link Control
Basic Data Transport Functions

Error Control

Medium Access Control

Modem Interface Software

Figure 2: Testbed Architecture

Protocol Stack

OFDM Hardware

Transceiver Receiver

Modem Board

Hardware

Software

M odem Interface Software

The H/2-PE is running in the Control Unit which is a
high end Intel based PC Hardware with PCI bus. Due
to hard timing constraints, it is necessary to put some
functionality of the H/2 Medium Access Control
(MAC) Layer into the Radio Operation Service
Accelerator (ROSA)-Box on the Modem Board to be
on the safe side. The H/2-PE is a program running the
H/2 protocols as depicted on the PC hardware. The
software part of the MAC-Layer communicates with its
hardware counter part via Interrupts (IRQ). The
communication flow controlled by the MIS is realized
via the PCI bus. The hardware architecture of AP and
MT are identical.

3. TIMING REQUIREMENTS
3.1 Access Point
In figure 3 the timing within the AP is shown. Since
the AP is responsible for the scheduling of the capacity
for all its MTs in both transmission directions (uplink
(UL) and downlink (DL)) the process is more time
consuming than at the MT.
The MAC-Frame is generated during the foregoing
MAC-Frame. The beginning of the generation process
is initiated by an IRQ sent by the ROSA-Box to the
MIS. The software part of the Data Link Control
(DLC) [4][5] will begin with the generation of the
Broadcast Channel (BCH), Frame Channel (FCH) and
DL phase. In the following MAC frames, the ROSA-
Box will then trigger the IRQ to the DLC only after
finishing the Access feedback Channel (ACH) phase.
After the Random Channel (RCH) phase ends, the
ROSA-Box triggers another IRQ to notify the DLC
that it may begin to evaluate the UL and RCH phases.

R
o

sa
 B

o
x

D
L

C
M

IS

MAC-FrameMAC-Frame MAC-Frame

������� ���������
	��� � � � ��� ��� � � � ��� ��� ����� � ��� ����� 	��� � � � ��� �� � � � ��� ���

Received
LCHs + SCHs

Feedback

Received RCHs

Received LCHs,
SCHs, RCHs

BCCH +
FCCH

LCHs +
SCHs

Frame structure:
transmit time + modulation

Generation BCCH, FCCH and
DL phase

Evaluation of UL phase
RCHs

Figure 3: Timing of the Base Station

It has to be guaranteed that the generation of the MAC-
Frame is finished in time. Furthermore the time
required for signal processing must be considered. The
data which is transferred to the ROSA-Box can be
divided into two groups: information for the broadcast
phase of the MAC-Frame (BCH, FCH) and the data for
the DL phase. The DL data is provided as sequences of
Short transport Channels (SCH) and Long transport
Channels (LCH). These sequences are ordered
according to the sequence they are sent out.
As shown in figure 3 the ROSA-Box obtains the
modulation/coding scheme and the
transmission/receive time from the BCH/FCH
information. This reduces the processing time as well

as the amount of data which has to be transferred to the
ROSA-Box.
The data received on the uplink (LCHs, SCHs, RCHs)
is processed when processing time is available. This
will usually be after the generation of the MAC-Frame.
Besides the received data, the protocol also requires
information about the result of the Cyclic Redundancy
Check (CRC) and the link quality which is transferred
attached to the data.
The acknowledgements transmitted within the ACH
are related to the RCH of the previous MAC-Frame.
Since the time to generate the ACH is limited to the
duration of the BCH and FCH, it is generated by the
ROSA Box.
In the AP all Protocol Data Units (PDU) of all
MAC_IDs are received. The receiving time and
Physical (PHY)-modi [1] have already been announced
inside the FCH.

3.2 Mobile Terminal
In the following the timing inside the MT and the
dependencies from the MT’s point of view are
explained.
Figure 4 shows the timing of the MT. The BCH
contains information about the position and the length
of the FCH. Thus, it is evaluated inside the ROSA-Box
to be able to receive the FCH and transferred to the
DLC, where it is probed. The Information Element
(IE)-Blocks of the FCH contain all required
information for the DL phase which is transmitted
immediately after the ACH.
The time which is available for the MT to generate the
data to be transmitted during the UL phase is limited
by the duration of the DL phase. Therefore, the LCHs
and SCHs received in the DL phase are not evaluated
by the DLC immediately. They will be requested after
the UL data has been provided. In the meantime they
are stored by the MIS.

Figure 4: Timing Mobile Station

The DLC is triggered by the ROSA-Box to generate
the UL phase. The trigger is initiated by the ROSA-
Box by an IRQ after receiving BCH/FCH/ACH data.
Initially it is proposed to transfer the BCH/FCH/ACH
data and the receiving conditions in one block to save
latency time. Therefore a minimum time is required to
arrange the uplink data.
The production of the UL data is completed by sending
the information via the MIS to the ROSA Box. The
data is provided as a sequence of SCHs and LCHs and
the RCH if one is required. The order of SCHs and

R
o

sa
 B

ox
D

L
C

M
IS

MAC-FrameMAC-Frame MAC-Frame

����� � ��� ����� ����� � ! " #��� � ! " $�%�&

Received
LCHs + SCHs

Length
info

Frame structure: receive/
transmit time + modulation

Generation of UL phase +
RCHs

Evaluation of DL phase

Length/Pos
of FCH

LCHs depends on the MAC_IDs to be served and the
connections to be served.
No information is attached to the LCH/SCH sequences,
as the information on sending time and PHY-mode vs.
MAC_ID is already known to the ROSA Box.
When the DLC generates the UL data the ROSA-Box
receives the DL data autonomously. The data is
transferred to the DLC when the DLC has provided the
UL data. The data is transferred as a sequence of
LCHs/SCHs together with the relevant receiving
conditions and link quality. For each announced PDU
of the served MAC_IDs at least the receiving
information is available.

4. PROTOCOL SPECIFICATION
The H/2 protocol [1][2][3][4][5] has formally been
specified using SDL. Figure 5 depicts the SDL
specification of the H/2 AP and Figure 6 depicts the
SDL specification of the H/2 MT respectively.

Figure 5: H/2 AP in SDL

As shown, both AP and MT have the same block
structure which contains PHY, DLC and Convergence
Layer (CL) [2][3] blocks only with some different
functionalities.

For instance, the DLC block of the AP is responsible
for controlling resource assignment/grant in a cell
where the AP resides and the DLC of the MT is
responsible for requesting resources. Moreover, the
PHY blocks of both AP and MT are responsible for
data mapping and data controlling between the DLC
block and the MIS whereas the CL blocks of both AP
and MT are responsible for data mapping between the
DLC block and a Linux module.

Figure 6: H/2 MT in SDL

5. HIPERLAN/2 IS A REAL TIME SYSTEM
Since H/2 requires a highly strict time requirement due
to its extremely short MAC frame which lasts only 2
ms, it has been considered to implement its protocol
into a real time system.
A real time system can be defined as a system that
performs its function and responds to external,
asynchronous events within a specified amount of time
[8][15].
These systems are characterized by the fact that several
consequences will result if logical as well as timing
correctness properties of the system are not satisfied.
There exist hard and soft real time systems. Soft real
time systems are those in which timing requirements
are statistically defined and in which a miss of a
deadline can be occasionally allowed. However in a
hard real time system, the deadlines must be
guaranteed.
Since all H/2 tasks can be noted as time critical tasks,
it is basically important to consider the computing
power management so that each time critical task will
meet its timeliness requirement, whereas non time
critical tasks such as Fast-Ethernet and Internet
Protocol (IP) modules will be executed so efficient that
the average response time of such tasks can be
minimized.
The most time critical tasks of H/2 is the generation of
the BCH and the DL data at the AP.

6. H/2 PROTOCOL IMPLEMENTATION FOR
RTLINUX
SDL provides a very good and efficient way to
formally specify communication protocols but the
execution time of standard SDL specifications is very
slow which makes such specifications not well suited
for the implementation in a real time system.

Moreover, due to its stand-alone data structure, it is
even more difficult to develop a hardware interface
which uses both SDL and hardware data structures.

Figure 7: H/2 protocol in real time system

Beyond it, SDL executables introduce another
extremely high delay since such executables run in the
user space. Therefore, in order to fulfill the highly
strict time requirements of a H/2 system, some
modifications should be made so that the H/2 SDL
specification can be implemented in a real time
system.
Figure 7 depicts the implementation of a H/2 protocol
into a real time environment. In this case, the H/2
protocol is no longer an executable running in the user
space but it is an operating system module running in
the kernel space, which runs in parallel to the standard
Linux kernel.
The reason for compiling the H/2 protocol as a Real
Time Linux module is that standard Linux supports
only Round-Robin scheduling [9][10][11] which
guarantees fairness among all tasks while Real Time
Linux supports priority scheduling [12] which
guarantees lower delay for high priority tasks. As
shown, the MIS and the H/2 DLC protocol are Real
Time Linux modules whereas the H/2 CL is a Linux
module. The CL acts as a bridge for data
communication between the H/2 DLC protocol and
other Linux modules such as IP and Fast Ethernet.
In order to make SDL protocols running in the kernel
space as Real Time Linux module, some modifications
in the SDL kernel should be undertaken.

 Figure 8: SDL Kernel–soft Real Time approach

Two different approaches namely soft Real Time and
hard Real Time approaches will be introduced in the
following.
Figure 8 depicts the implementation of the SDL kernel
using the soft Real Time approach. In this approach,
the SDL kernel is programmed to be active after a
specific predefined interval and to be non active after
its corresponding tasks have been completed. In this
case, every time when the MIS intercepts IRQs from
the H/2 modem board, it will then write a
corresponding message into the Receive (RX) Inter
Process Communication (IPC) queue so that when the
SDL kernel is active, it will then instruct the
environment (ENV) to poll the RX IPC queue to check
whether there has been an IRQ or not.
If there is an specific IRQ, the ENV will notify the
System (SYS) which here is equal to the SDL protocol
to carry on some corresponding tasks. After finishing
all tasks, the SYS will notify the ENV to send a
message through the Transmit (TX) IPC queue to the
MIS that some tasks have been completed and it will
put itself into the inactive state.

Figure 9: SDL Kernel–hard Real Time approach

Figure 9 depicts the implementation of the SDL kernel
using the hard Real Time approach where the SDL
kernel will be active only when the MIS sends an
“ON” signal and a message through the RX IPC queue
after receiving an IRQ from the H/2 modem board. The
SDL kernel will then carry on executing the same tasks
as in the soft Real Time approach when it is in active
state. Only when the SYS has finished carrying on its
tasks, it will then send an “OFF” signal to the SDL
kernel so that the SDL kernel can put itself into the
inactive state.
Therefore the latter approach is more suitable than the
first approach in context of timing requirement. The
only disadvantage is that to perform debugging is more
difficult than in the first approach. This can be well
described in a situation when the H/2 modem board
does not send any IRQ due to lost of synchronisation
(e.g an MT is too far away from an AP), the SDL
kernel will be always inactive so that some Radio
Resource Management activities such as Handover or
Dynamic Frequency Selection (DFS) cannot be

H/2 DLC

Modem
Interface Software

������� � ��� 	
� ��� �� ������� �����

H/2 CL Fast
Ethernet IP

Fast Ethernet
 Card H/2 MIB Another

Device

IRQ Emulation Layer

��� ��������� ����� �� ������� �����

U
se

r
R

T
L

in
u

x
K

er
ne

l

Application

H
D

W

U
se

r
R

T
 L

in
u
x

K
er

n
el

Application
H

D
W

performed anyway due to inactiveness of the SDL
kernel which will lead to some erroneous situations.
To prevent this a status IRQ is invented to switch the
DLC into the active state and inform it about the actual
HW status.

7. SUMMARY AND CONCLUSIONS
In this paper the implementation of the H/2 protocol in
a 5GHz OFDM-Testbed is introduced. The Testbed
offers the possibility to implement some parts of the
protocol in hardware and others in software. It is
reflected that the protocol of the Access Point is more
time critical than the one of the Mobile Terminal. The
time critical software components were located in the
more suitable hardware concerning the latency of
reaction. To meet the timing requirements beyond
this a Real Time Environment with Real Time Linux
as Operating System is chosen. Therefore some
modifications in the SDL specification have to be
undertaken. It is shown that the implementation of the
SDL kernel using the hard Real Time approach has the
best timing performance.
The system currently is in the implementation phase.

ACKNOWLEDGEMENTS
This work was supported by the German research
project COVERAGE (Cellular OFDM systems with
extension points for increased transmission RAnGE)
funded by the German Ministry for Education and
Research (BMBF) and the SIEMENS AG
Munich/Bocholt.
The authors would like to thank the members of the
project for the valuable discussions.

REFERENCES
[1] ETSI TS 101 475, “Broadband Radio Access

Networks (BRAN); HIPERLAN Type 2; Physical
(PHY) layer”, Februar 2001

[2] ETSI TS 101 493-1 V1.1.1, “Broadband Radio
Access Networks (BRAN); HIPERLAN Type 2;
Packet Based Convergence Layer; Part 1:
Common Part”, April 2000

[3] ETSI TS 101 493-2 V1.1.1, “Broadband Radio
Access Networks (BRAN); HIPERLAN Type 2;
Packet Based Convergence Layer; Part 2:
Ethernet Service Specific Convergence Sublayer
(SSCS)”, April 2000

[4] ETSI TS 101 761-1 V1.1.1, “Broadband Radio
Access Networks (BRAN); HIPERLAN Type 2;
Data Link Control (DLC) Layer; Part 1: Basic
Data Transport Functions”, April 2000

[5] ETSI TS 101 761-2 V1.1.1, “Broadband Radio
Access Networks (BRAN); HIPERLAN Type 2;
Data Link Control (DLC) Layer; Part 2: Radio
Link Control (RLC) sublayer”, April 2000

[6] W. Zirwas, T. Giebel, N. Esseling, E. Schulz, J.
Eichinger, “Broadband MultiHop Networks for
Public Hot Spot Scenarios”, Wireless World
Research Forum 3rd Meeting Stockholm,
September 2001

[7] N. Esseling, “Extending the Range of
HiperLAN/2 Cells in Infrastructure Mode using
Forward Mobile Terminals”, European Personal
Mobile Communication Conference 2001 Vienna,
February 2001

[8] J. A. Stankovic, K. Ramamritham, “Hard Real-
Time Systems”, IEEE Computer Society Press
Order Number 819

[9] D. P. Bovet, M. Cesati, “Understanding the Linux
Kernel”, O’Reilly, ISBN 0-596-00002-2, January
2001

[10] A. Rubini, “Linux Device Drivers”, O’Reilly,
ISBN 1-56592-292-1, February 1998

[11] M. Beck, H. Böhme, M. Dziadzka, U. Kunitz, R.
Magnus, D. Verworner, “Linux Kernel Internals”,
Addison-Wesley, ISBN 0-201-33143-8, 1999

[12] M. Barabanov, “A Linux-based Real Time
Operating System”, master thesis,
http://www.rtlinux.org , June 1997

[13] ITU-T, “Recommendation Z-100, Specification
and Description Language SDL”, November 1999

[14] A. Mitschele-Thiel, “Systems Engineering with
SDL, Developing Performance-Critical
Communication Systems”, John Wiley & Sons,
Ltd, ISBN 0-471-49875-0, 2001

[15] B. Fuhrt, D. Grostick, et al. “Real-time UNIX
systems: design and application guide”, Kluwer
Academic Publishers Group, Norwell, MA, USA,
1991.

[16] B.Walke, N.Esseling, J.Habetha, A.Hettich,
A.Kadelka, S.Mangold, J.Peetz, U.Vornefeld, “IP
over Wireless Mobile ATM – Guaranteed
Wireless QoS by HiperLAN/2” in Proceedings of
the IEEE, Vol.89,pp.21-40, January 2001

[17] ETSI TR 101 173, “Broadband Radio Access
Networks (BRAN); HIPERLAN Type 2; System
Overview”, Februar 2000

[18] U.Vornefeld, N.Esseling, “SAMBA: The Proof of
a Concept” in Proc. Ot the 4th European Personal
Mobile Communications Conference
(EPMCC’01), Session 26.5, Vienna, Austria,
February 2001

