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Abstract—Cooperation amongst heterogeneous mobile radio 
systems will be an indispensable feature of ‘beyond 3G’. One 
key mechanism thereby serving as enabling technique for 
system integration will be the Vertical HandOver (VHO) 
between different radio networks. Optimal handover control 
thereby is very important for which the present paper 
investigates a new algorithm for accurate VHO trigger 
generation. Taking the own position as input, mapping with 
location-based measurements from other stations is 
accomplished to decide for heterogeneous system coverage. 
Special interest thereby is laid on the fact that localization 
techniques inherently suffer from imprecision. Accurate 
trigger generation hence needs to overcome the impact of 
erroneous position information. 

Index Terms—System Integration, Vertical Handover, 
Kalman Filter, Coverage Detection 
 

I. INTRODUCTION 

OLLOWING the evolution from 2G, over 3G and beyond, 
one will realize that the immanent drivers for this 

development are the users’ basic needs for mobility and 
communication. The Always Best Connected [1] dogma will 
be of great importance for mobile users in future. It is not 
very likely that one single system will ever be able to deal 
with all demands of modern communication: Quality of 
Service requirements, security, maintainability, operation 
and deployment costs, spectrum scarceness, convenience, 
politics and health are only a few aspects that cannot all be 
optimized in parallel due to their partly contradictory 
objectives. Instead, the cooperation and bonding of 
dedicated technologies, each of which optimized for a 
specific task, entails a promising alternative. 

Accordingly, many research projects of today such as [2] 
focus on aspects of system integration. However, to allow 
for smooth migration of services, the underlying techniques 
need to enclose some redundancy. The same holds, if a 
service started in one system, but for some reason cannot be 
completed there. In such a case, partly redundant network 
structures need to cushion imminent service interruption.  

The main application scenario, to be investigated in many 
different specifications though, will be the connection of a 
Mobile Terminal (MT) to a system A (high coverage, 
moderate bit rate) with some intermediate handovers to 
another, vertical system B (low coverage, high bit rates) and 

probably back to system A again. The described case 
corresponds e.g. to a transition of a hotspot by a mobile 
device as shown in Figure 1. The corresponding handover 
between different systems A and B subsequently is referred 
to as Vertical HandOver (VHO). 

System A

System B

Blurred Cell
Border  

Figure 1: Exemplary scenario with two overlaying systems 
 
VHO is one possible means to allow for (seamless) 

service continuity across network boundaries. Before 
sophisticated handover decisions may consider network 
switching, knowledge on alternatively available systems 
needs to be present first. This entails the initial detection of 
complementary systems. Especially, if mobility is involved, 
the accessible infrastructure changes quickly. This reduces 
the system integration aspect to the problem of coverage 
detection that needs to be solved prior to any further actions. 

Coverage detection of a target system is conventionally 
realized by means of self-dependent scanning of the 
respective system. It was shown in [3] that this is not a 
preferable means to gather system information. 
Alternatively, one could imagine that existence and 
coverage of a potential target system is known due to 
measurements taken previously by other terminals. A 
concept that exploits foreign party based measurements, 
administers them in (long-term) databases and makes them 
available to other stations has been presented in [4]. Thus, 
considering these information only the own location is 
required to determine whether a VHO would be successful 
or not. However, the coverage area derived from the foreign 
party measurements does not comprise an accurate border, 
but can be better described by a widespread area with a 
blurred border, see Figure 1, owing to fading, interference 
and faulty positioning. Algorithms for VHO decision, 
considering all this input, need to find a way to compensate 
the blurring of the cell border as accurately as possible. 
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In [5] the authors presented the Centre of Gravity (CoG) 
algorithm that can be used for cell border detection based on 
foreign measurements associated with localization data. It 
was assumed that a mobile terminal’s exact position is 
known when making VHO decisions. This paper 
investigates the impact of imprecise position information on 
the accuracy of the VHO decision.  

The structure of the paper is as follows: Section II gives a 
short review of the CoG algorithm as proposed in [5]. 
Section III explains the error model that is used to emulate 
faulty positioning. In addition, movement prediction based 
on Kalman filtering is introduced. The simulation scenario 
and the performance of the CoG algorithm in conjunction 
with movement prediction are described in Sections IV and 
V. Finally, some concluding remarks in Section VI 
summarize achievements of this work. An appendix was 
added to explain important Kalman parameters and 
assumptions in more detail.  

II. THE CENTRE OF GRAVITY ALGORITHM FOR 
COVERAGE DETECTION 

Accurate trigger generation based on foreign 
measurement reports needs to overcome the impact of 
localization errors. 

The Centre of Gravity (CoG) algorithm was designed to 
compensate effects of ‘misleading’ measurements 
introduced to the database by erroneous positions. Thereby 
‘misleading’ measurements are measurements that actually 
have been recorded inside the cell coverage. Due to 
positioning errors, associated coordinates reported along 
with the measurements indicate positions outside the actual 
coverage area. ‘Correct’ measurements suffer from the same 
positioning error but the reported position effectively is 
inside the cell coverage area. Both types are shown in 
Figure 2 as white (‘misleading’) and black (‘correct’) dots. 
The CoG algorithm exploits the fact that the density of 
’misleading’ measurements is lower than the density of 
‘correct’ measurements.  

Figure 2 illustrates the algorithm’s outcome when a 
mobile terminal approaches the cell border. The algorithm 
calculates the distance from the mobile terminal to the CoG 
of all measurements within its vicinity (defined by the 
circular Decision Area (DA) with radius RDA). The distance 
reported initially (1) is the radius of the DA itself. This is 
the case, as soon as the outer bound of the DA matches the 
position of the first single ‘misleading’ measurement report. 
Moving towards the cell border firstly decreases the 
distance to the CoG (2). When the DA further enters cell 
coverage (3) it includes ‘correct’ reports. Since these have a 
much higher density, the distance is likely to increase again. 
Finally, after the mobile terminal (and the DA) have passed 
by the actual cell border (4), the distance drops below a 
threshold that can be chosen for trigger generation. 
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Figure 2: Centre of Gravity Algorithm [5]

 
So far, noisy positioning was assumed for measurements 

in the data base only, while the position of the terminal used 
as input for CoG requests inherently was assumed to be 
exact. In reality, this is not the case. Hence, this paper 
concentrates on the impact of imprecise terminal 
localization when performing VHO decisions with the CoG 
algorithm.  

III. LOCALIZATION ERROR AND MOVEMENT PREDICTION 
This section introduces the localization error model used 

to emulate faulty positioning within the simulations of 
Section V. Basically, an augmented two-dimensional 
Gaussian distribution is applied. The second part of this 
section gives a description of the movement prediction that 
is introduced to overcome the influence of imprecise 
localization. 

A. Localization Error Model 
Localization errors are modeled applying a two-

dimensional Gaussian distribution for the position deviation 
with a cut-off at the maximum error of . It is assumed 
that unreasonable high positioning errors beyond  can 
be filtered out beforehand, e.g. by higher layer detection. 
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between the x and y coordinates ( ' 'xy yx 0σ σ= = ) and the 
variance both for x and y coordinates is the same 
( 2 2' 'xx yy

2'σ σ σ= = ). Using polar coordinates the 
Probability Density Function (PDF) for this distribution may 
be written as: 

2

22 '
max max2

1
2 '

( )
0

r

C e r r

p r for
otherwise

σ

πσ

−⎧
+ −⎪

⎪⎪= ⎨
⎪
⎪
⎪⎩

r≤ ≤
 (1) 

The cut-off at maxr±  shifts the PDF by C. Using  
max2

0 0

( ) 1
r

p r r dr d
π

φ⋅ ⋅ ⋅ =∫ ∫ yields to 
2

max
22 '

2
max

1 .
r

C e
r

σ

π

−
=  (2) 



 

The variance of this augmented Gaussian distribution 
may be calculated by solving 
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The variance of position measurements may be expressed 
by the cut-off and the variance of the original 
distribution 
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Knowledge on the statistical properties of the 
measurement error is needed for successful application of 
the Kalman Filter for movement prediction introduced in the 
following section. 

B. Movement Prediction using Kalman Filter 
The Kalman Filter addresses the general problem of 

trying to estimate the state vector  of a discrete-time 
controlled process that is governed by the linear stochastic 
difference equation [6]: 

n
kx ∈ℜ

1k k kx x u−= + +A B w

kv

 (6) 
Estimation of the process state is done by taking 

measurements   which are given by: 
k kz x= ⋅ +H  (7) 
The random variables  and represent the process 

and measurement noise. They are assumed to be 
independent, white and with normal probability 
distributions. The process noise covariance matrix is 
denoted by Q  and measurement covariance matrix by .  

kw kv

R
Figure 3 shows the general structure of the Kalman Filter. 

On top, a block diagram of equations (6) and (7) is shown. 
This is the discrete-time representation of the system with 
unknown state vector kx . 

The bottom part shows the Kalman Filter that is used to 
estimate the process state vector kx . A replication of the 
original system is used to derive the estimate state vector ˆkx . 
Each time-step a time update is performed that calculates a 
prediction of the system output. This is done by 

1ˆ ˆk k k 1x x u−
−= +A B −

+

 (8) 
Please note that the minus sign indicates that this value is 

an a priori value which is predicted and has not yet taken 
into account the newly arriving measurement. The time 
update is finished by calculating the a priori error 
covariance matrix . Predicted values for 
the state vector 
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Figure 3: General Structure of the Kalman Filter 

 
the measurement update step to correct the system. The 
Kalman Gain  is adjusted in a way that the a posteriori 
error covariance is minimized [6]. It gives a measure on 
how much the prediction 

kK

ˆkx−  and on how much the 
measurement  is trusted. The Kalman gain is given by: kz

1(T T
k k k )− −=K P H HP H R −+

)

, (9) 
the state vector estimation with current measurement  by kz
ˆ ˆ ˆ(k k k k kx x z x− −= + −K H , (10) 

and the error covariance matrix update by 
(k k ) k

−= −P I K H P . (11) 
The appendix lists detailed information on the actual 

model parameters used in the filter implementation 
throughout all the simulations. 

IV. SIMULATION SCENARIO 
There are two different scenarios evaluated within this 

paper. The first is used to evaluate the performance of 
movement prediction for different localization precisions. 
Analysis of the VHO trigger accuracy using the CoG 
algorithm with imprecise positioning is done with the 
second scenario. 

A. Movement Prediction Scenario 
The performance of position estimation by Kalman 

filtering, described in Section III is evaluated by estimating 
the trajectory of a pedestrian mobile user moving according 
to a random mobility model illustrated by Figure 4. Mobile 
terminals move straightforward with a constant velocity v  
for a randomly chosen distance . Then the direction is 
altered by a randomly chosen angle between 

1d
ϕ±  degree 

(chosen here to 5 degree) and a new distance ( ) is 
randomly drawn. This is used as input data to the Kalman 
filter. The performance is analyzed by evaluating the 
statistical properties of the estimation error.  

2d



 

MT

ϕ

ϕ

v const=

1d

2d

 
Figure 4: Random Mobility Model 

B. Centre of Gravity Scenario 
The CoG algorithm’s performance using erroneous 

localization is evaluated in the scenario shown in Figure 5. 
A mobile terminal (MT) approaches the coverage area of a 
WLAN (IEEE 802.11a) Access Point (AP).  
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Figure 5: Simulation Scenario 

 
The starting point is chosen randomly. The mobile 

terminal moves with constant velocity of v = 5 km/h. Every 
200ms, localization is performed and the CoG algorithm is 
used to make a handover decision. The decision area radius 
was chosen to 5m. If the algorithm triggers a handover to 
the destination system the distance of the mobile terminal to 
the cell border is recorded. The probability distribution of 
this distance is derived from consecutive simulation runs. 
The cell border is determined by the minimum sensitivity 
required by IEEE 802.11a for BPSK1/2 of -82dBm. The 
distance is derived from a single slope propagation model 
with path loss coefficient of 2.4γ =  given by  

( )

2

0

0

0

2

0

0

0

4

( ) for fixed 1

4

.

s s r

r

s s r

P g g d d
d

P d

d
P g g d d

d d

λ

π

λ

π

γ

⋅ ≤

=

⋅ >

⎧ ⎛ ⎞
⎜ ⎟⎪ ⎝ ⎠⎪⎪

⎨
⎪

⎛ ⎞⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

d m=  (12) 

Thereby  and SP RP denote the transmission and reception 
power Sg  and Rg the antenna gain at sender and receiver 
and denotes the distance between sender and receiver. 
Assuming no antenna gain and using 100mW transmission 
power results to a cell radius of 191m (f=5.5GHz). 
Positioning errors where modeled according to Section III 
with different parameters for maximum error and variance. 
It is assumed that the measurements recorded in the 
database beforehand were associated with positions that 
suffer from erroneous localization where the maximum error 
was set to 10m and the standard deviation 

d

'σ  of the 

underlying Gaussian distribution was set to 10m, too. 

V. PERFORMANCE EVALUATION 

A. Kalman Filter Performance 
Figure 6 shows the trajectory estimation performed by 

our movement prediction. Every 200ms the mobile 
terminal’s position is measured and the time and 
measurement update steps (equation (9)-(11)) are 
performed. The localization error model was set to a 
maximal error of 10m and a standard deviation of 10m. 
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Figure 6: Sample trajectory estimation 

 
The dashed line shows the terminal’s trajectory generated 

by the mobility model, the solid line shows the estimated 
trajectory and the single dots show the measured positions 
including the associated positioning error. It can be seen that 
measurements are located within 10 meters around the 
trajectory. The estimated path is very close to the actual 
trajectory. These simulations were repeated for different 
measurement error parameters. The estimation errors are 
normally distributed with zero mean. Table 1 shows the 
standard deviation along with the 95% circular error margin. 
The absolute estimation error is below that margin for 95% 
of all estimates. 
It can be seen that there is a significant precision 
improvement when using movement prediction. Thereby the 
improved precision is at the expense of increased 
measurement frequency.  

 
Table 1: Estimation Error Variance for different Error model parameters 
Localization Error Model Estimation Error 
Maximum 

Error    
[m] 

Standard 
Deviation 

'σ  [m] 

95% Circ. 
Error 

Margin [m] 

Standard 
Deviation 

[m] 
10m 10m 3.25m 1.33m 
50m 50m 11m 4.46m 

150m 150m 24.8m 10.20m 
200m 200m 30.8m 12.65m 

This makes it especially attractive for solely network 
based localization methods which usually suffer from lower 
precision compared to, e.g. terminal on-board GPS, but that 
can be conducted much more often. Summarizing this 
Section, Kalman filtering is applied to significantly improve 



 

the position estimation of a terminal moving towards the 
coverage area of a radio system. Since the own position is 
used as input for CoG database queries, it is important to be 
as precise as possible. However, the own position is only 
one out of three aspects that affect CoG reliability. The 
following section addresses all three aspects and provides 
respective CoG performances. 

B. Centre of Gravity Algorithm Performance 
The coverage detection accuracy of the CoG algorithm 

basically depends on three parameters, i.e. Top 1) the 
number of measurements within the database, Top 2) the 
chosen Decision Threshold (see Figure 2), and Top 3) the 
positioning error that is made when locating the respective 
mobile terminal. 

Top 1): Figure 7 shows the impact of different 
measurement densities on the accuracy of the handover 
decision. It shows the cumulative distribution function of 
the distance from mobile terminal to cell border when 
handover is triggered. The CoG algorithm threshold was set 
to 0.25m and there is no positioning error for the moving 
terminal. 

However, database entries (‘misleading’ and ‘correct’ 
reports, see Figure 2), with which the moving terminal’s 
position is compared, certainly suffer from erroneous 
localization (variance 10m and maximal error 10m). It can 
be seen that with increasing measurements within the 
decision area the CoG detection of the actual coverage 
border improves. There are up to 20% of decisions that are 
made too early, this would result in ping-pong handover. 
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Figure 7: VHO precision for different measurement densities 

However, since these handover triggers have to be signaled 
to the mobile terminal, it could be a benefit to be informed 
prior to actually reaching the cell. 

Top 2) Figure 8 shows the impact of different threshold 
values on the trigger distribution. It can be seen that with 
increasing threshold more and more handovers are triggered 
too early. With low thresholds it is possible that triggers are 
generated very late. This due to the fact that within the cell 
the measurement density is not constant, therefore the 
distance to the CoG has a certain jitter. If the threshold 

drops down and is within the same order as the jitter it is 
possible that the threshold is passed very late. 
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Figure 8: VHO trigger Distribution for different CoG thresholds 

Top 3): Figure 9, finally shows the impact of localization 
errors for the moving mobile terminal. The values shown in 
Table 1 were used to set the maximal error and standard 
deviation of the error model described in Section III. The 
maximal error was set a little higher than the 95% border to 
give account for the truncation. Gains due to Kalman  
movement prediction were taken into account by an 
accordingly decreased positioning error. 
The rightmost curve represents the case where the 
approaching mobile terminal is exactly located. Clearly, 
precision decreases with increasing positioning error. It is 
interesting to see that even the for the case with maximal 
error of 12m, which corresponds to the localization error of 
50m in Table 1, reasonable good performance is achieved. 
For larger positioning errors more and more handovers are 
triggered before the actual cell border is reached. However, 
movement prediction not only supplies the current position 
but the velocity and acceleration vector, too. This could be 
exploited to overcome these early VHO triggers. Very late 
handover decisions beyond 15m inside the coverage area do 
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Figure 9: VHO trigger distribution for different localization errors 

not depend anymore on the localization error. The farer 
mobile terminals are within the coverage area the higher the 
probability that the reported imprecise location is well 
within the coverage area, too. The handover probability 



 

therefore only depends on the measurement distribution 
(investigated in Top 1) within the cell.  

VI. CONCLUSIONS 
A method for vertical handover trigger generation based 

on the CoG algorithm [5] was presented and evaluated. It 
specifically deals with imprecise localization impacts. It has 
been shown that this imprecision can be overcome by using 
movement prediction to improve the performance of 
respective localization methods, thereby trading frequency 
of measurements for localization accuracy. The impact of 
erroneous positions on the vertical handover decision was 
evaluated and it was shown that improvements for accurate 
trigger generation are possible. Next steps will be to 
evaluate further possibilities imposed by movement 
prediction. The Kalman filter also supplies the velocity and 
acceleration vector, which can be used to further improve 
VHO decisions by adjusting the time when a VHO is 
signaled to the mobile terminal. By now, only the absolute 
value of the distance vector from the mobile terminal to 
centre of gravity is evaluated. Both, velocity vector and 
distance vector, can be used to detect mobile terminals 
moving parallel to cell borders to decrease the amount of 
ping-pong handovers.    

APPENDIX 
This section lists the detailed parameters for Kalman 

filtering as described in Section III mainly taken from [7] 
and [8]. All values are given for the one-dimensional case. 
The two-dimensional equation can be derived by calculating 
the Kronecker product with the 2x2 identity matrix, e.g. 

. The estimated state vector within the 
simulation encompasses the mobile’s position, velocity and 
acceleration 

2 dim 2− = ⊗A I A

ˆ ˆ ˆ ˆ( , , )x xx x v a= . There are no external inputs to 
the system: . Mobility is modeled by the process 
noise. All values listed are based on an acceleration model, 
where the acceleration is correlated in time according to the 
correlation function with time constant 
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The time discrete system matrix is given by (20). 
Observations are only made on the position information of 
the estimated state vector:

A

( )1 0 0 .=H  The covariance 
matrix of the system noise Q that describes random 
accelerations made by the mobile terminal is given by [8][9]
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The error covariance matrix is initialized by 
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The state vector is initialized by the mean of the first two 
measurements. The initial velocity is the difference of both 
measurements divided by the sampling period. 
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